Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Development and Characterization of NEs
2.2. Strain Fungal
2.3. In Vivo Assay
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. In Vivo Assay
3.2. Biochemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NEs | Nanoemulsions |
AmB | Amphotericin B |
MICA | Micafungin |
MICAmB | Micafungin + amphotericin B |
NEA | Nanoemulsion + amphotericin B |
NEM | Nanoemulsion + micafungin |
NEMA | Nanoemulsion + amphotericin B + micafungin |
Brij® 58 | Polyoxyethylene (20) cetyl ether |
CEUA | Animal Use Ethics Committee |
PBS | Phosphate-buffered saline |
CDC | Center for Diseases Control |
SDA | Sabouraud dextrose agar |
CFU | Colony-forming units |
GOT | Glutamic oxaloacetic transaminase |
GPT | Glutamic pyruvic transaminase |
CRE | Creatinine |
References
- Pappas, G.P.; Lionakis, M.S.; Arendrup, M.C.; Zeichner, L.O.; Kullberg, B.J. Invasive Candidiasis. Infect. Dis. Clin. N. Am. 2018, 30, 103–124. [Google Scholar] [CrossRef]
- CDC Tracking Candida auris: Candida auris Fungal Diseases CDC. Available online: https://www.cdc.gov/fungal/candida-auris/index.html (accessed on 20 January 2024).
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Browna, C.S. Candida auris: A Review of the Literature. Clin. Microbiol. Rev. 2018, 31, e00029-17. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef]
- Tharp, B.; Zheng, R.; Bryak, G.; Litvintseva, A.P.; Hayden, M.K.; Chowdhary, A.; Thangamani, S. Role of Microbiota in the Skin Colonization of Candida auris. mSphere 2023, 8, e00623-22. [Google Scholar] [CrossRef]
- Montoya, A.M. The Importance of Candida auris in Skin. Curr. Fungal Infect. Rep. 2024, 1–7. [Google Scholar] [CrossRef]
- Marena, G.D.; Carvalho, G.C.; Monazzi, L.C.S.; Maschio-Lima, T.; De Almeida, M.T.G.; Da Silva, J.L.M.; Fortunato, G.C.; Araújo, V.H.S.; Venancio, D.C.V.; Chang, M.R.; et al. Infection Caused by Candida auris: State of the Art. Mycosphere 2022, 13, 820–861. [Google Scholar] [CrossRef]
- Piatti, G.; Sartini, M.; Cusato, C.; Schito, A.M. Colonization by Candida auris in Critically Ill Patients: Role of Cutaneous and Rectal Localization during an Outbreak. J. Hosp. Infect. 2022, 120, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.H.; Ma, Y.Y.; Ding, Y.; Chen, X.Q.; Gao, G.X. An Insight into New Strategies to Combat Antifungal Drug Resistance. Drug Des. Dev. Ther. 2018, 12, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Ngan, C.L.; Basri, M.; Tripathy, M.; Karjiban, R.A.; Abdul-Malek, E. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene. Sci. World J. 2014, 2014, 219035. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Tayeb, H.H.; Felimban, R.; Almaghrabi, S.; Hasaballah, N. Nanoemulsions: Formulation, Characterization, Biological Fate, and Potential Role against COVID-19 and Other Viral Outbreaks. Colloids Interface Sci. Commun. 2021, 45, 100533. [Google Scholar] [CrossRef]
- Johnson, M.D.; Perfect, J.R. Use of Antifungal Combination Therapy: Agents, Order, and Timing. Curr. Fungal Infect. Rep. 2010, 4, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.; Patel, M.; Ahmad, A. Improved Efficacy of Antifungal Drugs in Combination with Monoterpene Phenols against Candida auris. Sci. Rep. 2020, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Al-Jamal, W.T.; Kostarelos, K. Liposomes: From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine. Acc. Chem. Res. 2011, 44, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Marena, G.D.; Carvalho, G.C.; dos Santos Ramos, M.A.; Chorilli, M.; Bauab, T.M. Anti-Candida auris Activity In Vitro and In Vivo of Micafungin Loaded Nanoemulsions. Med. Mycol. 2023, 61, myac090. [Google Scholar] [CrossRef]
- Marena, G.D.; dos Santos Ramos, M.A.; Carvalho, G.C.; de Lima, L.C.; do Nascimento, A.L.C.S.; Sábio, R.M.; Rodero, C.F.; Spósito, L.; Bauab, T.M.; Chorilli, M. Development and Characterization of an Amphotericin B-Loaded Nanoemulsion Applied to Candida auris Biofilms Control. J. Drug Deliv. Sci. Technol. 2022, 74, 103566. [Google Scholar] [CrossRef]
