Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata
Abstract
:1. Introduction
2. Materials and Methods
2.1. S. rugosoannulata Cultivation and Material Collection at Different Stages
2.2. Extraction and Analysis of Total Flavonoids
2.3. Widely Targeted Metabolomics Analysis of Flavonoid Metabolites in Fruiting Body of S. rugosoannulata
2.4. Gene Expression Profile Sequencing and Transcriptome Data Analysis
2.5. Combined Analysis of Flavonoid Metabolites and Transcriptomic
2.6. Quantitative Real-Time PCR Analysis
3. Results
3.1. Measurement of Total Flavonoid Content in Fruiting Body of S. rugosoannulata at Developed Periods
3.2. Different Accumulation of Flavonoids in Three Stages
3.3. Transcriptome Analysis of S. rugosoannulata during Three Periods
3.4. Genes Involved in Flavonoid-Related Pathways in the Fruiting Body of S. rugosoannulata
3.5. Conjoint Analysis of Transcriptome and Metabolome Profile
3.6. Verification of Transcriptomics Data
4. Discussion
4.1. Presence of Genes Related to Flavonoid Biosynthesis in the Fruiting Body of S. rugosoannulata
4.2. Key Regulatory Genes for Flavonoid Synthesis in the Fruity Body of S. rugosoannulata
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Z.G.; Li, Z.N.; Zhang, J.M.; Hou, X.Y.; Yeh, S.M.; Ming, X. Recent developments of flavonoids with various activities. Curr. Top. Med. Chem. 2022, 22, 305–329. [Google Scholar] [CrossRef]
- Brunetti, C.; Fini, A.; Sebastiani, F.; Gori, A.; Tattini, M. Modulation of phytohormone signaling: A primary function of flavonoids in plant-environment interactions. Front. Plant Sci. 2018, 9, 1042. [Google Scholar] [CrossRef]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo 2005, 19, 895–909. [Google Scholar] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.X.; Lu, S.F. Biosynthesis and regulation of phenylpropanoids in plants. CRC Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From biosynthesis to health benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Bai, X.; Li, X.; Wang, Q.; Wang, L.; Wang, W.; Li, Z. Transcriptomic and Non-Targeted metabolomic analyses reveal the flavonoid biosynthesis pathway in Auricularia cornea. Molecules 2022, 27, 2334. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Wang, X.; Liu, R.; Zou, L. Mushrooms do produce flavonoids: Metabolite profiling and transcriptome analysis of flavonoid synthesis in the medicinal mushroom Sanghuangporus baumii. J. Fungi 2022, 8, 582. [Google Scholar] [CrossRef]
- Pukalski, J.; Latowski, D. Secrets of flavonoid synthesis in mushroom cells. Cells 2022, 11, 3052. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Kim, D.H.; Kim, J.M. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci. Rep. 2018, 8, 8983. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.L.; Ma, L.T.; Lee, Y.R.; Shaw, J.F.; Wang, S.Y.; Chu, F.H. Differential gene expression network in terpenoid synthesis of Antrodia cinnamomea in mycelia and fruiting bodies. J. Agr. Food Chem. 2017, 65, 1874–1886. [Google Scholar] [CrossRef]
- Hu, S.; Feng, X.; Huang, W.; Ibrahim, S.A.; Liu, Y. Effects of drying methods on non-volatile taste components of Stropharia rugoso-annulata mushrooms. LWT 2020, 127, 109428. [Google Scholar] [CrossRef]
