Phenotypical Differences at the Physiological and Clinical Level between Two Genetically Closely Related Clavispora lusitaniae Strains Isolated from Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antifungal Susceptibility Testing and Strain Identification
2.2. Biofilm-Forming Ability
2.3. Determination of Growth Velocity
3. Results
3.1. Case Reports
3.1.1. Case 1
3.1.2. Case 2
3.2. Identification and Typing
3.3. Antifungal Resistance and Growth Curves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolin, R.; Bennett, J.E.; Mandell, G.L. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Churchill Livingstone: London, UK, 2005; pp. 1727–3662. [Google Scholar]
- Agossou, M.; Inamo, J.; Ahouansou, N.; Dufeal, M.; Provost, M.; Badaran, E.; Zouzou, A.; Awanou, B.; Dramé, M.; Desbois-Nogard, N. Frequency and Distribution of Broncho-Alveolar Fungi in Lung Diseases in Martinique. J. Clin. Med. 2023, 12, 5480. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Arendrup, M.C. Invasive candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Kidd, S.E.; Abdolrasouli, A.; Hagen, F. Fungal nomenclature: Managing change is the name of the game. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2023; p. ofac559. [Google Scholar]
- Hawksworth, D.L.; Crous, P.W.; Redhead, S.A.; Reynolds, D.R.; Samson, R.A.; Seifert, K.A.; Taylor, J.W.; Wingfield, M.J.; Abaci, Ö.; Aime, C. The Amsterdam declaration on fungal nomenclature. IMA Fungus 2011, 2, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Patterson, T.F. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.L.; Baddour, L.M. Candida lusitaniae infections in the era of fluconazole availability. Clin. Infect. Dis. 2003, 36, e14–e18. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.; Diekema, D.; Messer, S.; Boyken, L.; Hollis, R.; Jones, R. In vitro activities of voriconazole, posaconazole, and four licensed systemic antifungal agents against Candida species infrequently isolated from blood. J. Clin. Microbiol. 2003, 41, 78–83. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Roudbary, M.; Mohammadi, R.; Černáková, L.; Rodrigues, C.F. Overview on the infections related to rare Candida species. Pathogens 2022, 11, 963. [Google Scholar] [CrossRef]
- Miller, N.S.; Dick, J.D.; Merz, W.G. Phenotypic switching in Candida lusitaniae on copper sulfate indicator agar: Association with amphotericin B resistance and filamentation. J. Clin. Microbiol. 2006, 44, 1536–1539. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef]
- Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-resistant fungi: An emerging challenge threatening our limited antifungal armamentarium. Antibiotics 2020, 9, 877. [Google Scholar] [CrossRef]
- Merz, W.; Sandford, G. Isolation and characterization of a polyene-resistant variant of Candida tropicalis. J. Clin. Microbiol. 1979, 9, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Pappagianis, D.; Collins, M.; Hector, R.; Remington, J. Development of resistance to amphotericin B in Candida lusitaniae infecting a human. Antimicrob. Agents Chemother. 1979, 16, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Kreger-van Rij, N.J.W. The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W.; EUCAST-AFST. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef] [PubMed]
- Palomino, J.-C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, G.; Bolano, A.; Martini, A. A DNA extraction and purification method for several yeast genera. Ann. Microbiol. 2001, 51, 121–130. [Google Scholar]
- Robert, V.; Szoke, S.; Jabas, B.; Vu, D.; Chouchen, O.; Blom, E.; Cardinali, G. BioloMICS software: Biological data management, identification, classification and statistics. Open Appl. Inform. J. 2011, 5, 87–98. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L., Jr.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
- Minari, A.; Hachem, R.; Raad, I. Candida lusitaniae: A cause of breakthrough fungemia in cancer patients. Clin. Infect. Dis. 2001, 32, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Reyes, D.F.; Gómez-Gaviria, M.; Mora-Montes, H.M. Candida lusitaniae: Biology, pathogenicity, virulence factors, diagnosis, and treatment. Infect. Drug Resist. 2022, 15, 5121–5135. [Google Scholar] [CrossRef] [PubMed]
- Asner, S.A.; Giulieri, S.; Diezi, M.; Marchetti, O.; Sanglard, D. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob. Agents Chemother. 2015, 59, 7715–7722. [Google Scholar] [CrossRef]