- Marena, G.D.; Ramos, M.A.D.S.; Lima, L.C.; Chorilli, M.; Bauab, T.M. Galleria Mellonella for Systemic Assessment of Anti-Candida auris Using Amphotericin B Loaded in Nanoemulsion. Sci. Total Environ. 2022, 807, 151203. [Google Scholar] [CrossRef] [PubMed]
- Lepak, A.J.; Zhao, M.; VanScoy, B.; Ambrose, P.G.; Andes, D.R. Pharmacodynamics of a Long-Acting Echinocandin, CD101, in a Neutropenic Invasive-Candidiasis Murine Model Using an Extended-Interval Dosing Design. Antimicrob. Agents Chemother. 2018, 62, e02154-17. [Google Scholar] [CrossRef]
- Egger, N.B.; Kainz, K.; Schulze, A.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. The Rise of Candida auris: From Unique Traits to Co-Infection Potential. Microbial Cell 2022, 9, 141–144. [Google Scholar] [CrossRef]
- Abe, M.; Katano, H.; Nagi, M.; Higashi, Y.; Sato, Y.; Kikuchi, K.; Hasegawa, H.; Miyazaki, Y. Potency of Gastrointestinal Colonization and Virulence of Candida auris in a Murine Endogenous Candidiasis. PLoS ONE 2020, 15, e0243223. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.R.; Pichowicz, A.; Torres-Velez, F.; Song, R.; Singh, N.; Lasek-Nesselquist, E.; De Jesus, M. Impact of Candida auris Infection in a Neutropenic Murine Model. Antimicrob. Agents Chemother. 2020, 64, e01625-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, Y.; Chen, X.; Li, H.; Yin, Z.; Zhang, B.; Xu, Y.; Zhang, Y.; Zhang, R.; Huang, X.; et al. Innate Immune Responses against the Fungal Pathogen Candida auris. Nat. Commun. 2022, 13, 3553. [Google Scholar] [CrossRef] [PubMed]
- Xavier, E.S.; de Souza, R.L.; Rodrigues, V.C.; Melo, C.O.; Roquini, D.B.; Lemes, B.L.; Wilairatana, P.; Oliveira, E.E.; de Moraes, J. Therapeutic Efficacy of Carvacrol-Loaded Nanoemulsion in a Mouse Model of Schistosomiasis. Front. Pharmacol. 2022, 13, 917363. [Google Scholar] [CrossRef] [PubMed]
- Forgács, L.; Borman, A.M.; Prépost, E.; Tóth, Z.; Kardos, G.; Kovács, R.; Szekely, A.; Nagy, F.; Kovacs, I.; Majoros, L. Comparison of in Vivo Pathogenicity of Four Candida auris Clades in a Neutropenic Bloodstream Infection Murine Model. Emerg. Microbes Infect. 2020, 9, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Farghaly, D.A.; Aboelwafa, A.A.; Hamza, M.Y.; Mohamed, M.I. Microemulsion for Topical Delivery of Fenoprofen Calcium: In Vitro and in Vivo Evaluation. J. Liposome Res. 2018, 28, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, R.; de Pablo, E.; Ballesteros, M.P.; Serrano, D.R. Unmet Clinical Needs in the Treatment of Systemic Fungal Infections: The Role of Amphotericin B and Drug Targeting. Int. J. Pharm. 2017, 525, 139–148. [Google Scholar] [CrossRef]
- Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: Side Effects and Toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marena, G.D.; Carvalho, G.C.; Ruiz-Gaitán, A.; Onisto, G.S.; Bugalho, B.C.M.; Genezini, L.M.V.; Santos, M.O.D.; Blanco, A.L.; Chorilli, M.; Bauab, T.M. Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model. J. Fungi 2024, 10, 253. https://doi.org/10.3390/jof10040253
Marena GD, Carvalho GC, Ruiz-Gaitán A, Onisto GS, Bugalho BCM, Genezini LMV, Santos MOD, Blanco AL, Chorilli M, Bauab TM. Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model. Journal of Fungi. 2024; 10(4):253. https://doi.org/10.3390/jof10040253
Chicago/Turabian StyleMarena, Gabriel Davi, Gabriela Corrêa Carvalho, Alba Ruiz-Gaitán, Giovana Scaramal Onisto, Beatriz Chiari Manzini Bugalho, Letícia Maria Valente Genezini, Maíra Oliveira Dos Santos, Ana Lígia Blanco, Marlus Chorilli, and Tais Maria Bauab. 2024. "Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model" Journal of Fungi 10, no. 4: 253. https://doi.org/10.3390/jof10040253
APA StyleMarena, G. D., Carvalho, G. C., Ruiz-Gaitán, A., Onisto, G. S., Bugalho, B. C. M., Genezini, L. M. V., Santos, M. O. D., Blanco, A. L., Chorilli, M., & Bauab, T. M. (2024). Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model. Journal of Fungi, 10(4), 253. https://doi.org/10.3390/jof10040253