Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogen Isolation and Purification
2.2. Pathogenicity Testing
2.3. Pathogen Identification
2.3.1. Morphological Observations
2.3.2. DNA Extraction, PCR Amplification
2.3.3. Phylogenetic Analysis
2.4. Biological Characteristics
2.4.1. Effect of Different Carbon and Nitrogen Sources on Mycelial Growth of the ABL2 Isolate
2.4.2. Effects of Light Regime, Temperature and Different pH on Mycelial Growth of the ABL2 Isolate
2.5. Efficacy of Different Botanical Fungicides against the Mycelial Growth of the ABL2 Isolate
2.6. Efficacy of Different Botanical Fungicides against ABL2 Spore Germination
2.7. Protective and Curative Activity of Eugenol on Detached Apple Leaves
2.8. Statistical Data Analysis
3. Results
3.1. Field Symptoms of Apple Leaf Blight
3.2. Pathogen Isolation and Pathogenicity Testing
3.3. Morphological Characteristics of Cultures and Sporulation
3.4. Molecular Identification
3.5. Biological Characteristics
3.6. Botanical Fungicides Sensitivity of A. tenuissima ABL2
3.6.1. Inhibitory Effects of Different Botanical Fungicides on the Mycelial Growth of A. tenuissima ABL2
3.6.2. Inhibitory Effects of Different Botanical Fungicides on Spore Germination of the A. tenuissima ABL2
3.7. Protective and Curative Activity of Eugenol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Aldwinckle, H.S.; Sutton, T.; Tsuge, T.; Kang, G.; Cong, P.H.; Cheng, Z.M. Interactions of apple and the Alternaria alternata apple pathotype. Crit. Rev. Plant Sci. 2013, 32, 141–150. [Google Scholar] [CrossRef]
- Wang, N.; Wolf, J.; Zhang, F.S. Towards sustainable intensification of apple production in China—Yield gaps and nutrient use efficiency in apple farming systems. J. Integr. Agric. 2016, 15, 716–725. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, M. Research on deep learning in apple leaf disease recognition. Comput. Electron. Agric. 2020, 168, 105146. [Google Scholar] [CrossRef]
- Lee, D.H.; Back, C.G.; Win, N.K.; Choi, K.H.; Kim, K.M.; Kang, I.K.; Choi, C.; Yoon, T.M.; Uhm, J.Y.; Jung, H.Y. Biological characterization of Marssonina coronaria associated with apple blotch disease. Mycobiology 2011, 39, 200–205. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Li, B.; Zhang, Q.; Liang, W.; Wang, C. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiol. Biochem. 2016, 106, 64–72. [Google Scholar] [CrossRef]
- Abe, K.; Iwanami, H.; Kotoda, N.; Moriya, S.; Takahashi, S. Evaluation of apple genotypes and Malus species for resistance to Alternaria blotch caused by Alternaria alternata apple pathotype using detached-leaf method. Plant Breed. 2010, 129, 208–218. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhang, Z.F.; Li, B.H.; Wang, H.Y.; Dong, X.L. First report of Glomerella leaf spot of apple caused by Glomerella cingulata in China. Plant Dis. 2012, 96, 912. [Google Scholar] [CrossRef]
- Khodadadi, F.; Martin, P.L.; Donahue, D.J.; Peter, K.A.; Aćimović, S.G. Characterizations of an emerging disease: Apple blotch caused by Diplocarpon coronariae (syn. Marssonina coronaria) in the Mid-Atlantic United States. Plant Dis. 2022, 106, 1803–1817. [Google Scholar] [CrossRef]
- Saito, A.; Nakazawa, N.; Suzuki, M. Selection of mutants resistant to Alternaria blotch from in vitro -cultured apple shoots irradiated with X- and γ-rays. J. Plant Physiol. 2001, 158, 391–400. [Google Scholar] [CrossRef]
