In Vitro Response of Two Strains of Cordyceps javanica to Six Chemical Pesticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of Fungi
2.2. Chemical Pesticides
2.3. Preparation of Treated Medium
2.4. Determination of Spore Germination Rates
2.5. Strain Growth Rate Assay
2.6. Effects of C. javanica Mixed with Low Doses of Acetamiprid and Kasugamycin on the Insecticidal Activity of M. persicae
2.6.1. Test Insect Source
2.6.2. Bioassay
2.6.3. Data Analysis
3. Results
3.1. Effects of Three Fungicides on the Spore Germination of Two C. javanica Strains
3.2. Effects of Three Insecticides on the Spore Germination of Two C. javanica Strains
3.3. The Effects of Pesticides on the Mycelial Growth of Two C. javanica Strains
3.4. Comprehensive Evaluation of Compatibility Between Six Pesticides and Two Strains of C. javanica
3.5. Pathogenicity of C. javanica Combined with Chemical Pesticides on M. persicae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammed, A.A.; Hatcher, P.E. Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol. Control 2017, 110, 44–55. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Ou, D.; Zhang, L.H.; Guo, C.F.; Chen, X.S.; Ali, S.; Qiu, B.L. Identification of a new Cordyceps javanica fungus isolate and its toxicity evaluation against Asian citrus psyllid. MicrobiologyOpen 2019, 8, e00760. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mbata, G.N.; Simmons, A.M.; Shapiro-Ilan, D.I.; Wu, S. Management of Bemisia tabaci on vegetable crops using entomopathogens. Crop Prot. 2024, 180, 106638. [Google Scholar] [CrossRef]
- Wang, D.; Xing, P.X.; Diao, H.L.; Zhou, W.W.; Li, X.W.; Zhang, L.J.; Ma, R.Y. Pathogenicity characteristics of the entomopathogenic fungus Cordyceps javanica IJ-tg19 to Acyrthosiphon pisum. BioControl 2023, 68, 447–458. [Google Scholar] [CrossRef]
- Xing, P.X.; Diao, H.L.; Wang, D.; Zhou, W.W.; Tian, J.; Ma, R.Y. Identification, pathogenicity, and culture conditions of a new isolate of Cordyceps javanica (Hypocreales: Cordycipitaceae) from soil. J. Econ. Entomol. 2022, 116, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.P.; Bruck, D.J. Microbial control of nursery ornamental and landscape plant pests. In Microbial Control of Insect and Mite Pests; Elsevier: Amsterdam, The Netherlands, 2017; pp. 355–366. [Google Scholar]
- China Pesticide Information Network. Available online: http://www.chinapesticide.org.cn/zwb/dataCenter (accessed on 27 September 2024).
- Johnson, J.M.; Deepthy, K.B.; Chellappan, M. Tolerance of Metarhizium anisopliae sorokin isolates to selected insecticides and fungicides. Entomon 2020, 45, 143–148. [Google Scholar] [CrossRef]
- Poprawski, T.J.; Majchrowicz, I. Effects of herbicides on in vitro vegetative growth and sporulation of entomopathogenic fungi. Crop Prot. 1995, 14, 81–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Nong, X.; Zhang, Z.; Wang, G. Compatibility of eighteen chemical pesticides with Metarhizium anisopliae. Chin. J. Biol. Control 2012, 28, 186–191. [Google Scholar]