- Song, Z.; Jia, L.; Xu, F.; Meng, F.; Deng, P.; Fan, K.; Liu, X. Characteristics of se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol. Trace Elem. Res. 2009, 131, 81–89. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Geng, L.; Wang, J.; Xu, C.P. Production, purfication, molecular characterization and bioactivities of exopolysaccharides produced by the wine cap culinary-medicinal mushroom, Stropharia rugosoannulata 2# (higher Basidiomycetes). Int. J. Med. Mushrooms 2012, 14, 365–376. [Google Scholar] [CrossRef]
- Wei, L.; Wang, W.; Hou, Y.Y.; Xie, X.Y.; Li, X.; Chen, F.; Wang, Z.Y.; Zhou, Y.; Li, F.F.; Jing, B.N. Chemical womposition, antibacterial test, and antioxidant activity of essential oils from fresh and dried Stropharia rugosoannulata. J. Chem. 2023, 2023, 6965755. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.F.; Feng, X.; Cheng, L.; Ibrahim, S.A.; Wang, C.T.; Huang, W. Isolation, characterization and antioxidant of polysaccharides from Stropharia rugosoannulata. Int. J. Biol. Macromol. 2020, 155, 883–889. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, G.; Geng, X.; Zhao, Y.; Ng, T.B.; Zhao, L.; Wang, H. Isolation and characterization of a novel lectin from the edible mushroom Stropharia rugosoannulata. Molecules 2014, 19, 19880–19891. [Google Scholar] [CrossRef]
- Wei, L.; Jing, B.N.; Li, X.; Hou, Y.Y.; Xie, X.Y.; Wang, Z.Y.; Liu, Y.Q.; Zhou, Y.; Chang, X.; Wang, W. Evaluation of nutritional ingredients, biologically active materials, and pharmacological activities of Stropharia rugosoannulata grown under the bamboo forest and in the greenhouse. J. Food Qual. 2021, 2021. [Google Scholar] [CrossRef]
- Niedzielski, P.; Mleczek, M.; Budka, A.; Rzymski, P.; Siwulski, M.; Jasinska, A.; Gasecka, M.; Budzynska, S. A screening study of elemental composition in 12 marketable mushroom species accessible in poland. Eur. Food Res. Technol. 2017, 243, 1759–1771. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, F.; Tang, P.; Huang, D.; Li, Q.; Lin, M. Widely targeted metabolomics analysis of the changes to key non-volatile taste components in Stropharia rugosoannulata under different drying methods. Front. Nutr. 2022, 9, 884400. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, M.F.; Liao, H.B.; Li, Y.X.; Han, W.; Yuan, K. Content determination of the flavonoids in the different parts and different species of Abelmoschus esculentus L. by reversed phase-high performance liquid chromatograph and colorimetric method. Pharmacogn. Mag. 2014, 10, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Thitz, P.; Mehtätalo, L.; Välimäki, P.; Randriamanana, T.; Lännenpää, M.; Hagerman, A.E.; Andersson, T.; Julkunen-Tiitto, R.; Nyman, T. Phytochemical shift from condensed tannins to flavonoids in transgenic betula pendula decreases consumption and growth but improves growth efficiency of Epirrita autumnata larvae. J. Chem. Ecol. 2020, 46, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Ferreira, I.C.; Baptista, P.; Santos-Buelga, C. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009, 47, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ramírez, A.; Pavo-Caballero, C.; Baeza, E.; Baenas, N.; Garcia-Viguera, C.; Marín, F.R.; Soler-Rivas, C. Mushrooms do not contain flavonoids. J. Funct. Foods 2016, 25, 1–13. [Google Scholar] [CrossRef]