- Armitage, A.D.; Barbara, D.J.; Harrison, R.J.; Lane, C.R.; Sreenivasaprasad, S.; Woodhall, J.W.; Clarkson, J.P. Discrete lineages within Alternaria alternata species group: Identification using new highly variable loci and support from morphological characters. Fungal Biol. 2015, 119, 994–1006. [Google Scholar] [CrossRef]
- Gur, L.; Reuveni, M.; Cohen, Y. Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel. Eur. J. Plant Pathol. 2017, 147, 695–708. [Google Scholar] [CrossRef]
- Filajdić, N.; Sutton, T. Identification and distribution of Alternaria mali on apples in North Carolina and susceptibility of different varieties of apples to Alternaria blotch. Plant Dis. 1991, 75, 1045–1048. [Google Scholar] [CrossRef]
- Rotondo, F.; Collina, M.; Brunelli, A.; Pryor, B.M. Comparison of Alternaria spp. collected in Italy from apple with A. mali and other AM-Toxin producing strains. Phytopathology 2012, 102, 1130–1142. [Google Scholar] [CrossRef]
- Harteveld, D.O.C.; Akinsanmi, O.A.; Drenth, A. Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathol. 2013, 62, 289–297. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Gannibal, P.B.; Dugan, F.M.; Pryor, B.M. Characterization of Alternaria isolates from the infectoria species-group and a new taxon from Arrhenatherum, Pseudoalternaria arrhenatheria sp. nov. Mycol. Prog. 2014, 13, 257–276. [Google Scholar] [CrossRef]
- Pryor, B.M.; Michailides, T.J. Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 2002, 92, 406–416. [Google Scholar] [CrossRef]
- Blagojević, J.; Vukojević, J.; Ivanović, B.; Ivanović, Ž. Characterization of Alternaria species associated with leaf spot disease of Armoracia rusticana in Serbia. Plant Dis. 2020, 104, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Marin-Felix, Y.; Hernández-Restrepo, M.; Iturrieta-González, I.; García, D.; Gené, J.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Quaedvlieg, W.; Schumacher, R.K.; et al. Genera of phytopathogenic fungi: GOPHY 3. Stud. Mycol. 2019, 94, 1–124. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Groenewald, J.Z.; Binder, M.; Crous, P.W. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef]
- Woudenberg, J.H.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef]
- Filajdic, N.; Sutton, T. Chemical control of Alternaria blotch of apples caused by Alternaria mali. Plant Dis. 1992, 76, 126–130. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Zhang, Z.; Cong, P.; Cheng, Z.-M. A simple sequence repeat marker linked to the susceptibility of apple to Alternaria blotch caused by Alternaria alternata apple pathotype. J. Amer. Soc. Hort. Sci. 2011, 136, 109–115. [Google Scholar] [CrossRef]
- Zaker, M. Natural plant products as eco-friendly fungicides for plant diseases control—A review. Agriculturists 2016, 14, 134–141. [Google Scholar] [CrossRef]
- Romanazzi, G.; Lichter, A.; Gabler, F.M.; Smilanick, J.L. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 2012, 63, 141–147. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Pastorinho, M.R.; Palmeira-de-Oliveira, A.; Sousa, A.C.A. Ecotoxicity of plant extracts and essential oils: A review. Environ. Pollut. 2022, 292, 118319. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, G.; Tyagi, A. Evaluation of Different fungicides against Alternaria leaf blight of tomato (Alternaria solani). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2343–2350. [Google Scholar] [CrossRef]