- Liu, F.; Zeng, M.; Wang, D.; Wang, Q.; Wu, G. Biological compatibility of six pesticides with Beauveria bassiana in tea plantations. Fujian J. Agric. Sci. 2012, 27, 1093–1096. [Google Scholar]
- Jia, M.; Cao, G.; Li, Y.; Tu, X.; Wang, G.; Nong, X.; Whitman, D.W.; Zhang, Z.; Jia, M.; Cao, G.; et al. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Sci. Rep. 2016, 6, 28424. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.H.A.; Mohammed, S.H.; Eltaly, R.I.; Moustafa, M.A.M.; Fónagy, A.; Farag, S.M. Co-application of entomopathogenic fungi with chemical insecticides against Culex pipiens. J. Invertebr. Pathol. 2023, 198, 107916. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Wang, X.Y.; Lu, W.; Zheng, X.L. Use of Beauveria bassiana in combination with commercial insecticides to manage Phauda flammans (Walker) (Lepidoptera: Phaudidae): Testing for compatibility and synergy. J. Asia Pac. Entomol. 2021, 24, 272–278. [Google Scholar] [CrossRef]
- Rice, S.J.; Furlong, M.J. Synergistic interactions between three insecticides and Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) in lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), larvae. J. Invertebr. Pathol. 2023, 200, 107974. [Google Scholar] [CrossRef]
- MA, X.; Qiao, J.; Ma, R. Effect of Phellodendron chinense extraction on inhibiting postharvest pathogens (Alternatia alternata and Penicillium expansum) of cherry tomato. Food Ferment. Ind. 2020, 46, 186–191. [Google Scholar]
- Zhang, Z. Studies on Screening of Effectual Fungicides and Mixed Preparations for Controlling Potato Late Blight. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2017. [Google Scholar]
- Xing, P. Discovery and Biocontrol Potential of One Cordyceps javanica Strain. Master’s Thesis, Shanxi Agricultural University, Jinzhong, China, 2020. [Google Scholar]
- Bevilaqua, J.G.; Padilha, G.; Pozebon, H.; Marques, R.P.; Filho, A.C.; Ramon, P.C.; Boeni, L.; Castilhos, L.B.; da Luz, G.R.; de Souza Brum, A.L.S.; et al. A sustainable approach to control whitefly on soybean: Integrating entomopathogenic fungi with insecticides. Crop Prot. 2023, 164, 106145. [Google Scholar] [CrossRef]
- Pelizza, S.A.; Schalamuk, S.; Simón, M.R.; Stenglein, S.A.; Pacheco-Marino, S.G.; Scorsetti, A.C. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Rev. Argent. Microbiol. 2018, 50, 189–201. [Google Scholar] [CrossRef]
- Furlong, M.J.; Groden, E. Evaluation of synergistic interactions between the colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. J. Econ. Entomol. 2001, 94, 344–356. [Google Scholar] [CrossRef]
- Burges, H.D. Formulation of Microbial Biopesticides; Kluwer Academic Publishers: London, UK, 1998; p. 412. [Google Scholar]
- Mohan, M.C.; Reddy, N.P.; Devi, U.K.; Kongara, R.; Sharma, H.C. Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Sci. Technol. 2007, 17, 1059–1069. [Google Scholar] [CrossRef]
- Koodalingam, A.; Dayanidhi, M.K. Studies on biochemical and synergistic effects of immunosuppressive concentration of imidacloprid with Beauveria bassiana and Metarhizium anisopliae for enhancement of virulence against vector mosquito Culex quinquefasciatus. Pestic. Biochem. Physiol. 2021, 176, 104882. [Google Scholar] [CrossRef]
