Artificial Intelligence Technologies in Cardiology
Abstract
:1. Introduction
2. Introduction to AI in Healthcare
3. The Most-Often-Used ML Algorithms
3.1. Supervised Learning
- 1.
- K-nearest neighbors (KNN)
- 2.
- Decision trees (DTs)
- 3.
- Support Vector Machines (SVMs)
- 4.
- Naïve Bayes (NB)
- 5.
- Artificial Neural Networks (ANNs)
3.2. Unsupervised Learning
- K-means
- 2.
- Principal Component Analysis (PCA)
- 3.
- Hierarchical clustering
- 4.
- A priori algorithms
- Rule-based systems: Rule-based systems are among the earliest techniques used in XAI and they are still widely used today. These systems rely on predefined rules and decision trees that explicitly state how an algorithm makes decisions. This approach allows humans to trace the decision-making process, making it more transparent and understandable.
- Model interpretation techniques: Model interpretation techniques are used to provide insight into how the machine learning model makes predictions. These techniques include visualization tools that help users understand the model’s internal structure and feature importance analysis that shows which features are most important for the model’s decisions.
- Local explanations: Local explanations aim to provide an explanation for a single prediction. These techniques are used to explain why the machine learning algorithm made a specific decision for a given input. Examples of local explanation methods include LIME (local interpretable model–agnostic explanations) and SHapley additive exPlanations (SHAP).
- Global explanations: Global explanations aim to provide explanations for the overall behavior of the machine learning model. These techniques include sensitivity analysis, which shows how changes in input features affect a model’s output, and feature importance analysis, which shows which features are most important for a model’s overall performance.
- Human-in-the-loop: Human-in-the-loop (HITL) techniques involve incorporating human feedback into the machine learning process. These techniques allow humans to provide input and feedback at various stages of the model development process, increasing transparency and improving the model’s performance.
- GradCAM: gradient-weighted class activation mapping (GradCAM) is a visualization technique that highlights the regions of an image that are most important for the machine learning algorithm’s decision-making process. GradCAM works by generating a heatmap that shows the areas of an image that had the highest activation in the convolutional layers of the deep neural network used by the machine learning model.
4. Natural Language Processing
- Morphological analysis
- 2.
- Lexical analysis
- 3.
- Syntactic analysis
- 4.
- Semantic analysis
- 5.
- Discourse integration
- 6.
- Pragmatic analysis
5. The implementation of Artificial Intelligence in Cardiology
5.1. Implementation of AI Technologies in Cardiology
- The logistic regression algorithm is a type of regression analysis that is used for predicting the probability of a binary outcome. Logistic regression can be used in cardiology to predict the probability of a patient developing a cardiovascular disease based on various risk factors such as age, gender, and blood pressure.
- 2.
- The decision trees algorithm is a machine learning method used for classification and regression analysis. In cardiology, decision trees can be used to create a model that can classify patients based on various cardiovascular risk factors, such as smoking status, blood pressure, and cholesterol levels.
- 3.
- The random forest algorithm is an ensemble learning method that combines multiple decision trees to create a more accurate prediction model. In cardiology, random forests can be used to classify patients based on multiple decision trees, each tree using different combinations of risk factors.
- 4.
- Support vector machines (SVMs)algorithms are supervised learning algorithms that are used for classification and regression analysis. In cardiology, SVMs can be used to identify patients at risk of developing cardiovascular disease by analyzing data such as age, blood pressure, and cholesterol levels.
- Convolutional neural networks (CNNs) are a type of deep learning algorithm that is commonly used for image classification and recognition tasks. In cardiology, CNNs can analyze medical images such as CT scans, MRI scans, and echocardiograms, and identify various cardiovascular abnormalities such as heart disease and arrhythmia.
- 2.
- Recurrent neural networks (RNNs) are deep learning algorithms that are used for analyzing sequential data, such as time series. In cardiology, RNNs can analyze electrocardiogram (ECG) data and detect patterns and abnormalities that may indicate cardiovascular disease.
- Named entity recognition (NER) algorithms are NLP algorithms that are used to extract specific items such as diseases, symptoms, and medications from clinical documents such as electronic health records (EHRs). In cardiology, NER can be used to extract relevant information from patient records and help clinicians make better-informed decisions about patient care.
- 2.
- Sentiment analysis algorithms are NLP algorithms that are used to analyze text data and identify the sentiments or emotions conveyed by the text. In cardiology, sentiment analysis can be used to analyze patient feedback and reviews of cardiac treatments and procedures.
- Association rule mining is a data mining technique that is used to identify patterns and relationships among different variables in a dataset. In cardiology, association rule mining can be used to identify risk factors and their relationships to various cardiovascular diseases.