- Gong, W.; Wang, Y.; Xie, C.; Zhou, Y.; Zhu, Z.; Peng, Y. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 2020, 112, 2393–2399. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, F.; Si, J.; Zhao, Y.F.; Dai, Y.C. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics 2019, 111, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Deng, W.; Yan, W.; Li, T. Whole genome sequence of an edible and potential medicinal fungus, Cordyceps guangdongensis. G3 Genes Genomes Genet. 2018, 8, 1863–1870. [Google Scholar] [CrossRef]
- Duan, M.; Bao, H.; Bau, T. Analyses of transcriptomes and the first complete genome of Leucocalocybe mongolica provide new insights into phylogenetic relationships and conservation. Sci. Rep. 2021, 11, 2930. [Google Scholar] [CrossRef]
- Duan, M.; Long, S.; Wu, X.; Feng, B.; Qin, S.; Li, Y.; Li, X.; Li, C.; Zhao, C.; Wang, L.; et al. Genome, transcriptome, and metabolome analyses provide new insights into the resource development in an edible fungus Dictyophora indusiata. Front. Microbiol. 2023, 14, 1137159. [Google Scholar] [CrossRef]
- Yu, F.; Song, J.; Liang, J.; Wang, S.; Lu, J. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 2020, 112, 603–614. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, D.; Wang, S.; Zhao, Y.; Gao, S.; Han, R.; Yu, J.; Zheng, W.; Geng, J.; Hu, S. Genome assembly and pathway analysis of edible mushroom Agrocybe cylindracea. Genom. Proteom. Bioinform. 2020, 18, 341–351. [Google Scholar] [CrossRef]
- Gao, W.; Qu, J.; Zhang, J.; Sonnenberg, A.; Chen, Q.; Zhang, Y.; Huang, C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genom. 2018, 19, 18. [Google Scholar] [CrossRef]
- Wang, X.; Peng, J.; Sun, L.; Bonito, G.; Wang, J.; Cui, W.; Fu, Y.; Li, Y. Genome sequencing Illustrates the genetic basis of the pharmacological properties of Gloeostereum incarnatum. Genes 2019, 10, 188. [Google Scholar] [CrossRef]
- Vetchinkina, E.; Gorshkov, V.; Ageeva, M.; Gogolev, Y.; Nikitina, V.E. Brown mycelial mat as an essential morphological structure of the shiitake medicinal mushroom Lentinus edodes (Agaricomycetes). Int. J. Med. Mushrooms 2017, 19, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Alspaugh, J.A.; Liu, H.; Harris, S. Fungal morphogenesis. Cold Spring Harb. Perspect. Med. 2014, 5, a019679. [Google Scholar] [CrossRef] [PubMed]
- de Vries, R.P.; Grigoriev, I.V.; Tsang, A. Introduction: Overview of fungal genomics. Methods Mol. Biol. 2018, 1775, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C. Media and growth conditions for induction of secondary metabolite production. Methods Mol. Biol. 2012, 944, 47–58. [Google Scholar] [CrossRef]
- Tormo, J.R.; Asensio, F.J.; Bills, G.F. Manipulating filamentous fungus chemical phenotypes by growth on nutritional arrays. Methods Mol. Biol. 2012, 944, 59–78. [Google Scholar] [CrossRef]
- Hallen, H.E.; Huebner, M.; Shiu, S.H.; Güldener, U.; Trail, F. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 2007, 44, 1146–1156. [Google Scholar] [CrossRef]
- Teichert, I.; Wolff, G.; Kück, U.; Nowrousian, M. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genom. 2012, 13, 511. [Google Scholar] [CrossRef]
