Study on Pathogenesis of Cytospora pyri in Korla Fragrant Pear Trees (Pyrus sinkiangensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Pathogen Identification
2.3. Pathogenicity Test
2.4. Determination of Physiological Characterization
2.5. Proliferation of Fungal Hyphae in Korla Fragrant Pear Trees
2.6. Cell Wall Degradation Enzyme Activity Assay
3. Results
3.1. Isolation and Morphological Characterization
3.2. Pathogenicity
3.3. Molecular Sequencing and Phylogenetic Analysis
3.4. Physiological Characterization
3.5. Conidia Germination and Invasion Mode
3.6. Expansion Process Within Bark Tissue
3.7. Pycnidia Development Process
3.8. Changes in Cell-Wall-Degrading Enzyme Activity During C. pyri Infection of Korla Fragrant Pear Branches
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.F.; Xie, S.P.; Cao, J.Y.; Zhao, H.; Yin, X.M.; Guo, Y.S.; Xu, C.; Guo, L.H.; Wu, H.Y.; Zhang, M. Lasiodiplodia regiae sp. nov.: A new species causing canker and dieback of fruit trees in China. Phytopathology® 2023, 113, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.S.; Wang, X.B.; Zhang, P.; Chen, L.F. Progress of research on canker and control of Korla fragrant pear tree, China. Xinjiang Farm. Res. Sci. Technol. 2015, 38, 24–27. [Google Scholar] [CrossRef]
- Blanke, M. Fruit Consumption in China—Prices, Sources and Production. Erwerbs-Obstbau 2011, 53, 93–98. [Google Scholar] [CrossRef]
- Qi, X.X.; Wu, J.; Wang, L.F.; Li, L.T.; Cao, Y.F.; Tian, L.M.; Dong, X.G.; Zhang, S.L. Identifying the candidate genes involved in the calyx abscission process of ‘Kuerlexiangli’ (Pyrus sinkiangensis Yu) by digital transcript abundance measurements. BMC Genom. 2013, 14, 727. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.Y.; Chen, X.Y.; Zhou, W.Q.; Li, W.W.; Zhao, S.R.; Nasir, M.; Dong, S.L.; Zhang, S.K.; Liao, K. Genetic relationship between the ‘Korla fragrant pear’ and local pear varieties in Xinjiang based on floral organ characteristics. Sci. Hortic. 2019, 257, 108621. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Liu, H.Q.; Li, Z.P.; Ke, X.W.; Dou, D.L.; Gao, X.N.; Song, N.; Dai, Q.Q.; Wu, Y.Y.; Xu, J.R.; et al. Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark. New Phytol. 2015, 208, 1202–1216. [Google Scholar] [CrossRef]
- Suzaki, K. Population structure of Valsa ceratosperma, causal fungus of Valsa canker, in apple and pear orchards. J. Gen. Plant Pathol. 2008, 74, 128–132. [Google Scholar] [CrossRef]
- Cao, S.F.; Wang, W.; Li, G.Q.; Du, M.J.; Bi, S.H.; Zhao, M.X.; Cao, G.; Li, H.X. Selection of field control agents and comprehensive control effect of pear Valsa canker. J. Fruit Sci. 2018, 35, 143–147. [Google Scholar] [CrossRef]
- Tang, J.Y.; Wang, Y.; Li, C.Y.; Gou, Q.; Xie, X.; Zhang, W.B. Comparison of clonal morphology of rot pathogen from 9 kinds of trees in south Xinjiang. J. Tarim Univ. 2015, 27, 23–27. [Google Scholar] [CrossRef]
- Fan, X.L.; Hyde, K.D.; Liu, M.; Liang, Y.M.; Tian, C.M. Cytospora species associated with walnut canker disease in China, with description of a new species C. gigalocus. Fungal Biol. 2015, 119, 310–319. [Google Scholar] [CrossRef]
- Fan, X.L.; Hyde, K.D.; Yang, Q.; Liang, Y.M.; Ma, R.; Tian, C.M. Cytospora species associated with canker disease of three anti-desertification plants in northwestern China. Phytotaxa 2015, 197, 227–244. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Holland, L.A.; Nouri, M.T.; Travadon, R.; Abramians, A.; Michailides, T.J.; Trouillas, F.P. Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination. IMA Fungus 2018, 9, 333–369. [Google Scholar] [CrossRef] [PubMed]