- 2.
- Clustering analysis is a data mining technique that is used to group similar data points together based on their characteristics. In cardiology, clustering analysis can be used to identify groups of patients with similar cardiovascular risk profiles.
- Image segmentation is a type of algorithm used to separate an image into its component parts. In cardiology, image segmentation can be used to identify abnormalities in medical images, such as images of the heart and surrounding tissue.
- Feature extraction is a type of algorithm used to identify specific features within an image. In cardiology, feature extraction can be used to identify specific features within medical images, such as the narrowing of coronary arteries.
- Pattern recognition is a type of algorithm used to identify patterns in medical images such as the presence of plaques or blockages in arteries. In cardiology, pattern recognition can be used to identify patients who may be at risk of developing cardiovascular disease.
5.2. Examples of Deployed Technologies
5.2.1. Supervised Learning
5.2.2. Unsupervised Learning
5.2.3. Reinforcement Learning
5.2.4. Natural Language Processing
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
AUC | Area under the curve |
CNN | Convolutional neural network |
DT | Decision tree |
EHR | Electronic health records |
FDA | Food and Drug Administration |
GBT | Gradient-boosted tree |
GradCAM | Gradient-weighted class activation mapping |
HCP | Healthcare professionals |
IDC | International Data Corporation |
KNN | K-Nearest neighbor |
ML | Machine learning |
MLPDSC | Machine Learning for Pharmaceutical Discovery and Synthesis Consortium |
NB | Naïve Bayes |
NER | Unit name recognition |
NLP | Natural language processing |
PCA | Principal component analysis |
RF | Random Forest |
RL | Reinforcement learning |
RNN | Recurrent neural network |
SARSA | State-action-reward-state-action |
SHAP | SHapley Additive exPlanations |
SVM | Support vector machines |
VAEs | Variational autoencoders |
WHO | World Health Organization |
XAI | Explainable artificial intelligence |
References
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core; International Data Corporation: Framingham, MA, USA, 2018. [Google Scholar]
- Stanford Medicine 2017 Health Trends Report Harnessing the Power of Data in Health; Stanford Medicine: Stanford, CA, USA, 2017.
- Badura, A.; Krysiński, J.; Nowaczyk, A.; Buciński, A. Application of Artificial Neural Networks to Prediction of New Substances with Antimicrobial Activity against Escherichia Coli. J. Appl. Microbiol. 2021, 130, 40–49. [Google Scholar] [CrossRef]
- Badura, A.; Krysiński, J.; Nowaczyk, A.; Buciński, A. Prediction of the Antimicrobial Activity of Quaternary Ammonium Salts against Staphylococcus Aureus Using Artificial Neural Networks. Arab. J. Chem. 2021, 14, 103233. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef]
- Struble, T.J.; Alvarez, J.C.; Brown, S.P.; Chytil, M.; Cisar, J.; Desjarlais, R.L.; Engkvist, O.; Frank, S.A.; Greve, D.R.; Griffin, D.J.; et al. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. J. Med. Chem. 2020, 63, 8682. [Google Scholar] [CrossRef]
- ASKCOS Homepage. Available online: https://askcos.mit.edu/ (accessed on 9 October 2022).
- MLPDS—Machine Learning for Pharmaceutical Discovery and Synthesis Consortium. Available online: https://mlpds.mit.edu/ (accessed on 9 October 2022).