- Cheng, C.K.; Au, C.H.; Wilke, S.K.; Stajich, J.E.; Zolan, M.E.; Pukkila, P.J.; Kwan, H.S. 5′-Serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genom. 2013, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, Q.; Hou, R.; Sun, H.; Tang, Q.; Wang, H.; Hao, Z.; Kang, S.; Xu, T.; Wu, S. Kaempferol-3-O-glucorhamnoside inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo. Toxicol. Appl. Pharmacol. 2019, 364, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Quintal Martínez, J.P.; Quintal Ortiz, I.G.; Alonso Salomón, L.G.; García-Sosa, K.; Peña Rodríguez, L.M.; Guerrero Analco, J.A.; Monribot Villanueva, J.L.; Vidal Limón, A.M.; Segura Campos, M.R. Bioassay-guided identification of antithrombotic compounds from Cnidoscolus aconitifolius (Mill.) I. M. Jhonst.: Molecular docking, bioavailability, and toxicity prediction. J. Biomol. Struct. Dyn. 2023, 42, 1692–1710. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S.S.; Alshafi, R.A.; Huwaizi, S.; Suliman, R.S.; Mohammed, A.E.; Alehaideb, Z.I.; Alturki, A.Y.; Alghashem, S.A.; Rahman, I. Exploring in vitro and in silico biological activities of Calligonum Comosum and Rumex Vesicarius: Implications on anticancer and antibacterial therapeutics. Saudi Pharm. J. 2023, 31, 101794. [Google Scholar] [CrossRef] [PubMed]
- Bostyn, S.; Destandau, E.; Charpentier, J.P.; Serrano, V.; Seigneuret, J.M.; Breton, C. Optimization and kinetic modelling of robinetin and dihydrorobinetin extraction from Robinia pseudoacacia wood. Ind. Crop. Prod. 2018, 126, 22–30. [Google Scholar] [CrossRef]
- Kimura, Y.; Sumiyoshi, M. Effects of various flavonoids isolated from Scutellaria baicalensis roots on skin damage in acute UVB-irradiated hairless mice. J. Pharm. Pharmacol. 2011, 63, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Huang, B.C.; Li, Y.C.; Dang, Q.Y.; Fan, L.M.; Nie, J.Y.; Wang, Y.Z.; Yuan, Y.B.; Jia, D.J. The MdAP2-34 modulates flavonoid accumulation in apple (Malus domestica Borkh.) by regulating MdF3′H. Postharvest Biol. Technol. 2022, 192. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, Z.; Tong, R.; Yin, H.; Li, J.; Zhou, X. Flavonoid 3′-hydroxylase of Camellia nitidissima Chi. promotes the synthesis of polyphenols better than flavonoids. Mol. Biol. Rep. 2021, 48, 3903–3912. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, K.; Yang, J.; Wu, H.; Chen, H.; Wu, Q.; Zhao, H. Tartary buckwheat FtF3′H1 as a metabolic branch switch to increase anthocyanin content in transgenic plant. Front. Plant Sci. 2022, 13, 959698. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zuo, J.; Zhang, H.; Li, R.; Yu, M.; Liu, S. Integration of transcriptome and metabolome provides new insights to flavonoids biosynthesis in Dendrobium huoshanense. Front. Plant Sci. 2022, 13, 850090. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, H.; Min, M.K.; Ha, J.; Song, J.; Lim, C.J.; Oh, J.; Lee, S.B.; Lee, J.Y.; Kim, B.G. Functional characterization of BrF3′H, which determines the typical flavonoid profile of Purple Chinese Cabbage. Front. Plant Sci. 2021, 12, 793589. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Kim, D.H.; Jung, J.A.; Hyung, N.I.; Youn, Y.; Lee, J.Y. Silencing of Dihydroflavonol 4-reductase in chrysanthemum ray florets enhances flavonoid biosynthesis and antioxidant capacity. Plants 2022, 11, 1681. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Yuan, Q.; Xiong, C.; Xu, H.; Hu, B.; Suo, H.; Yang, S.; Hou, X.; Yuan, F.; et al. The bHLH1-DTX35/DFR module regulates pollen fertility by promoting flavonoid biosynthesis in Capsicum annuum L. Hortic. Res. 2022, 9, uhac172. [Google Scholar] [CrossRef]
- Lewis, J.A.; Zhang, B.X.; Harza, R.; Palmer, N.; Sarath, G.; Sattler, S.E.; Twigg, P.; Vermerris, W.; Kang, C. Structural similarities and overlapping activities among Dihydroflavonol 4-Reductase, Flavanone 4-Reductase, and anthocyanidin reductase offer metabolic flexibility in the flavonoid pathway. Int. J. Mol. Sci. 2023, 24, 13901. [Google Scholar] [CrossRef]