- Sarfraz, M.; Khan, S.; Moosa, A.; Farzand, A.; Ishaq, U.; Naeem, I.; Khan, W. Promising antifungal potential of selective botanical extracts, fungicides and Trichoderma isolates against Alternaria solani. Cercet. Agron. Mold. 2018, 51, 65–74. [Google Scholar] [CrossRef]
- Waghe, K.; Wagh, S.; Kuldhar, D.; Pawar, D. Evaluation of different fungicides, bioagents and botanicals against Alternaria blight caused by Alternaria helianthi (Hansf) of sunflower. Afr. J. Agric. Res. 2015, 10, 351–358. [Google Scholar] [CrossRef]
- Jung, K.H. Growth inhibition effect of pyroligneous acid on pathogenic fungus, Alternaria mali, the agent of Alternaria blotch of apple. Biotechnol. Bioprocess Eng. 2007, 12, 318–322. [Google Scholar] [CrossRef]
- Thangavelu, R.; Mostert, D.; Gopi, M.; Devi, P.G.; Padmanaban, B.; Molina, A.B.; Viljoen, A. First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur. J. Plant Pathol. 2019, 154, 777–786. [Google Scholar] [CrossRef]
- Li, L.; Pan, H.; Deng, L.; Wang, Z.P.; Li, D.W.; Zhang, Q.; Chen, M.Y.; Zhong, C.H. First Report of Alternaria tenuissima causing brown spot disease of kiwifruit foliage in China. Plant Dis. 2018, 103, 582. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A Guide to Methods and Applications; Wiley: Hoboken, NJ, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Andrew, M.; Peever, T.L.; Pryor, B.M. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 2009, 101, 95–109. [Google Scholar] [CrossRef]
- Hong, S.G.; Cramer, R.A.; Lawrence, C.B.; Pryor, B.M. Alt a 1 allergen homologs from Alternaria and related taxa: Analysis of phylogenetic content and secondary structure. Fungal Genet. Biol. 2005, 42, 119–129. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Y.; Cai, G.; Cai, R.; Hu, Z.; Wang, H. Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef]
- Iacomi-Vasilescu, B.; Avenot, H.; Bataille-Simoneau, N.; Laurent, E.; Guénard, M.; Simoneau, P. In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Prot. 2004, 23, 481–488. [Google Scholar] [CrossRef]
- Kuang, J.; Hou, Y.P.; Wang, J.-X.; Zhou, M.G. Sensitivity of Sclerotinia sclerotiorum to fludioxonil: In vitro determination of baseline sensitivity and resistance risk. Crop Prot. 2011, 30, 876–882. [Google Scholar] [CrossRef]
- Duan, Y.; Ge, C.; Liu, S.; Chen, C.; Zhou, M. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic. Biochem. Physiol. 2013, 106, 61–67. [Google Scholar] [CrossRef]
- Troncoso-Rojas, R.; Tiznado-Hernández, M.E. Chapter 5-Alternaria alternata (Black Rot, Black Spot). In Postharvest Decay; Academic Press: Cambridge, MA, USA, 2014; pp. 147–187. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, B.W.; Wang, R.T.; Li, Y.G.; Sun, L. Occurrence of leaf spot of begonia semperflorens caused by Alternaria tenuissima in China. Plant Dis. 2020, 104, 2292. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, X.; Hua, H.; Zhou, T.; Wu, X. Molecular and biological characterization of a novel strain of Alternaria alternata chrysovirus 1 identified from the pathogen Alternaria tenuissima causing watermelon leaf blight. Virus Res. 2020, 280, 197904. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhao, J.; Ma, G.; Bao, S.; Wu, X. Leaf blight of sunflower caused by Alternaria tenuissima and A. alternata in Beijing, China. Can. J. Plant Pathol. 2019, 41, 372–378. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Yang, X.; Cao, H.; Li, J.; Cao, P.; Guo, L.; Wang, X.; Zhao, J.; Xiang, W. Alternaria spp. associated with leaf blight of Maize in Heilongjiang Province, China. Plant Dis. 2021, 106, 572–584. [Google Scholar] [CrossRef]