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag. 1955, 27, 12. [Google Scholar] [CrossRef]
- Turing, A.M.I. —Computing Machinery and Intelligence. Mind 1950, LIX, 433–460. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the Game of Go without Human Knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.A.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; van de Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A.; et al. Prediction of Risk of Death and Myocardial Infarction in the Six Months after Presentation with Acute Coronary Syndrome: Prospective Multinational Observational Study (GRACE). BMJ 2006, 333, 1091. [Google Scholar] [CrossRef]
- Benza, R.L.; Gomberg-Maitland, M.; Miller, D.P.; Frost, A.; Frantz, R.P.; Foreman, A.J.; Badesch, D.B.; McGoon, M.D. The REVEAL Registry Risk Score Calculator in Patients Newly Diagnosed with Pulmonary Arterial Hypertension. Chest 2012, 141, 354–362. [Google Scholar] [CrossRef]
- Kanwar, M.; Raina, A.; Lohmueller, L.; Kraisangka, J.; Benza, R. The Use of Risk Assessment Tools and Prognostic Scores in Managing Patients with Pulmonary Arterial Hypertension. Curr. Hypertens. Rep. 2019, 21, 45. [Google Scholar] [CrossRef]
- Kakadiaris, I.A.; Vrigkas, M.; Yen, A.A.; Kuznetsova, T.; Budoff, M.; Naghavi, M. Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA. J. Am. Heart Assoc. 2018, 7, e009476. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzo, F.; de Filippo, O.; Gallone, G.; Mittone, G.; Deriu, M.A.; Iannaccone, M.; Ariza-Solé, A.; Liebetrau, C.; Manzano-Fernández, S.; Quadri, G.; et al. Machine Learning-Based Prediction of Adverse Events Following an Acute Coronary Syndrome (PRAISE): A Modelling Study of Pooled Datasets. Lancet 2021, 397, 199–207. [Google Scholar] [CrossRef]
- Alaa, A.M.; Bolton, T.; di Angelantonio, E.; Rudd, J.H.F.; van der Schaar, M. Cardiovascular Disease Risk Prediction Using Automated Machine Learning: A Prospective Study of 423,604 UK Biobank Participants. PLoS ONE 2019, 14, e0213653. [Google Scholar] [CrossRef] [PubMed]
- de Bacquer, D.; Ueda, P.; Reiner, Z.; de Sutter, J.; de Smedt, D.; Lovic, D.; Gotcheva, N.; Fras, Z.; Pogosova, N.; Mirrakhimov, E.; et al. Prediction of Recurrent Event in Patients with Coronary Heart Disease: The EUROASPIRE Risk ModelResults from a Prospective Study in 27 Countries in the WHO European Region—The EURObservational Research Programme (EORP) of the European Society of Cardiology (ESC). Eur. J. Prev. Cardiol. 2022, 29, 328–339. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and Validation of QRISK3 Risk Prediction Algorithms to Estimate Future Risk of Cardiovascular Disease: Prospective Cohort Study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef]
- Pieszko, K.; Hiczkiewicz, J.; Budzianowski, P.; Rzeźniczak, J.; Budzianowski, J.; Błaszczyński, J.; Słowiński, R.; Burchardt, P. Machine-Learned Models Using Hematological Inflammation Markers in the Prediction of Short-Term Acute Coronary Syndrome Outcomes. J. Transl. Med. 2018, 16, 334. [Google Scholar] [CrossRef]
- Pieszko, K.; Hiczkiewicz, J.; Budzianowski, P.; Budzianowski, J.; Rzeźniczak, J.; Pieszko, K.; Burchardt, P. Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers. Dis. Markers 2019, 2019, 9056402. [Google Scholar] [CrossRef] [PubMed]
- Brajer, N.; Cozzi, B.; Gao, M.; Nichols, M.; Revoir, M.; Balu, S.; Futoma, J.; Bae, J.; Setji, N.; Hernandez, A.; et al. Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission. JAMA Netw. Open 2020, 3, e1920733. [Google Scholar] [CrossRef]
- Kwon, J.m.; Kim, K.H.; Akkus, Z.; Jeon, K.H.; Park, J.; Oh, B.H. Artificial Intelligence for Detecting Mitral Regurgitation Using Electrocardiography. J. Electrocardiol. 2020, 59, 151–157. [Google Scholar] [CrossRef]
- What Is Overfitting?|IBM. Available online: https://www.ibm.com/cloud/learn/ (accessed on 10 October 2022).
- Mathur, P.; Srivastava, S.; Xu, X.; Mehta, J.L. Artificial Intelligence, Machine Learning, and Cardiovascular Disease. Clin. Med. Insights Cardiol. 2020, 14, 1179546820927404. [Google Scholar] [CrossRef]
- Johnson, K.W.; Torres Soto, J.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial Intelligence in Cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for Artificial Intelligence in Healthcare: A Multidisciplinary Perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.; Swetlitz, I.; Hogan, A. IBM’s Watson Supercomputer Recommended “Unsafe and Incorrect” Cancer Treatments, Internal Documents Show. Stat News. 2018. Available online: https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/ (accessed on 5 May 2023).