- Saito, I.; Tamura, O.; Takakuwa, M. Pear canker caused by Valsa ceratosperma (=V. mali). Ann. Phytopathol. Soc. Jpn. 1972, 38, 258–260. [Google Scholar] [CrossRef]
- Tang, J.Y.; Zhang, W.B.; Li, Y.P.; Guo, Z.Z.; Wang, Y.; Wang, Y.F.; Dan, H.X.; Yang, M.L. Korla pear tree biological characteristics of the Valsa canker growth pathogen and its pathogenicity. Xinjiang Agric. Sci. 2015, 52, 252–257. [Google Scholar]
- Adams, G.C.; Wingfield, M.J.; Common, R.; Roux, J. Phylogenetic relationships and morphology of Cytospora species and related teleomorphs (Ascomycota, Diaporthales, Yalsaceae) from Eucalyptus—Preface. Stud. Mycol. 2004, 52, 1–144. [Google Scholar]
- Adams, G.C.; Taylor, J.W. Phylogenetic utility of the internal transcribed spacer of nuclear ribosomal DNA in Leucostoma and Valsa. Inoculum 1993, 44, 1. [Google Scholar]
- Lin, J.W.; Que, Y.X.; Chen, T.S.; Xu, L.P.; Zhang, M.Q. Application of ribosomal DNA internal transcribed spacer in fungi taxonomy. Lett. Biotechnol. 2007, 2, 292–294. [Google Scholar] [CrossRef]
- Adams, G.C.; Surve-Iyer, R.S.; Iezzoni, A.F. Ribosomal DNA sequence divergence and group I introns within the Leucostoma species L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that cause Cytospora canker of fruit trees. Mycologia 2002, 94, 947–967. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, H.T.; Sha, S.S.; Yan, C.C.; Peng, S.S.; Zhang, X.L.; Feng, H.Z.; Wang, L. First Report of Valsa nivea Causing Valsa Canker on Korla Pear (Pyrus sinkiangensis) in the World. Plant Dis. 2023, 107, 2534. [Google Scholar] [CrossRef]
- Das, K.; Ghosh, A.; Chakraborty, D.; Datta, S.; Bera, I.; Mr, R.L.; Banu, F.; Vizzini, A.; Wisitrassameewong, K. Four novel species and two new records of boletes from India. J. Fungi 2023, 9, 754. [Google Scholar] [CrossRef]
- Xu, M.; Gao, X.N.; Chen, J.L.; Yin, Z.Y.; Feng, H.; Huang, L.L. The feruloyl esterase genes are required for full pathogenicity of the apple tree canker pathogen Valsa mali. Mol. Plant Pathol. 2018, 19, 53–1363. [Google Scholar] [CrossRef]
- Biggs, A.R. Integrated approach to controlling Leucostoma canker of peach in Ontario. Plant Dis. 1989, 73, 869–874. [Google Scholar] [CrossRef]
- Kepley, J.B.; Jacobi, W.R. Pathogenicity of Cytospora fungi on six hardwood species. Arboric. Urban For. 2000, 26, 326–333. [Google Scholar] [CrossRef]
- Adams, G.C.; Roux, J.; Wingfield, M.J. Cytospora species (Ascomycota, Diaporthales, Valsaceae): Introduced and native pathogens of trees in South Africa. Australas. Plant Pathol. 2006, 35, 521–548. [Google Scholar] [CrossRef]
- Ke, X.W.; Huang, L.L.; Han, Q.M.; Gao, X.N.; Kang, Z.S. Histological and cytological investigations of the infection and colonization of apple bark by Valsa mali var. mali. Australas. Plant Pathol. 2013, 42, 85–93. [Google Scholar] [CrossRef]
- Tamura, O.; Saito, I. Histopathological changes of apple bark infected by Valsa ceratosperma (Tode ex Fr.) Maire during dormant and growing periods. Jpn. J. Phytopathol. 1982, 48, 490–498. [Google Scholar] [CrossRef]
- Zhang, J.E. Pathological process of cankers on popar caused by Cytospora chrysosperma. Master’s Thesis, Beijing Forestry University, Beijing, China, 2017. [Google Scholar]
- Feng, H.; He, Y.Y.; Zhen, W.; Gao, X.N.; Wang, H.; Huang, L.L. Isolation, purification and characterization of extracellular pectinase produced by Valsa mali. Microbiol. China 2017, 44, 639–647. [Google Scholar] [CrossRef]
- Wang, J.H.; Ke, X.W.; Huang, Y.C.; Wang, H.; Huang, L.L. Component analysis of Valsa mali var. mali fermentation liquid degrading phlorizin. J. Northwest A & F Univ. 2012, 40, 89–94+105. [Google Scholar] [CrossRef]