- Li, J.; Zhang, R.Y.; Wang, X.Y.; Shan, H.L.; Wang, C.M.; Cang, X.Y.; Huang, Y.K. First Report of Alternaria tenuissima causing leaf blight on sugarcane in China. Plant Dis. 2020, 105, 1222. [Google Scholar] [CrossRef]
- Zhao, S.; Shamoun, S.F. Effects of culture media, temperature, pH, and light on growth, sporulation, germination, and bioherbicidal efficacy of Phoma exigua, a potential biological control agent for salal (Gaultheria shallon). Biocontrol Sci. Technol. 2006, 16, 1043–1055. [Google Scholar] [CrossRef]
- Tulukoğlu-Kunt, K.S.; Özden, M.; Di Francesco, A. Exploring wild and local fruits as sources of promising biocontrol agents against Alternaria spp. in apples. Horticulturae 2023, 9, 1156. [Google Scholar] [CrossRef]
- da Cruz Cabral, L.; Delgado, J.; Patriarca, A.; Rodriguez, A. Differential response to synthetic and natural antifungals by Alternaria tenuissima in wheat simulating media: Growth, mycotoxin production and expression of a gene related to cell wall integrity. Int. J. Food Microbiol. 2019, 292, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Abbas, E.; Osman, A.; Sitohy, M. Biochemical control of Alternaria tenuissima infecting post-harvest fig fruit by chickpea vicilin. J. Sci. Food Agric. 2020, 100, 2889–2897. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Han, L.; Zhang, X.; Feng, J. Potential use of cuminic acid as a botanical fungicide against Valsa mali. Microb. Pathog. 2017, 106, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.Y.; Cha, B.; Kim, J.C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef]
Locus | Primers | Sequence (5′-3′) | Annealing Temperature and Duration | Reference |
---|---|---|---|---|
Internal transcribed spacer | ITS1 | TCCGTAGGTGAACCTGCGG | 54 °C, 30 s | [32] |
ITS4 | TCCTCCGCTTATTGATATGC | |||
Anonymous noncoding region | OPA10-2R | GATTCGCAGCAGGGAAACTA | 62 °C, 30 s | [33] |
OPA10-2L | TCGCAGTAAGACACATTCTACG | |||
Alternaria major allergen 1 | Alta1-R | ACGAGGGTGAYGTAGGCGTC | 57 °C, 45 s | [34] |
Alta1-F | ATGCAGTTCACCACCATCGC | |||
Endopolygalacturonase | EndoPG3 | TACCATGGTTCTTTCCGA | 62 °C, 30 s | [14] |
EndoPG2b | GAGAATTCRCARTCRTCYTGRTT |
Fungicide | Formulation | Effective Components (%) | Fungicide Concentrations (μg/mL) | ||||
---|---|---|---|---|---|---|---|
Matrine | AS | 1.3 | 2 | 4 | 6 | 8 | 10 |
Eugenol | SL | 0.3 | 0.4 | 0.8 | 1.6 | 3.2 | 6.4 |
Carvacrol | AS | 5 | 10 | 15 | 20 | 25 | 30 |
Ethylicin | EC | 80 | 15 | 20 | 25 | 30 | 35 |
Berberine | AS | 0.5 | 30 | 35 | 40 | 45 | 50 |
Dithianon + Pyraclostrobin | SC | 25 | 10 | 15 | 20 | 25 | 30 |
Fungicide | Concentrations (μg/mL) | Inhibitory Rate (%) | Regression Equation | Correlation Coefficient (r) | EC50 (μg/mL) | 95% Confidence Interval |
---|---|---|---|---|---|---|
1.3% Matrine | 2 | 30.15 ± 1.72 | y = 1.7360x + 3.8860 | 0.9808 | 4.383 | 3.834~5.010 |
4 | 44.38 ± 0.95 | |||||
6 | 56.75 ± 1.24 | |||||
8 | 65.16 ± 1.21 | |||||
10 | 77.46 ± 1.20 | |||||