- Tomilova, O.G.; Kryukov, V.Y.; Duisembekov, B.A.; Yaroslavtseva, O.N.; Tyurin, M.V.; Kryukova, N.A.; Skorokhod, V.; Dubovskiy, I.M.; Glupov, V.V. Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae. J. Invertebr. Pathol. 2016, 140, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Tan, G.Y.; Xia, X.; Zhang, L. Learn from microbial intelligence for avermectins overproduction. Curr. Opin. Biotechnol. 2017, 48, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Neves, P.; Hirose, E.; Tchujo, P.T.; Moino, A. Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotrop. Entomol. 2001, 30, 263–268. [Google Scholar] [CrossRef]
- Nowak, M.; Bernat, P.; Mrozińska, J.; Różalska, S. Acetamiprid affects destruxins production but its accumulation in Metarhizium sp. spores increases infection ability of fungi. Toxins 2020, 12, 587. [Google Scholar] [CrossRef]
- Choudhury, R.A.; Sutherland, A.M.; Hengel, M.J.; Parrella, M.P.; Gubler, W.D. Imidacloprid movement into fungal conidia is lethal to mycophagous beetles. Insects 2020, 11, 496. [Google Scholar] [CrossRef]
- Celar, F.A.; Kos, K. Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana. Pest. Manag. Sci. 2016, 72, 2110–2117. [Google Scholar] [CrossRef]
- Samal, I.; Bhoi, T.K.; Vyas, V.; Majhi, P.K.; Mahanta, D.K.; Komal, J.; Singh, S.; Kumar, P.V.D.; Acharya, L.K.; Samal, I.; et al. Resistance to fungicides in entomopathogenic fungi: Underlying mechanisms, consequences, and opportunities for progress. Tro. Plant Pathol. 2023, 49, 5–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Aleksashin, N.A.; Klepacki, D.; Mankin, S.A. The context of the ribosome binding site in mRNAs defines specificity of action of kasugamycin, an inhibitor of translation initiation. Proc. Natl. Acad. Sci. USA 2022, 119, e2118553119. [Google Scholar] [CrossRef]
- Roberti, R.; Righini, H.; Masetti, A.; Maini, S. Compatibility of Beauveria bassiana with fungicides in vitro and on zucchini plants infested with Trialeurodes vaporariorum. Biol. Control 2017, 113, 39–44. [Google Scholar] [CrossRef]
Active Ingredient | Dosage Form | Control Object | Recommended Dosage in the Field (g/L) | Manufacturer | |
---|---|---|---|---|---|
Fungicides | 75% chlorothalonil | Wettable powder | Cucumber powdery mildew | 10 | Shandong Xinxing Pesticide Co., Ltd., Qingzhou, China |
50% boscalid | Water-dispersible granule | Tomato early blight | 2 | Shaanxi Huarong Kaiwei Biological Co., Ltd., Xi’an, China | |
2% kasugamycin | Water aqua | Tomato leaf mold | 8 | Jiangmen City Plant Protection Co., Ltd., Jiangmen, China | |
Insecticides | 2% avermectin | Microcapsule suspension agent | Whitefly | 1 | Hebei Weiyuan Biochemical Pesticide Co., Ltd., Shijiazhuang, China |
25% imidacloprid | Wettable powder | Aphid | 0.8 | Shandong United Pesticide Industry Co., Ltd., Jinan, China | |
60% acetamiprid | Wettable powder | Aphid | 0.15 | Shaanxi Xiannong Biotechnology Co., Ltd., Xi’an, China |
Strains | Dilution Ratio | Average Rejection Rate/% | |||||
---|---|---|---|---|---|---|---|
Fungicides | Insecticides | ||||||