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Wang, K.; Tian, J.; Zheng, C.; Yang, H.; Ren, J.; Liu, Y.; Han, Q.; Zhang, Y. Interpretable Prediction of 3-Year All-Cause Mortality in Patients with Heart Failure Caused by Coronary Heart Disease Based on Machine Learning and SHAP. Comput. Biol. Med. 2021, 137, 104813. [Google Scholar] [CrossRef] [PubMed]
- Neves, I.; Folgado, D.; Santos, S.; Barandas, M.; Campagner, A.; Ronzio, L.; Cabitza, F.; Gamboa, H. Interpretable Heartbeat Classification Using Local Model-Agnostic Explanations on ECGs. Comput. Biol. Med. 2021, 133, 104393. [Google Scholar] [CrossRef] [PubMed]
- Knapič, S.; Malhi, A.; Saluja, R.; Främling, K. Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain. Mach. Learn. Knowl. Extr. 2021, 3, 740–770. [Google Scholar] [CrossRef]
- Laranjo, L.; Dunn, A.G.; Tong, H.L.; Kocaballi, A.B.; Chen, J.; Bashir, R.; Surian, D.; Gallego, B.; Magrabi, F.; Lau, A.Y.S.; et al. Conversational Agents in Healthcare: A Systematic Review. J. Am. Med. Inform. Assoc. 2018, 25, 1248. [Google Scholar] [CrossRef]
- Krittanawong, C.; Zhang, H.J.; Wang, Z.; Aydar, M.; Kitai, T. Artificial Intelligence in Precision Cardiovascular Medicine. J. Am. Coll. Cardiol. 2017, 69, 2657–2664. [Google Scholar] [CrossRef]
- Itchhaporia, D. Artificial Intelligence in Cardiology. Trends Cardiovasc. Med. 2022, 32, 34–41. [Google Scholar] [CrossRef]
- Al’Aref, S.J.; Anchouche, K.; Singh, G.; Slomka, P.J.; Kolli, K.K.; Kumar, A.; Pandey, M.; Maliakal, G.; van Rosendael, A.R.; Beecy, A.N.; et al. Clinical Applications of Machine Learning in Cardiovascular Disease and Its Relevance to Cardiac Imaging. Eur. Heart J. 2019, 40, 1975–1986. [Google Scholar] [CrossRef]
- Moghaddasi, H.; Nourian, S. Automatic Assessment of Mitral Regurgitation Severity Based on Extensive Textural Features on 2D Echocardiography Videos. Comput. Biol. Med. 2016, 73, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for Cardiac Contractile Dysfunction Using an Artificial Intelligence–Enabled Electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Porumb, M.; Stranges, S.; Pescapè, A.; Pecchia, L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection Based on ECG. Sci. Rep. 2020, 10, 170. [Google Scholar] [CrossRef]
- Salte, I.M.; Østvik, A.; Smistad, E.; Melichova, D.; Nguyen, T.M.; Karlsen, S.; Brunvand, H.; Haugaa, K.H.; Edvardsen, T.; Lovstakken, L.; et al. Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography. JACC Cardiovasc. Imaging 2021, 14, 1918–1928. [Google Scholar] [CrossRef]
- Kusunose, K.; Abe, T.; Haga, A.; Fukuda, D.; Yamada, H.; Harada, M.; Sata, M. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images. JACC Cardiovasc. Imaging 2020, 13, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Feeny, A.K.; Chung, M.K.; Madabhushi, A.; Attia, Z.I.; Cikes, M.; Firouznia, M.; Friedman, P.A.; Kalscheur, M.M.; Kapa, S.; Narayan, S.M.; et al. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circ. Arrhythmia Electrophysiol. 2020, 13, E007952. [Google Scholar] [CrossRef]
- Galloway, C.D.; Valys, A.V.; Shreibati, J.B.; Treiman, D.L.; Petterson, F.L.; Gundotra, V.P.; Albert, D.E.; Attia, Z.I.; Carter, R.E.; Asirvatham, S.J.; et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia from the Electrocardiogram. JAMA Cardiol. 2019, 4, 428–436. [Google Scholar] [CrossRef]
- Luongo, G.; Azzolin, L.; Schuler, S.; Rivolta, M.W.; Almeida, T.P.; Martínez, J.P.; Soriano, D.C.; Luik, A.; Müller-Edenborn, B.; Jadidi, A.; et al. Machine Learning Enables Noninvasive Prediction of Atrial Fibrillation Driver Location and Acute Pulmonary Vein Ablation Success Using the 12-Lead ECG. Cardiovasc. Digit. Health J. 2021, 2, 126–136. [Google Scholar] [CrossRef]
- Berikol, G.B.; Yildiz, O.; Özcan, T. Diagnosis of Acute Coronary Syndrome with a Support Vector Machine. J. Med. Syst. 2016, 40, 84. [Google Scholar] [CrossRef]
- Motwani, M.; Dey, D.; Berman, D.S.; Germano, G.; Achenbach, S.; Al-Mallah, M.H.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; et al. Machine Learning for Prediction of All-Cause Mortality in Patients with Suspected Coronary Artery Disease: A 5-Year Multicentre Prospective Registry Analysis. Eur. Heart J. 2017, 38, 500. [Google Scholar] [CrossRef]