- Koganezawa, H.; Sakuma, T. Possible role of breakdown products of phloridzin in symptom development by Valsa ceratosperma. Ann. Phytopathol. Soc. Jpn. 1982, 48, 521–528. [Google Scholar] [CrossRef]
- Traquair, J.A. Oxalic acid and calcium oxalate produced by Leucostoma cincta and L. persoonii in culture and in peach bark tissues. Can. J. Bot. 1987, 65, 1952–1956. [Google Scholar] [CrossRef]
- Zhu, B.T.; Ying, Z.Y.; Wu, Y.X.; Gao, X.N.; Feng, H.; Han, Q.M.; Huang, L.L. Function Characterization of plorizin hydrolase Gene Vmlph1 in Vasla mali. Acta Agric. Boreali-Occident. Sin. 2018, 27, 602–608. [Google Scholar] [CrossRef]
- Mu, Y.H.; Wu, F.; Yuan, H.S. Hydnaceous fungi of China 7. Morphological and molecular characterization of Phellodon subconfluens sp. nov. from temperate, deciduous forests. Phytotaxa 2019, 414, 280–288. [Google Scholar] [CrossRef]
- Han, Y.F.; Ge, W.; Zhang, Z.Y.; Liang, J.D.; Chen, W.H.; Huang, J.Z.; Liang, Z.Q. Morphological and phylogenetic characterisations reveal nine new species of Chrysosporium (Onygenaceae, Onygenales) in China. Phytotaxa 2022, 539, 1–16. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Hyde, K.D.; Pawłowska, J.; Ryberg, M.; Tedersoo, L.; Aas, A.B.; Alias, S.A.; Alves, A.; Anderson, C.L.; Antonelli, A.; et al. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers. 2014, 67, 11–19. [Google Scholar] [CrossRef]
- Shamsi, S.; Islam, M.N.; Hosen, S.; Al-Mamun, M.; Chowdhury, P.; Momtaz, M.S.; Naher, N.; Yeasmin, Z.; Sultana, S.; Khatun, A.; et al. Morphological and molecular identification of ten plant pathogenic fungi. Bangladesh J. Plant Taxon. 2019, 26, 169–177. [Google Scholar] [CrossRef]
- Huang, X.; Duan, N.; Xu, H.; Xie, T.N.; Xue, Y.R.; Liu, C.H. CATB-PEG DNA extraction from fungi with high contents of polysaccharides. Mol. Biol. 2018, 52, 621–628. [Google Scholar] [CrossRef]
- Zhang, M.X.; Zhai, L.F.; Xu, W.X.; Hong, N.; Wang, G.P. First report of Valsa leucostoma causing Valsa canker of Pyrus communis (cv. Duchess de’ angouleme) in China. Plant Dis. 2014, 98, 422. [Google Scholar] [CrossRef]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Moore, M.J.; Ostry, M.E. Influence of temperature and humidity on the viability of Ophiognomonia clavigignenti-juglandacearum conidia. Plant Dis. 2015, 99, 1841–1846. [Google Scholar] [CrossRef]
- Kang, Z.S.; Buchenauer, H. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol. Res. 2000, 104, 1083–1093. [Google Scholar] [CrossRef]
- Zhou, N.F.; Zhang, J.P.; Liu, H.; Cha, W.W.; Pei, D. New protocols for paraffin sections of heterogeneous tissues of woody plants. Chin. Bull. Bot. 2018, 53, 653–660. [Google Scholar] [CrossRef]
- Liu, Y.; Chi, B.J.; Jiang, N.; Yang, X.L.; Liu, J. Cytospora berberidicola sp. nov. (Diaporthales, Cytosporaceae) in China. Phytotaxa 2023, 626, 101–109. [Google Scholar] [CrossRef]
- Zhou, W.N.; White, J.F.; Soares, M.A.; Torres, M.S.; Zhou, Z.P.; Li, H.Y. Diversity of fungi associated with plants growing in geothermal ecosystems and evaluation of their capacities to enhance thermotolerance of host plants. J. Plant Interact. 2015, 10, 305–314. [Google Scholar] [CrossRef]
- Sang, J.J.; Li, Y.F.; Pan, W.H.; Liao, W.Q. The pathogenetic mechanism of proteases from pathogenic fungi. J. Microbes Infect. 2017, 12, 8–13. [Google Scholar] [CrossRef]
- Yang, S.Z.; Peng, L.T.; Cheng, Y.J.; Chen, F.; Pan, S.Y. Control of citrus green and blue molds by Chinese propolis. Food Sci. Biotechnol. 2010, 19, 1303–1308. [Google Scholar] [CrossRef]