Index | Compounds | Class | Log2 (Fold Change) | p-Value | Type |
---|---|---|---|---|---|
Ym vs. Gi | |||||
ZBN0290 | Acacetin-7-O-glucoside | Flavones | 2.54 | 1.29 × 10−2 | up |
MW0139530 | Quercetin 3-xylosyl-(1->6)-glucoside | Flavones | 2.20 | 1.69 × 10−5 | up |
HJN091 | Prunetin-4′-O-glucoside | Isoflavones | 1.60 | 3.16 × 10−3 | up |
Lmsp004166 | Quercetin-3-O-glucoside-7-O-rhamnoside | Flavonols | −1.73 | 5.34 × 10−2 | down |
Lmjp002461 | Quercetin-3-O-neohesperidoside | Flavonols | −1.73 | 5.34 × 10−2 | down |
MWSHY0067 | Quercetin-3-O-rutinoside | Flavonols | −2.05 | 1.13 × 10−1 | down |
Zbsp004301 | Quercetin-7-O-rutinoside | Flavonols | −2.05 | 1.13 × 10−1 | down |
pmn001583 | Quercetin-3-O-robinobioside | Flavonols | −2.33 | 1.85 × 10−2 | down |
MWSHY0016 | Luteolin-6-C-glucoside | Flavones | −2.78 | 5.86 × 10−3 | down |
MWSHY0016 | Luteolin-8-C-glucoside | Flavones | −3.75 | 5.76 × 10−2 | down |
Gi vs. Ma | |||||
mws0036 | Hesperetin-7-O-rutinoside | Flavanones | 1.15 | 2.22 × 100 | up |
Zmjp005293 | Robinson-7-O-Neohesperidin | Flavonols | 2.52 | 5.75 × 100 | up |
Zmpp002571 | Robinetin | Flavonols | 2.17 | 4.15 × 100 | up |
MW0139530 | Quercetin 3-xylosyl-(1->6)-glucoside | Flavones | −1.47 | 3.16 × 10−1 | down |
ZBN0290 | Acacetin-7-O-glucoside | Flavones | −1.48 | 3.59 × 10−1 | down |
ZBN0180 | Kaempferol-3-O-(4″-O-acetyl)rhamnoside | Flavonols | −2.07 | 2.38 × 10−1 | down |
MW013147 | Tetrahydroxy-6,8-dimethoxyflavone | Flavones | −1.02 | 4.95 × 10−1 | down |
Zmyn003693 | 6-Hydroxy-2′-methoxyflavone | Flavones | −1.01 | 4.97 × 10−1 | down |
Ym vs. Ma | |||||
Zmpp002571 | Robinetin | Flavonols | 2.36 | 2.91 × 10−5 | up |
MWSslk254 | Kaempferol-3-O-glucorhamnoside | Flavonols | 1.83 | 8.06 × 10−4 | up |
Lmsp004670 | Kaempferol-3-O-glucoside-7-O-rhamnoside | Flavonols | 1.83 | 8.06 × 10−4 | up |
Lmjp003655 | 6-C-MethylKaempferol-3-glucoside | Flavones | 1.36 | 3.78 × 10−2 | up |
mws1290 | Kaempferol-3-O-(6″-p-Coumaroyl)glucoside | Flavonols | 1.18 | 9.72 × 10−2 | up |
ZBN0378 | Afzelechin-(4α→8)-epiafzelechin | Flavonols | −1.29 | 4.12 × 10−2 | down |
MWSHY0067 | Quercetin-3-O-rutinoside | Flavonols | −1.55 | 1.46 × 10−1 | down |
Zbsp004301 | Quercetin-7-O-rutinoside | Flavonols | −1.55 | 1.46 × 10−1 | down |
MWSHY0016 | Luteolin-6-C-glucoside | Flavones | −2.32 | 1.58 × 10−2 | down |
mws1299 | Luteolin-8-C-glucoside | Flavones | −2.98 | 4.53 × 10−2 | down |
KEGG Pathway | Ym vs. Gi | Gi vs. Ma | Ym vs. Ma | ||||||
---|---|---|---|---|---|---|---|---|---|
Rich Factor | p-Value | Count | Rich Factor | p-Value | Count | Rich Factor | p-Value | Count | |
Phenylpropanoid biosynthesis | 1.68 | 5.58 × 10−2 | 12 | 1.46 | 1.17 × 10−2 | 37 | 1.49 | 4.13 × 10−3 | 43 |
Flavonoid biosynthesis | 1.59 | 2.10 × 10−2 | 12 | 1.78 | 2.09 × 10−4 | 39 | 1.57 | 2.40 × 10−3 | 39 |
Isoflavonoid biosynthesis | 2.67 | 2.51 × 10−2 | 6 | 1.00 | 5.61 × 10−1 | 8 | 0.88 | 7.07 × 10−1 | 8 |
Flavone and flavonol biosynthesis | 1.80 | 1.44 × 10−1 | 5 | 2.32 | 6.50 × 10−5 | 23 | 1.88 | 2.63 × 10−3 | 21 |
Gene ID | Gene Name | Protein Function | EC Number | Log2 (Fold Change) | p-Value | Type |
---|---|---|---|---|---|---|
Ym vs. Ma | ||||||
Cluster-11040.14 | 4CL1 | hypothetical protein | EC:6.2.1.12 | 1.31 | 3.57 × 10−3 | up |