- Shin, S.; Austin, P.C.; Ross, H.J.; Abdel-Qadir, H.; Freitas, C.; Tomlinson, G.; Chicco, D.; Mahendiran, M.; Lawler, P.R.; Billia, F.; et al. Machine Learning vs. Conventional Statistical Models for Predicting Heart Failure Readmission and Mortality. ESC Heart Fail 2021, 8, 106–115. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Olesen, K.K.W.; Koul, S.; Gale, C.P.; Rylance, R.; Jernberg, T.; Baron, T.; Spaak, J.; James, S.; Lindahl, B.; et al. Development and Validation of an Artificial Neural Network Algorithm to Predict Mortality and Admission to Hospital for Heart Failure after Myocardial Infarction: A Nationwide Population-Based Study. Lancet Digit. Health 2022, 4, e37–e45. [Google Scholar] [CrossRef] [PubMed]
- Kogan, E.; Didden, E.M.; Lee, E.; Nnewihe, A.; Stamatiadis, D.; Mataraso, S.; Quinn, D.; Rosenberg, D.; Chehoud, C.; Bridges, C. A Machine Learning Approach to Identifying Patients with Pulmonary Hypertension Using Real-World Electronic Health Records. Int. J. Cardiol. 2023, 374, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, M.K.; Gomberg-Maitland, M.; Hoeper, M.; Pausch, C.; Pittow, D.; Strange, G.; Anderson, J.J.; Zhao, C.; Scott, J.V.; Druzdzel, M.J.; et al. Risk Stratification in Pulmonary Arterial Hypertension Using Bayesian Analysis. Eur. Respir. J. 2020, 56, 2000008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Xu, D.; Liu, Y.; Lou, K.; He, Z.; Zhang, H.; Sheng, Y.; Yang, R.; Li, X.; Kong, X.; et al. Machine Learning for the Diagnosis of Pulmonary Hypertension. Kardiologiya 2020, 60, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.m.; Kim, K.H.; Medina-Inojosa, J.; Jeon, K.H.; Park, J.; Oh, B.H. Artificial Intelligence for Early Prediction of Pulmonary Hypertension Using Electrocardiography. J. Heart Lung Transplant. 2020, 39, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Leha, A.; Hellenkamp, K.; Unsöld, B.; Mushemi-Blake, S.; Shah, A.M.; Hasenfuß, G.; Seidler, T. A Machine Learning Approach for the Prediction of Pulmonary Hypertension. PLoS ONE 2019, 14, e0224453. [Google Scholar] [CrossRef]
- Kiely, D.G.; Doyle, O.; Drage, E.; Jenner, H.; Salvatelli, V.; Daniels, F.A.; Rigg, J.; Schmitt, C.; Samyshkin, Y.; Lawrie, A.; et al. Utilising Artificial Intelligence to Determine Patients at Risk of a Rare Disease: Idiopathic Pulmonary Arterial Hypertension. Pulm. Circ. 2019, 9, 2045894019890549. [Google Scholar] [CrossRef]
- Karwath, A.; Bunting, K.v.; Gill, S.K.; Tica, O.; Pendleton, S.; Aziz, F.; Barsky, A.D.; Chernbumroong, S.; Duan, J.; Mobley, A.R.; et al. Redefining β-Blocker Response in Heart Failure Patients with Sinus Rhythm and Atrial Fibrillation: A Machine Learning Cluster Analysis. Lancet 2021, 398, 1427–1435. [Google Scholar] [CrossRef]
- Cikes, M.; Sanchez-Martinez, S.; Claggett, B.; Duchateau, N.; Piella, G.; Butakoff, C.; Catherine Pouleur, A.; Knappe, D.; Biering-Sørensen, T.; Kutyifa, V.; et al. Machine Learning-Based Phenogrouping in Heart Failure to Identify Responders to Cardiac Resynchronization Therapy. Eur. J. Heart Fail. 2019, 21, 74–85. [Google Scholar] [CrossRef]
- Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records OPEN; Nature Publishing Group: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Shomorony, I.; Cirulli, E.T.; Huang, L.; Napier, L.A.; Heister, R.R.; Hicks, M.; Cohen, I.v.; Yu, H.-C.; Swisher, C.L.; Schenker-Ahmed, N.M.; et al. An Unsupervised Learning Approach to Identify Novel Signatures of Health and Disease from Multimodal Data. Genome Med. 2020, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cheng, W.-Y.; Glicksberg, B.S.; Gottesman, O.; Tamler, R.; Chen, R.; Bottinger, E.P.; Dudley, J.T. Identification of Type 2 Diabetes Subgroups through Topological Analysis of Patient Similarity. Sci. Transl. Med. 2015, 7, 311ra174. [Google Scholar] [CrossRef]
- Levyid, A.E.; Biswas, M.; Weber, R.; Tarakji, K.; Chung, M.; Noseworthy, P.A.; Newton-Cheh, C.; Rosenbergid, M.A. Applications of Machine Learning in Decision Analysis for Dose Management for Dofetilide. PLoS ONE 2019, 14, e0227324. [Google Scholar] [CrossRef]
- Ghesu, F.C.; Georgescu, B.; Zheng, Y.; Grbic, S.; Maier, A.; Hornegger, J.; Comaniciu, D. Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 176–189. [Google Scholar] [CrossRef]