0.3% Eugenol | 0.4 | 34.61 ± 1.48 | y = 1.4356x + 5.1191 | 0.9955 | 0.826 | 0.727~0.938 |
0.8 | 48.50 ± 2.61 | |||||
1.6 | 63.99 ± 2.02 | |||||
3.2 | 78.23 ± 1.40 | |||||
6.4 | 91.25 ± 2.61 | |||||
5% Carvacrol | 10 | 34.75 ± 2.93 | y = 3.7036x + 0.7941 | 0.9802 | 13.665 | 12.196~15.311 |
15 | 53.15 ± 1.03 | |||||
20 | 68.34 ± 3.77 | |||||
25 | 81.04 ± 2.82 | |||||
30 | 92.70 ± 0.64 | |||||
20% Ethylicin | 15 | 34.82 ± 2.57 | y = 2.9386x + 1.1176 | 0.9927 | 20.948 | 20.023~21.917 |
20 | 47.14 ± 1.67 | |||||
25 | 56.93 ± 1.76 | |||||
30 | 66.10 ± 1.57 | |||||
35 | 76.59 ± 3.00 | |||||
0.5% Berberine | 30 | 17.71 ± 1.44 | y = 6.2843x + 5.1859 | 0.9990 | 41.767 | 41.364~42.175 |
35 | 32.71 ± 1.30 | |||||
40 | 45.71 ± 1.57 | |||||
45 | 57.09 ± 1.81 | |||||
50 | 68.96 ± 0.95 | |||||
25% Pyraclostrobin + dithianon | 10 | 37.79 ± 1.70 | y = 1.6381x + 2.9770 | 0.9864 | 16.702 | 15.481~18.020 |
15 | 44.25 ± 1.03 | |||||
20 | 53.56 ± 1.26 | |||||
25 | 62.08 ± 1.45 | |||||
30 | 67.34 ± 2.76 |
Fungicide | Concentrations (μg/mL) | Spore Germination Inhibition Rate (%) | Regression Equation | Correlation Coefficient (r) | EC50 (μg/mL) | 95% Confidence Interval |
---|---|---|---|---|---|---|
1.3% Matrine | 2 | 24.66 ± 1.58 | y = 1.5826x + 3.7293 | 0.9610 | 6.352 | 5.221~7.730 |
4 | 33.12 ± 1.66 | |||||
6 | 43.25 ± 1.81 | |||||
8 | 56.23 ± 2.66 | |||||
10 | 67.50 ± 0.63 | |||||
0.3% Eugenol | 0.4 | 37.71 ± 2.38 | y =1.3859x + 5.1689 | 0.9902 | 0.755 | 0.620~0.920 |
0.8 | 51.08 ± 3.29 | |||||
1.6 | 64.59 ± 1.99 | |||||
3.2 | 77.87 ± 2.26 | |||||
6.4 | 91.96 ± 2.57 | |||||
5% Carvacrol | 10 | 26.67 ± 2.19 | y = 2.2011x + 2.1312 | 0.9907 | 20.109 | 18.910~21.383 |
15 | 37.65 ± 1.66 | |||||
20 | 48.13 ± 3.83 | |||||
25 | 56.46 ± 1.57 | |||||
30 | 67.71 ± 0.95 | |||||
20% Ethylicin | 15 | 27.92 ± 1.30 | y = 2.4335x + 1.5067 | 0.9830 | 27.259 | 25.443~29.204 |
20 | 36.67 ± 1.57 | |||||
25 | 43.54 ± 2.34 | |||||
30 | 52.08 ± 2.42 | |||||
35 | 63.75 ± 1.65 | |||||
0.5% Berberine | 30 | 22.92 ± 1.40 | y = 6.0534x + 4.7042 | 0.9957 | 40.096 | 39.339~40.867 |
35 | 36.88 ± 2.25 | |||||
40 | 46.96 ± 0.91 | |||||
45 | 60.83 ± 2.36 | |||||
50 | 73.75 ± 1.25 | |||||
25% Dithianon + pyraclostrobin | 10 | 32.46 ± 2.98 | y =2.6573x + 1.8469 | 0.9913 | 15.366 | 14.379~16.401 |
15 | 48.71 ± 1.58 | |||||
20 | 58.54 ± 4.38 | |||||
25 | 70.17 ± 3.43 | |||||
30 | 80.42 ± 2.61 |
Disease Severity (%) | Control Efficacy (%) | ||
---|---|---|---|
CK | Eugenol | ||
Protective activity | 88.26 ± 3.08 | 11.70 ± 4.71 | 86.85 ± 4.86 |
Curative activity | 91.02 ± 3.66 | 21.03 ± 3.01 | 76.94 ± 2.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, E.; Liu, J.; Zhang, S.; Xu, B. Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides. J. Fungi 2024, 10, 255. https://doi.org/10.3390/jof10040255
Li E, Liu J, Zhang S, Xu B. Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides. Journal of Fungi. 2024; 10(4):255. https://doi.org/10.3390/jof10040255
Chicago/Turabian StyleLi, Enchen, Jia Liu, Shuwu Zhang, and Bingliang Xu. 2024. "Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides" Journal of Fungi 10, no. 4: 255. https://doi.org/10.3390/jof10040255
APA StyleLi, E., Liu, J., Zhang, S., & Xu, B. (2024). Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides. Journal of Fungi, 10(4), 255. https://doi.org/10.3390/jof10040255