Genetic Diversity and Reproduction Trends of Phytophthora infestans in Estonia: EU_41_A2 Detected without an Indication of Clonal Reproduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Collection and Genotyping
2.2. Statistical Analysis
3. Results
3.1. Allele Frequencies
3.2. Genetic Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fry, W.E. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Brurberg, M.B.; Elameen, A.; Hermansen, A.; Lehtinen, A.; Hannukkala, A.O.; Hansen, J.G.; Andersson, B.; Yuen, J.E.; Voglmayr, H.; Le, V.H.; et al. Genetic analysis of Phytophthora infestans populations in the Nordic European countries reveals high genetic variability. Fungal Biol. 2011, 115, 335–342. [Google Scholar] [CrossRef]
- Kiiker, R.; Hansen, M.; Williams, I.H.; Cooke, D.E.L.; Runno-Paurson, E. Outcome of sexual reproduction in the Phytophthora infestans population in Estonian potato fields. Eur. J. Plant Pathol. 2018, 152, 395–407. [Google Scholar] [CrossRef]
- Yuen, J.E.; Andersson, B. What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathol. 2013, 62, 485–491. [Google Scholar] [CrossRef]
- Puidet, B.; Mabon, R.; Guibert, M.; Kiiker, R.; Soonvald, L.; Le, V.H.; Eikemo, H.; Dewaegeneire, P.; Saubeau, G.; Chatot, C.; et al. Examining phenotypic traits contributing to the spread in Northern European potato crops of EU_41_A2, a new clonal lineage of Phytophthora infestans. Phytopathology 2022, 112, 414–421. [Google Scholar] [CrossRef]
- Abuley, I.K.; Lynott, J.S.; Hansen, J.G.; Cooke, D.E.L.; Lees, A.K. The EU43 genotype of Phytophthora infestans displays resistance to mandipropamid. Plant Pathol. 2023, 72, 1305–1313. [Google Scholar] [CrossRef]
- EuroBlight Pathogen Monitoring. Available online: http://euroblight.net/ (accessed on 17 March 2024).
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Sparks, A.H.; Forbes, G.A.; Hijmans, R.J.; Garrett, K.A. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 2014, 20, 3621–3631. [Google Scholar] [CrossRef]
- Wu, E.J.; Wang, Y.P.; Yahuza, L.; He, M.H.; Sun, D.L.; Huang, Y.M.; Liu, Y.C.; Yang, L.N.; Zhu, W.; Zhan, J. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol. Appl. 2020, 13, 768–780. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed]
- Lurwanu, Y.; Wang, Y.-P.; Wu, E.-J.; He, D.-C.; Waheed, A.; Nkurikiyimfura, O.; Wang, Z.; Shang, L.-P.; Yang, L.-N.; Zhan, J. Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evol. Appl. 2021, 14, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Koppel, M.; (Estonian University of Life Sciences, Tartu, Estonia). Personal communication, 2024.
- McDonald, B.A.; Linde, C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 2002, 124, 163–180. [Google Scholar] [CrossRef]
- Cooke, D.E.L.; Cano, L.M.; Raffaele, S.; Bain, R.A.; Cooke, L.R.; Etherington, G.J.; Deahl, K.L.; Farrer, R.A.; Gilroy, E.M.; Goss, E.M.; et al. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog. 2012, 8, e1002940. [Google Scholar] [CrossRef] [PubMed]
- Cooke, L.R.; Quinn, L.; Nugent, P.; Walker, E. The potato blight population in Northern Ireland in 2012: Ongoing changes and fungicide performance. In Proceedings of the Fourteenth EuroBlight Workshop, Limassol, Cyprus, 12–15 May 2013; pp. 145–152. [Google Scholar]