- Garvin, J.H.; Kim, Y.; Gobbel, G.T.; Matheny, M.E.; Redd, A.; Bray, B.E.; Heidenreich, P.; Bolton, D.; Heavirland, J.; Kelly, N.; et al. Automating Quality Measures for Heart Failure Using Natural Language Processing: A Descriptive Study in the Department of Veterans Affairs. JMIR Med. Inform. 2018, 6, e5. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.U.; Mukherjee, R.; Zhang, Y.; Jones, A.E.; Springer, J.; Hackett, I.; Steinberg, B.A.; Lloyd-Jones, D.M.; Chapman, W.W. Impact of Different Electronic Cohort Definitions to Identify Patients With Atrial Fibrillation From the Electronic Medical Record. J. Am. Heart Assoc. 2020, 9, e014527. [Google Scholar] [CrossRef]
- Kaspar, M.; Fette, G.; Güder, G.; Seidlmayer, L.; Ertl, M.; Dietrich, G.; Greger, H.; Puppe, F.; Störk, S. Underestimated Prevalence of Heart Failure in Hospital Inpatients: A Comparison of ICD Codes and Discharge Letter Information. Clin. Res. Cardiol. 2018, 107, 778–787. [Google Scholar] [CrossRef]
- Patel, Y.R.; Robbins, J.M.; Kurgansky, K.E.; Imran, T.; Orkaby, A.R.; McLean, R.R.; Ho, Y.L.; Cho, K.; Michael Gaziano, J.; Djousse, L.; et al. Development and Validation of a Heart Failure with Preserved Ejection Fraction Cohort Using Electronic Medical Records. BMC Cardiovasc. Disord. 2018, 18, 128. [Google Scholar] [CrossRef]
- Mahajan, S.M.; Ghani, R. Combining Structured and Unstructured Data for Predicting Risk of Readmission for Heart Failure Patients. Stud. Health Technol. Inform. 2019, 264, 238–242. [Google Scholar] [CrossRef]
- Galper, B.Z.; Beery, D.E.; Leighton, G.; Englander, L.L. Comparison of Adverse Event and Device Problem Rates for Transcatheter Aortic Valve Replacement and Mitraclip Procedures as Reported by the Transcatheter Valve Therapy Registry and the Food and Drug Administration Postmarket Surveillance Data. Am. Heart J. 2018, 198, 64–74. [Google Scholar] [CrossRef]
- Reading Turchioe, M.; Volodarskiy, A.; Pathak, J.; Wright, D.N.; Tcheng, J.E.; Slotwiner, D. Systematic Review of Current Natural Language Processing Methods and Applications in Cardiology. Heart 2022, 108, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Afzal, N.; Sohn, S.; Abram, S.; Scott, C.G.; Chaudhry, R.; Liu, H.; Kullo, I.J.; Arruda-Olson, A.M. Mining Peripheral Arterial Disease Cases from Narrative Clinical Notes Using Natural Language Processing. J. Vasc. Surg. 2017, 65, 1753–1761. [Google Scholar] [CrossRef]
- Ashburner, J.M.; Chang, Y.; Wang, X.; Khurshid, S.; Anderson, C.D.; Dahal, K.; Weisenfeld, D.; Cai, T.; Liao, K.P.; Wagholikar, K.B.; et al. Natural Language Processing to Improve Prediction of Incident Atrial Fibrillation Using Electronic Health Records. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2022, 11, 26014. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Perez, M.v.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Wasserlauf, J.; You, C.; Patel, R.; Valys, A.; Albert, D.; Passman, R. Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2019, 12, e006834. [Google Scholar] [CrossRef]
- Raja, J.M.; Elsakr, C.; Roman, S.; Cave, B.; Pour-Ghaz, I.; Nanda, A.; Maturana, M.; Khouzam, R.N. Apple Watch, Wearables, and Heart Rhythm: Where Do We Stand? Ann. Transl. Med. 2019, 7, 417. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Bittel, B.; Browsky, D.; Houghtaling, P.; Drummond, C.K.; Desai, M.Y.; Gillinov, A.M. Accuracy of Apple Watch for Detection of Atrial Fibrillation Circulation. Circulation 2020, 141, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Watson, X.; D’Souza, J.; Cooper, D.; Markham, R. Artificial Intelligence in Cardiology: Fundamentals and Applications. Intern. Med. J. 2022, 52, 912–920. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Shrestha, S.; Berthon, B.; Messas, E.; Donal, E.; Tison, G.H.; Min, J.K.; D’hooge, J.; Voigt, J.-U.; Dudley, J.; et al. Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist. JACC Cardiovasc. Imaging 2020, 13, 2017–2035. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Br. J. Surg. 2015, 102, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed]
- Quer, G.; Arnaout, R.; Henne, M.; Arnaout, R. Machine Learning and the Future of Cardiovascular Care: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Schwalbe, N.; Wahl, B. Artificial Intelligence and the Future of Global Health. Lancet 2020, 395, 1579. [Google Scholar] [CrossRef]