Chlorothalonil | Kasugamycin | Boscalid | Avermectin | Imidacloprid | Acetamiprid | ||
IJ-tg19 | 1 | 100.00 ± 0.00 | 16.13 ± 5.59 | 35.48 ± 1.86 | 28.00 ± 1.39 | 29.20 ± 0.80 | 19.20 ± 0.80 |
5 | 25.81 ± 1.86 | 15.05 ± 2.84 | 18.28 ± 2.84 | 16.80 ± 2.12 | 24.00 ± 2.88 | 11.20 ± 2.88 | |
25 | 18.28 ± 2.85 | 12.90 ± 1.86 | 16.13 ± 1.86 | 16.00 ± 1.38 | 22.40 ± 1.60 | 7.80 ± 2.12 | |
125 | 16.13 ± 0.52 | 9.68 ± 1.86 | 14.36 ± 1.63 | 5.60 ± 2.88 | 20.00 ± 0.80 | 3.73 ± 0.56 | |
625 | 6.45 ± 3.23 | 3.23 ± 1.86 | 12.90 ± 1.86 | 4.00 ± 1.39 | 7.20 ± 2.11 | 2.40 ± 0.80 | |
IF-1106 | 1 | 95.10 ± 0.98 | 32.35 ± 3.40 | 32.35 ± 4.49 | 20.33 ± 3.12 | 19.39 ± 3.40 | 18.84 ± 1.98 |
5 | 31.37 ± 3.53 | 30.39 ± 9.95 | 27.45 ± 4.27 | 15.15 ± 9.04 | 11.72 ± 3.38 | 11.78 ± 3.35 | |
25 | 23.53 ± 6.12 | 26.47 ± 3.39 | 22.55 ± 3.53 | 10.09 ± 1.38 | 10.25 ± 4.75 | 8.53 ± 3.81 | |
125 | 19.61 ± 4.27 | 14.71 ± 1.70 | 20.59 ± 3.40 | 5.54 ± 3.60 | 8.14 ± 2.11 | 3.54 ± 0.49 | |
625 | 17.65 ± 8.82 | 8.17 ± 2.94 | 8.82 ± 3.39 | 1.26 ± 2.65 | 4.51 ± 2.81 | 3.44 ± 1.29 |
Concentration of C. javanica (Spores/mL) | Corrected Mortality (%) at the 7th Day (Mean ± SE) | C. javanica | +DCM625 | +CLMS625 | |||||
---|---|---|---|---|---|---|---|---|---|
LT50 (Days) | 95% Confidence Interval | LT50 (Days) | 95% Confidence Interval | LT50 (Days) | 95% Confidence Interval | ||||
C. javanica | +DCM625 | +CLMS625 | |||||||
0 | - | 68.33 ± 5.69 | 50.00 ± 14.01 | - | - | 5.36 | 5.04~5.73 | 7.08 | 6.53~7.85 |
103 | 73.33 ± 17.43 b | 83.33 ± 16.67 a | 60.00 ± 4.71 c | 5.19 | 4.91~5.49 | 5.28 | 4.75~5.96 | 5.99 | 5.56~6.53 |
104 | 86.67 ± 11.22 b | 91.67 ± 8.33 a | 71.67 ± 12.58 c | 4.59 | 3.42~4.85 | 4.56 | 3.82~5.45 | 4.54 | 4.18~4.94 |
105 | 96.67 ± 3.33 a | 98.33 ± 1.67 a | 85.00 ± 5.69 b | 4.05 | 3.44~4.69 | 3.80 | 3.33~4.26 | 4.40 | 4.12~4.69 |
106 | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 3.32 | 2.98~3.64 | 2.73 | 2.58~2.88 | 3.61 | 3.04~4.21 |
107 | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 2.94 | 2.46~3.37 | 2.13 | 1.70~2.66 | 2.83 | 2.26~3.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, R.; Cai, X.; Wang, T.; Liu, Z.; Xing, P.; Zhang, G.; Zhou, W.; Diao, H.; Ma, R. In Vitro Response of Two Strains of Cordyceps javanica to Six Chemical Pesticides. J. Fungi 2024, 10, 852. https://doi.org/10.3390/jof10120852
Mao R, Cai X, Wang T, Liu Z, Xing P, Zhang G, Zhou W, Diao H, Ma R. In Vitro Response of Two Strains of Cordyceps javanica to Six Chemical Pesticides. Journal of Fungi. 2024; 10(12):852. https://doi.org/10.3390/jof10120852
Chicago/Turabian StyleMao, Ruixia, Xiaoxia Cai, Tengyu Wang, Ziyang Liu, Peixiang Xing, Guisen Zhang, Wenwen Zhou, Hongliang Diao, and Ruiyan Ma. 2024. "In Vitro Response of Two Strains of Cordyceps javanica to Six Chemical Pesticides" Journal of Fungi 10, no. 12: 852. https://doi.org/10.3390/jof10120852
APA StyleMao, R., Cai, X., Wang, T., Liu, Z., Xing, P., Zhang, G., Zhou, W., Diao, H., & Ma, R. (2024). In Vitro Response of Two Strains of Cordyceps javanica to Six Chemical Pesticides. Journal of Fungi, 10(12), 852. https://doi.org/10.3390/jof10120852