Cluster-6482.6 | C3′H4 | trimethyltridecatetraene synthase-like | EC:1.14.14.96 | 1.23 | 4.44 × 10−3 | up |
Cluster-10276.0 | CCR2 | hypothetical protein | EC:1.2.1.44 | 7.14 | 3.09 × 10−7 | up |
Cluster-5081.0 | DFR3 | hypothetical protein | EC:1.1.1.219 1.1.1.234 | 2.95 | 5.90 × 10−8 | up |
Cluster-8590.8 | F3′H14 | cytochrome P450 | EC:1.14.14.82 | 1.83 | 9.07 × 10−16 | up |
Cluster-1699.0 | F3H | flavanone 3-hydroxylase | EC:1.14.11.9 | −2.56 | 1.04 × 10−16 | down |
Gi vs. Ma | ||||||
Cluster-6482.6 | C3′H4 | trimethyltridecatetraene synthase-like | EC:1.14.14.96 | 1.89 | 6.66 × 10−89 | up |
Cluster-10227.0 | CCOAMT | hypothetical protein L1887_45734 | EC:2.1.1.104 | 1.43 | 3.48 × 10−26 | up |
Cluster-10183.3 | DFR1 | hypothetical protein L1887_49712 | EC:1.1.1.219 1.1.1.234 | 1.83 | 5.69 × 10−42 | up |
Cluster-8045.2 | F3′H9 | hypothetical protein FH972_026701 | EC:1.14.14.82 | 1.70 | 1.63 × 10−3 | up |
Cluster-8045.6 | F3′H10 | cytochrome P450 | EC:1.14.14.82 | 1.93 | 3.35 × 10−183 | up |
Cluster-8590.8 | F3′H14 | cytochrome P450 | EC:1.14.14.82 | 1.30 | 9.12 × 10−19 | up |
Cluster-8459.0 | CAD2 | hypothetical protein L1887_42355 | EC:1.1.1.195 | −1.66 | 9.76 × 10−29 | down |
Cluster-10281.0 | DFR2 | hypothetical protein L1887_49712 | EC:1.1.1.219 1.1.1.234 | −3.28 | 5.59 × 10−42 | down |
Cluster-4637.0 | IFS3 | hypothetical protein FH972_026701 | EC:1.14.14.90 1.14.14.89 | −6.41 | 1.37 × 10−68 | down |
Cluster-4637.4 | IFS4 | hypothetical protein FH972_026701 | EC:1.14.14.90 1.14.14.89 | −1.54 | 4.49 × 10−16 | down |
Ym vs. Ma | ||||||
Cluster-6482.6 | C3′H4 | trimethyltridecatetraene synthase-like | EC:1.14.14.96 | 3.12 | 3.12 × 10−171 | up |
Cluster-10276.0 | CCR2 | hypothetical protein | EC:1.2.1.44 | 7.50 | 2.75 × 10−9 | up |
Cluster-5081.0 | DFR3 | hypothetical protein | EC:1.1.1.219 1.1.1.234 | 4.01 | 3.51 × 10−15 | up |
Cluster-8590.8 | F3′H14 | cytochrome P450 | EC:1.14.14.82 | 3.12 | 2.79 × 10−62 | up |
Cluster-3679.0 | CHS1 | chalcone synthase 2 | EC:2.3.1.74 | −2.93 | 5.99 × 10−3 | down |
Cluster-10281.0 | DFR2 | hypothetical protein L1887_49712 | EC:1.1.1.219 1.1.1.234 | −2.52 | 3.77 × 10−21 | down |
Cluster-4637.0 | IFS3 | hypothetical protein FH972_026701 | EC:1.14.14.90 1.14.14.89 | −6.01 | 3.03 × 10−56 | down |
Cluster-5642.0 | LAR | leucoanthocyanidin reductase-like | EC:1.17.1.3 | −2.64 | 4.07 × 10−3 | down |
Cluster-3443.0 | peroxidase1 | peroxidase 42-like | EC:1.11.1.7 | −2.87 | 6.92 × 10−3 | down |
Cluster-7458.0 | peroxidase2 | hypothetical protein HYC85_021248 | EC:1.11.1.7 | −3.24 | 8.46 × 10−3 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Du, Z.; Liu, L.; Chen, Z.; Li, Y.; Fu, S. Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata. J. Fungi 2024, 10, 254. https://doi.org/10.3390/jof10040254
Wu X, Du Z, Liu L, Chen Z, Li Y, Fu S. Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata. Journal of Fungi. 2024; 10(4):254. https://doi.org/10.3390/jof10040254
Chicago/Turabian StyleWu, Xian, Zhihui Du, Lian Liu, Zhilin Chen, Yurong Li, and Shaobin Fu. 2024. "Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata" Journal of Fungi 10, no. 4: 254. https://doi.org/10.3390/jof10040254
APA StyleWu, X., Du, Z., Liu, L., Chen, Z., Li, Y., & Fu, S. (2024). Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata. Journal of Fungi, 10(4), 254. https://doi.org/10.3390/jof10040254