- Colombo, A.L.; de Almeida Júnior, J.N.; Guinea, J. Emerging multidrug-resistant Candida species. Curr. Opin. Infect. Dis. 2017, 30, 528–538. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Friberg, N.; Mares, M.; Kahlmeter, G.; Meletiadis, J.; Guinea, J.; Andersen, C.; Arikan-Akdagli, S.; Barchiesi, F.; Chryssanthou, E. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin. Microbiol. Infect. 2020, 26, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.; Diekema, D.; Rex, J.; Espinel-Ingroff, A.; Johnson, E.; Andes, D.; Chaturvedi, V.; Ghannoum, M.; Odds, F.; Rinaldi, M. Correlation of MIC with outcome for Candida species tested against voriconazole: Analysis and proposal for interpretive breakpoints. J. Clin. Microbiol. 2006, 44, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Colombo, A.; Cordoba, S.; Dufresne, P.; Fuller, J.; Ghannoum, M.; Gonzalez, G.; Guarro, J.; Kidd, S.; Meis, J. International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob. Agents Chemother. 2016, 60, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.; Kahlmeter, G.; Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. EUCAST Clin. Break. Tables 2015, 12. [Google Scholar]
- Pellaton, N.; Sanglard, D.; Lamoth, F.; Coste, A.T. How yeast antifungal resistance gene analysis is essential to validate antifungal susceptibility testing systems. Front. Cell. Infect. Microbiol. 2022, 12, 859439. [Google Scholar] [CrossRef] [PubMed]
- Reboutier, D.; Piednoël, M.; Boisnard, S.; Conti, A.; Chevalier, V.; Florent, M.; Gibot-Leclerc, S.; Da Silva, B.; Chastin, C.; Fallague, K. Combination of different molecular mechanisms leading to fluconazole resistance in a Candida lusitaniae clinical isolate. Diagn. Microbiol. Infect. Dis. 2009, 63, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Favel, A.; Michel-Nguyen, A.; Peyron, F.; Martin, C.; Thomachot, L.; Datry, A.; Bouchara, J.-P.; Challier, S.; Noël, T.; Chastin, C. Colony morphology switching of Candida lusitaniae and acquisition of multidrug resistance during treatment of a renal infection in a newborn: Case report and review of the literature. Diagn. Microbiol. Infect. Dis. 2003, 47, 331–339. [Google Scholar] [CrossRef]
- Yoon, S.A.; Vazquez, J.A.; Steffan, P.E.; Sobel, J.D.; Akins, R.A. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob. Agents Chemother. 1999, 43, 836–845. [Google Scholar] [CrossRef]
- Peyron, F.; Favel, A.; Calaf, R.; Michel-Nguyen, A.; Bonaly, R.; Coulon, J. Sterol and fatty acid composition of Candida lusitaniae clinical isolates. Antimicrob. Agents Chemother. 2002, 46, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Young, L.Y.; Hull, C.M.; Heitman, J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob. Agents Chemother. 2003, 47, 2717–2724. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Vale-Silva, L.A.; Sanglard, D. Tipping the balance both ways: Drug resistance and virulence in Candida glabrata. FEMS Yeast Res. 2015, 15, fov025. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Garcia-Effron, G.; Lewis, R.E.; Gamarra, S.; Leventakos, K.; Perlin, D.S.; Kontoyiannis, D.P. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J. Infect. Dis. 2011, 204, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, N.; Fraaije, B. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 2018, 56, 339–360. [Google Scholar] [CrossRef]
- Lima, S.L.; Colombo, A.L.; de Almeida Junior, J.N. Fungal cell wall: Emerging antifungals and drug resistance. Front. Microbiol. 2019, 10, 492317. [Google Scholar] [CrossRef]
- Arastehfar, A.; Lass-Flörl, C.; Garcia-Rubio, R.; Daneshnia, F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The quiet and underappreciated rise of drug-resistant invasive fungal pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef]
Isovuconazole | Fluconazole | L-AMB | |
---|---|---|---|
(mg L−1) | |||
Strain 1 | >32 | >256 | 0.125 |
Strain 2 | 0.25–0.5 | 2–4 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casagrande Pierantoni, D.; Giuliano, S.; Conti, A.; Corte, L.; Angelini, J.; Cardinali, G.; Tascini, C. Phenotypical Differences at the Physiological and Clinical Level between Two Genetically Closely Related Clavispora lusitaniae Strains Isolated from Patients. J. Fungi 2024, 10, 460. https://doi.org/10.3390/jof10070460
Casagrande Pierantoni D, Giuliano S, Conti A, Corte L, Angelini J, Cardinali G, Tascini C. Phenotypical Differences at the Physiological and Clinical Level between Two Genetically Closely Related Clavispora lusitaniae Strains Isolated from Patients. Journal of Fungi. 2024; 10(7):460. https://doi.org/10.3390/jof10070460
Chicago/Turabian StyleCasagrande Pierantoni, Debora, Simone Giuliano, Angela Conti, Laura Corte, Jacopo Angelini, Gianluigi Cardinali, and Carlo Tascini. 2024. "Phenotypical Differences at the Physiological and Clinical Level between Two Genetically Closely Related Clavispora lusitaniae Strains Isolated from Patients" Journal of Fungi 10, no. 7: 460. https://doi.org/10.3390/jof10070460
APA StyleCasagrande Pierantoni, D., Giuliano, S., Conti, A., Corte, L., Angelini, J., Cardinali, G., & Tascini, C. (2024). Phenotypical Differences at the Physiological and Clinical Level between Two Genetically Closely Related Clavispora lusitaniae Strains Isolated from Patients. Journal of Fungi, 10(7), 460. https://doi.org/10.3390/jof10070460