- Westerlund, A.M.; Hawe, J.S.; Heinig, M.; Schunkert, H. Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence. Int. J. Mol. Sci. 2021, 22, 10291. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240029200. [Google Scholar]
- Morley, J.; Taddeo, M.; Floridi, L. Google Health and the NHS: Overcoming the Trust Deficit. Lancet Digit. Health 2019, 1, e389. [Google Scholar] [CrossRef]
- General Data Protection Regulation (GDPR). Compliance Guidelines. Available online: https://gdpr.eu/ (accessed on 15 October 2022).
- Lorkowski, J.; Grzegorowska, O.; Pokorski, M. Artificial Intelligence in the Healthcare System: An Overview. In Best Practice in Health Care; Pokorski, M., Ed.; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2021; Volume 1335, pp. 1–10. [Google Scholar] [CrossRef]
- FDA Warns Patients and Health Care Providers about Potential Cybersecurity Concerns with Certain Medtronic Insulin Pumps|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-warns-patients-and-health-care-providers-about-potential-cybersecurity-concerns-certain (accessed on 15 October 2022).
- Tabasum, A.; Safi, Z.; Alkhater, W.; Shikfa, A. Cybersecurity Issues in Implanted Medical Devices. In Proceedings of the 2018 International Conference on Computer and Applications, ICCA 2018, Beirut, Lebanon, 25–26 August 2018; pp. 110–115. [Google Scholar] [CrossRef]
- Finlayson, S.G.; Chung, H.W.; Kohane, I.S.; Beam, A.L. Adversarial Attacks Against Medical Deep Learning Systems. arXiv 2018, arXiv:1804.05296. [Google Scholar] [CrossRef]
- Stanford Medicine. 2020 Health Trends Report the Rise of the Data-Driven Physician; Stanford Medicine: Stanford, CA, USA, 2020. [Google Scholar]
- Lin, S. The Present and Future of Team Documentation: The Role of Patients, Families, and Artificial Intelligence. Mayo Clin. Proc. 2020, 95, 852–855. [Google Scholar] [CrossRef]
- Visco, V.; Izzo, C.; Mancusi, C.; Rispoli, A.; Tedeschi, M.; Virtuoso, N.; Giano, A.; Gioia, R.; Melfi, A.; Serio, B.; et al. Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve. J. Cardiovasc. Dev. Dis. 2023, 10, 74. [Google Scholar] [CrossRef]
- Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Reviewing Federated Machine Learning and Its Use in Diseases Prediction. Sensors 2023, 23, 2112. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.; Carter, S.; Coiera, E. Clinician Checklist for Assessing Suitability of Machine Learning Applications in Healthcare. BMJ Health Care Inform. 2021, 28, 100251. [Google Scholar] [CrossRef] [PubMed]
Performance Metric | Description |
---|---|
False positive (FP) | Object incorrectly classified as positive |
False negative (FN) | Object incorrectly classified as negative |
True positive (TP) | Object correctly classified as positive |
True negative (TN) | Object correctly classified as negative |
Precision (PPV) | The fraction of TP among all positive classified |
Sensitivity (TPR)/recall | The fraction of TP that were correctly classified |
accuracy | The fraction of TP and TN that were correctly classified |
F1 score | The harmonic mean of precision and recall |
Specificity (TNR) | The fraction of TN that were correctly classified |
Receiver operating characteristic curve | The curve between recall (Y-axis) and =false positive Rate = 1-specificity (X-axis) |
Area under the curve ROC | Evaluates the overall quality of the model |
Precision recall curve | The curve between precision (Y-axis) and recall (X-axis) |
Precision recall AUC (PR-AUC) | Alternative for AUC-ROC based on the PR curve |
Performance Metric | Description |
---|---|
Mean absolute error (MAE) | The mean of the absolute difference between the actual and predicted values in a dataset |
Mean squared error (MSE) | The mean squared error between the predicted and actual values in a dataset |
Root mean squared error (RMSE) | The square root of MSE |
Coefficient of determination R2 | The proportion of variance explained by the model |
Mean absolute percentage error (MAPE) | The mean of the absolute percentage errors of prediction |
Author | Study | Algorithm | Performance (Accuracy/AUROC/Precision) |
---|---|---|---|
Kogan et al. [49] | A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records | XGBoost | 0.92 AUROC |