- Puidet, B.; Mabon, R.; Guibert, M.; Kiiker, R.; Loit, K.; Le, V.H.; Eikemo, H.; Dewaegeneire, P.; Saubeau, G.; Chatot, C.; et al. Investigating phenotypic traits as potential drivers of the emergence of EU_37_A2, an invasive new lineage of Phytophthora infestans in Western Europe. Plant Pathol. 2023, 72, 797–806. [Google Scholar] [CrossRef]
- Kiiker, R.; Skrabule, I.; Ronis, A.; Cooke, D.E.L.; Hansen, J.G.; Williams, I.H.; Mänd, M.; Runno-Paurson, E. Diversity of populations of Phytophthora infestans in relation to patterns of potato crop management in Latvia and Lithuania. Plant Pathol. 2019, 68, 1207–1214. [Google Scholar] [CrossRef]
- Li, Y.; Cooke, D.E.L.; Jacobsen, E.; van der Lee, T. Efficient multiplex simple sequence repeat genotyping of the oomycete plant pathogen Phytophthora infestans. J. Microbiol. Methods 2013, 92, 316–322. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef]
- Sheldon, A.L. Equitability indices: Dependence on the species count. Ecology 1969, 50, 466–467. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Stoddart, J.A.; Taylor, J.F. Genotypic diversity: Estimation and prediction in samples. Genetics 1988, 118, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Bruvo, R.; Michiels, N.K.; D’Souza, T.G.; Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 2004, 13, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Spielman, L.J.; Drenth, A.; Davidse, L.C.; Sujkowski, L.J.; Gu, W.; Tooley, P.W.; Fry, W.E. A second world-wide migration and population displacement of Phytophthora infestans? Plant Pathol. 1991, 40, 422–430. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Hannukkala, A.O.; Kotkas, K.; Koppel, M.; Williams, I.H.; Mänd, M. Population changes and phenotypic diversity of Phytophthora infestans isolates from Estonia and Finland. J. Plant Pathol. 2014, 96, 85–95. [Google Scholar] [CrossRef]
- Brylińska, M.; Sobkowiak, S.; Stefańczyk, E.; Śliwka, J. Potato cultivation system affects population structure of Phytophthora infestans. Fungal Ecol. 2016, 20, 132–143. [Google Scholar] [CrossRef]
- Hannukkala, A.O.; Kaukoranta, T.; Lehtinen, A.; Rahkonen, A. Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathol. 2007, 56, 167–176. [Google Scholar] [CrossRef]
- Sjöholm, L.; Andersson, B.; Högberg, N.; Widmark, A.K.; Yuen, J. Genotypic diversity and migration patterns of Phytophthora infestans in the nordic countries. Fungal Biol. 2013, 117, 722–730. [Google Scholar] [CrossRef]
- Chmielarz, M.; Sobkowiak, S.; Debski, K.; Cooke, D.E.L.; Brurberg, M.B.; Śliwka, J. Diversity of Phytophthora infestans from Poland. Plant Pathol. 2014, 63, 203–211. [Google Scholar] [CrossRef]
- Mariette, N.; Androdias, A.; Mabon, R.; Corbière, R.; Marquer, B.; Montarry, J.; Andrivon, D. Local adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans. Ecol. Evol. 2016, 6, 6320–6331. [Google Scholar] [CrossRef] [PubMed]
- Andersson, B.; Widmark, A.K.; Yuen, J.E.; Kessel, G.J.T.; Evenhuis, A.; Turkensteen, L.J.; Lehtinen, A.; Nielsen, B.; Ravnskov, S.; Hansen, J.G.; et al. The role of oospores in the epidemiology of potato late blight. Acta Hortic. 2009, 834, 61–68. [Google Scholar] [CrossRef]
- Statistics Estonia Statistical Database. Available online: https://www.stat.ee/ (accessed on 29 February 2024).
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grünwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 2015, 105, 966–981. [Google Scholar] [CrossRef]
- Abuley, I.K.; (Aarhus University, Slagelse, Denmark). Personal communication, 2024.