- Banko, T.J.; Helton, A.W. Cytospora induced changes in stems of prunus persica. Phytopathology 1974, 64, 899–901. [Google Scholar]
- Meng, X.L.; Qi, X.H.; Han, Z.Y.; Guo, Y.B.; Wang, Y.N.; Hu, T.L.; Wang, L.M.; Cao, K.Q.; Wang, S.T. Latent infection of Valsa mali in the seeds, seedlings and twigs of crabapple and apple trees is a potential inoculum source of Valsa canker. Sci. Rep. 2019, 9, 7738. [Google Scholar] [CrossRef]
- Luo, Y.; Niederholzer, F.J.A.; Lightle, D.M.; Felts, D.; Lake, J.; Michailides, T.J. Limited evidence for accumulation of latent infections of canker-causing pathogens in shoots of stone fruit and nut crops in California. Phytopathology 2021, 111, 1963–1971. [Google Scholar] [CrossRef]
- Natsume, H.; Seto, H.; Ōtake, N. Studies on apple canker disease. The necrotic toxins produced by Valsa ceratosperma. Agric. Biol. Chem. 1982, 46, 2101–2106. [Google Scholar] [CrossRef]
- Wang, N.; Yin, Z.Y.; Wu, Y.K.; Yang, J.S.; Zhao, Y.N.; Daly, P.; Pei, Y.; Zhou, D.M.; Dou, D.L.; Wei, L.H. A Pythium myriotylum Small Cysteine-Rich Protein Triggers Immune Responses in Diverse Plant Hosts. Mol. Plant Microbe Interact. 2023, 36, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Geethu, C.; Resna, A.K.; Nair, R.A. Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease. Anton. Leeuw. Int. J. Gen. 2013, 104, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Li, L.L.; Zhang, Y.; Zhang, J.H.; Ouyang, S.Q.; Zhang, Q.X.; Tong, Y.H.; Xu, J.Y.; Zuo, S.M. Functional analysis of polygalacturonase gene RsPG2 from Rhizoctonia solani, the pathogen of rice sheath blight. Eur. J. Plant Pathol. 2017, 149, 491–502. [Google Scholar] [CrossRef]
- Cho, Y.; Jang, M.; Srivastava, A.; Jang, J.H.; Soung, N.K.; Ko, S.K.; Kang, D.O.; Ahn, J.S.; Kim, B.Y. A pectate lyase-coding gene abundantly expressed during early stages of infection is required for full virulence in Alternaria brassicicola. PLoS ONE 2015, 10, e0127140. [Google Scholar] [CrossRef]
- Chea, S.; Yu, D.J.; Park, J.; Oh, H.D.; Chung, S.W.; Lee, H.J. Fruit softening correlates with enzymatic and compositional changes in fruit cell wall during ripening in ‘bluecrop’ highbush blueberries. Sci. Hortic. 2019, 245, 163–170. [Google Scholar] [CrossRef]
- Jayasinghe, C.K.; Fernando, T.H.P.S.; Priyanka, U.M.S. Production of cell wall degrading enzymes by Corynespora cassiicola in culture and infected rubber tissue. J. Rubber Res. Inst. Sri Lanka 1998, 81, 1–13. [Google Scholar]
- Zhao, X.Z.; Wang, Y.M.; Yuan, B.Q.; Zhao, H.X.; Wang, Y.J.; Tan, Z.; Wang, Z.Y.; Wu, H.J.; Li, G.; Song, W.; et al. Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion. Nat. Commun. 2024, 15, 231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Z.; Zhang, Z.; Wang, L.; Feng, H. Study on Pathogenesis of Cytospora pyri in Korla Fragrant Pear Trees (Pyrus sinkiangensis). J. Fungi 2025, 11, 257. https://doi.org/10.3390/jof11040257
Zhang Y, Wang Z, Zhang Z, Wang L, Feng H. Study on Pathogenesis of Cytospora pyri in Korla Fragrant Pear Trees (Pyrus sinkiangensis). Journal of Fungi. 2025; 11(4):257. https://doi.org/10.3390/jof11040257
Chicago/Turabian StyleZhang, Yiwen, Zhe Wang, Zhen Zhang, Lan Wang, and Hongzu Feng. 2025. "Study on Pathogenesis of Cytospora pyri in Korla Fragrant Pear Trees (Pyrus sinkiangensis)" Journal of Fungi 11, no. 4: 257. https://doi.org/10.3390/jof11040257
APA StyleZhang, Y., Wang, Z., Zhang, Z., Wang, L., & Feng, H. (2025). Study on Pathogenesis of Cytospora pyri in Korla Fragrant Pear Trees (Pyrus sinkiangensis). Journal of Fungi, 11(4), 257. https://doi.org/10.3390/jof11040257