Mohammad et al. [48] | Development and validation of an artificial neural network algorithm to predict mortality and admission to hospital for heart failure after myocardial infarction: a nationwide population-based study | ANN | 0.85–0.78 AUROC |
Moghaddasi et al. [37] | Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos | SVM | 99.45% |
Attia et al. [38] | Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram | CNN | 85.70% |
Porumb et al. [39] | Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG | CNN, RNN, Grad-CAM | 82.40–85.70% |
Salte et al. [40] | Artificial intelligence for automatic measurement of left ventricular strain in echocardiography | ANN | 97–98% |
Kusunose et al. [41] | A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images | CNN | 0.99–0.97 AUROC |
Berikol et al. [45] | Diagnosis of acute coronary syndrome with a support vector machine | SVM, ANN, NB, Logistic Regression | 90.10–99.13% |
Motwani et al. [46] | Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis | DT—LogitBoost | 0.79 AUROC |
Kakadiaris et al. [15] | Machine learning outperforms ACC/AHA CVD risk calculator in MESA | SVM | 0.92 AUROC |
Kanwar et al. [50] | Risk stratification in pulmonary arterial hypertension using Bayesian analysis | Bayesian Network | 0.80 AUROC |
Galloway et al. [43] | Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram | CNN | 0.85–0.88 AUROC |
Luongo et al. [44] | Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG | DT | 78.26% |
Karwath et al. [55] | Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis | Hierarchical clustering, Variational autoencoders (VAEs), K-means | N/A |
Cikes et al. [56] | Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy | K-means, Multiple Kernel Learning | N/A |
Li et al. [59] | Identification of type 2 diabetes subgroups through topological analysis of patient similarity | Topological data analysis | N/A |
Ghesu et al. [61] | Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans | Deep reinforcement learning | Accuracy improved by 20–30% |
Levyid et al. [60] | Applications of machine learning in decision analysis for dose management for dofetilide | PCA, K-means, reinforcement learning—SARSA | 86–93% |
Garvin et al. [62] | Automating quality measures for heart failure using natural language processing: a descriptive study in the department of veterans affairs | NLP | Precision 98.7% |
Shah et al. [63] | Impact of different electronic cohort definitions to identify patients with atrial fibrillation from the electronic medical record | NLP | 0.89 AUROC |
Kaspar et al. [64] | Underestimated prevalence of heart failure in hospital inpatients: a comparison of ICD codes and discharge letter information | NLP | Precision 96% |
Patel et al. [65] | Development and validation of a heart failure with preserved ejection fraction cohort using electronic medical records | NLP | Precision 96% |
Mahajan et al. [66] | Combining structured and unstructured data for predicting risk of readmission for heart failure patients | NLP | 0.65 AUROC |
Galper et al. [67] | Comparison of adverse event and device problem rates for transcatheter aortic valve replacement and mitraclip procedures as reported by the transcatheter valve therapy registry and the Food and Drug Administration postmarket surveillance data | NLP | N/A |
Afzal et al. [69] | Mining peripheral arterial disease cases from narrative clinical notes using natural language processing | NLP | 91.8% |
Ashburner et al. [70] | Natural language processing to improve prediction of incident atrial fibrillation using electronic health records | NLP | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledziński, Ł.; Grześk, G. Artificial Intelligence Technologies in Cardiology. J. Cardiovasc. Dev. Dis. 2023, 10, 202. https://doi.org/10.3390/jcdd10050202
Ledziński Ł, Grześk G. Artificial Intelligence Technologies in Cardiology. Journal of Cardiovascular Development and Disease. 2023; 10(5):202. https://doi.org/10.3390/jcdd10050202
Chicago/Turabian StyleLedziński, Łukasz, and Grzegorz Grześk. 2023. "Artificial Intelligence Technologies in Cardiology" Journal of Cardiovascular Development and Disease 10, no. 5: 202. https://doi.org/10.3390/jcdd10050202
APA StyleLedziński, Ł., & Grześk, G. (2023). Artificial Intelligence Technologies in Cardiology. Journal of Cardiovascular Development and Disease, 10(5), 202. https://doi.org/10.3390/jcdd10050202