- Bengtsson, B.O. Genetic variation in organisms with sexual and asexual reproduction. J. Evol. Biol. 2003, 16, 189–199. [Google Scholar] [CrossRef]
- Maurice, S.; Montes, M.S.; Nielsen, B.J.; Bødker, L.; Martin, M.D.; Jønck, C.G.; Kjøller, R.; Rosendahl, S. Population genomics of an outbreak of the potato late blight pathogen, Phytophthora infestans, reveals both clonality and high genotypic diversity. Mol. Plant Pathol. 2019, 20, 1134–1146. [Google Scholar] [CrossRef]
- Hansen, Z.R.; Everts, K.L.; Fry, W.E.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; Gru, J.; Judelson, S.; Knaus, B.J.; et al. Genetic variation within clonal lineages of Phytophthora infestans revealed through implications for late blight epidemiology. PLoS ONE 2016, 11, e0165690. [Google Scholar] [CrossRef] [PubMed]
Year | Number of Isolates | Unique MLGs | Hs | G | E.5 | |
---|---|---|---|---|---|---|
2005 | 16 | 75% | 0.938 | 0.016 | 12.80 | 0.947 |
2006 | 15 | 80% | 0.919 | 0.092 * | 10.71 | 0.880 |
2007 | 14 | 86% | 0.962 | 0.028 | 12.25 | 0.963 |
2010 | 10 | 60% | 0.880 | 0.022 | 7.14 | 0.934 |
2011 | 10 | 60% | 0.880 | −0.014 | 7.14 | 0.934 |
2012 | 10 | 80% | 0.940 | 0.041 | 8.33 | 0.952 |
2016 | 25 | 100% | 1.000 | 0.003 | 25.00 | 1.000 |
2017 | 23 | 91% | 0.981 | 0.014 | 21.16 | 0.976 |
2021 | 19 | 58% | 0.901 | −0.015 | 13.37 | 0.938 |
2022 | 11 | 55% | 0.822 | −0.022 | 6.37 | 0.868 |
All years | 153 | 78% | 0.966 | 0.003 | 121.29 | 0.939 |
Locus | FIS | FST |
---|---|---|
Pi02 | 0.071 | 0.031 |
Pi4B | −0.082 | 0.045 |
G11 | 0.318 | 0.071 |
Pi04 | −0.262 | 0.029 |
Pi63 | −0.072 | 0.036 |
Pi70 | 0.140 | 0.065 |
SSR11 | 0.013 | 0.071 |
SSR2 | −0.014 | 0.026 |
SSR4 | −0.068 | 0.054 |
SSR6 | −0.054 | 0.029 |
SSR8 | −0.091 | 0.024 |
Year | 2005 | 2006 | 2007 | 2010 | 2011 | 2012 | 2016 | 2017 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
2005 | - | 0.036 | 0.029 | 0.020 | 0.000 | 0.006 | 0.002 | 0.005 | 0.018 | 0.014 |
2006 | 0.041 | - | 0.006 | 0.032 | 0.013 | 0.038 | 0.008 | 0.027 | 0.029 | 0.014 |
2007 | 0.038 | 0.000 | - | 0.038 | 0.011 | 0.012 | 0.012 | 0.014 | 0.013 | 0.012 |
2010 | 0.019 | 0.032 | 0.035 | - | 0.000 | 0.022 | 0.026 | 0.017 | 0.011 | 0.026 |
2011 | 0.000 | 0.012 | 0.008 | 0.000 | - | 0.000 | 0.003 | 0.004 | 0.000 | 0.000 |
2012 | 0.008 | 0.041 | 0.012 | 0.020 | 0.000 | - | 0.013 | 0.005 | 0.019 | 0.016 |
2016 | 0.004 | 0.008 | 0.010 | 0.029 | 0.004 | 0.015 | - | 0.000 | 0.024 | 0.021 |
2017 | 0.003 | 0.028 | 0.013 | 0.014 | 0.002 | 0.005 | 0.000 | - | 0.016 | 0.033 |
2021 | 0.028 | 0.032 | 0.015 | 0.008 | 0.000 | 0.024 | 0.030 | 0.022 | - | 0.007 |
2022 | 0.020 | 0.012 | 0.009 | 0.025 | 0.000 | 0.017 | 0.025 | 0.035 | 0.007 | - |
All years | - | 0.036 | 0.029 | 0.020 | 0.000 | 0.006 | 0.002 | 0.005 | 0.018 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puidet, B.; Koppel, M.; Kiiker, R. Genetic Diversity and Reproduction Trends of Phytophthora infestans in Estonia: EU_41_A2 Detected without an Indication of Clonal Reproduction. J. Fungi 2024, 10, 233. https://doi.org/10.3390/jof10030233
Puidet B, Koppel M, Kiiker R. Genetic Diversity and Reproduction Trends of Phytophthora infestans in Estonia: EU_41_A2 Detected without an Indication of Clonal Reproduction. Journal of Fungi. 2024; 10(3):233. https://doi.org/10.3390/jof10030233
Chicago/Turabian StylePuidet, Britt, Mati Koppel, and Riinu Kiiker. 2024. "Genetic Diversity and Reproduction Trends of Phytophthora infestans in Estonia: EU_41_A2 Detected without an Indication of Clonal Reproduction" Journal of Fungi 10, no. 3: 233. https://doi.org/10.3390/jof10030233
APA StylePuidet, B., Koppel, M., & Kiiker, R. (2024). Genetic Diversity and Reproduction Trends of Phytophthora infestans in Estonia: EU_41_A2 Detected without an Indication of Clonal Reproduction. Journal of Fungi, 10(3), 233. https://doi.org/10.3390/jof10030233