Improving Nutritive Value of Purple Field Corn Residue and Rice Straw by Culturing with White-Rot Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Rice Straw, Purple Field Corn Residue, and Fungal-treated Substrates
2.2. Experimental Design
2.3. Chemical Composition Analysis
2.4. Ruminal Inocula
2.5. Preparation of Medium Solution
2.6. Fermentation Characteristics Determination
2.7. Measurement of Monomeric Anthocyanin Content (MAC)
2.8. Statistical Analysis and Equation
3. Results and Discussions
3.1. Chemical Composition of Roughage
3.2. Production of Gas and Kinetic Gas Analysis
3.3. In Vitro Digestibility
3.4. Ruminal pH and Ammonia-Nitrogen (NH3-N)
3.5. VFA and CH4 Production
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saritha, M.; Arora, A.; Lata, A. Biological pretreatments of lingo-cellulosic substrates for enhanced delignification and enzymatic digestibility. J. Microbiol. 2012, 52, 122–130. [Google Scholar]
- Khampasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.P.; Lertrat, K.; Suriharn, B. Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. Agronomy 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Hosoda, K.; Eruden, B.; Matsuyama, H.; Shioya, S. Silage fermentative quality and characteristics of anthocyanin stability in anthocyanin-rich corn (Zea mays L.). Asian-Australas. J. Anim. Sci. 2009, 22, 528–533. [Google Scholar] [CrossRef]
- Chanjula, P.; Petcharat, V.; Cherdthong, A. Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats. Asian-Australas. J. Anim. Sci. 2017, 30, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghazy, M.M.; El-Fadaly, H.M.; Tag, E.D.; Areda, H.A. Effect of sheep diets containing microbiological treated rice straw on blood parameters and nitrogen balance. J. Microbiol. Res. 2015, 2, 46–56. [Google Scholar]
- Lakshmanan, D.; Radha, K.V. Lovastatin production using Pleurotus ostreatus and its medicinal properties analysis by docking. Afr. J. Pharm. Pharmacol. 2013, 7, 1974–1986. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, P.; Ye, J.; Wu, Y.; Fang, W.; Gou, X.; Zeng, G. Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study. Int. Biodeter. Biodegr. 2016, 113, 9–16. [Google Scholar] [CrossRef]
- Jahromi, M.F.; Liang, J.B.; Mohamad, R.; G1oh, Y.M.; Shokryazdan, P.; Ho, Y.W. Lovastatin enriched rice straw enhances biomass quality and suppresses ruminal methanogenesis. BioMed Res. Int. 2013, 2013, 397934. [Google Scholar] [CrossRef] [Green Version]
- Wolin, M.J.; Miller, T.L. Method for Inhibiting Growth of Methanogens. US. Patent 5,985,907, 16 November 1999; United States Patent and Trademark Office: Washington, DC, USA, 1999; Volume 5, pp. 907–985. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). The Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 10, 3583–3597. [Google Scholar] [CrossRef]
- Pattanagul, P.; Pinthong, R.; Phianmongkhol, A.; Tharatha, S. Mevalonin, citrinin and pigments of adley angkak fermented by Manascus sp. Int. J. Food Microbiol. 2008, 126, 20–23. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Samuel, M.; Sagathevan, S.; Thomas, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids in ruminal fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- SAS. User’s Guide: Statistic, 12th ed.; Version 6; SAS Inst. Inc.: Cary, NC, USA, 1998. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics; McGraw Hill Book Co.: New York, NY, USA, 1980. [Google Scholar]
- Ghorai, S.; Banik, S.P.; Verma, D.; Chowdhury, S.; Mukherjee, S.; Khowala, S. Fungal biotechnology in food and feed processing. Food Res. Int. 2009, 42, 577–587. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lourenço, M.; Hassim, H.A.; Baars, J.J.P.; Sonnenberg, A.; Cone, J.W.; Boever, D.J.; Fieve, V. Improving ruminal degradability of oil palm fronds using white rot fungi. Anim. Feed Sci. Technol. 2011, 169, 157–166. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Poulsen, T.G.; Sheng, K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Roobha, J.J.; Saravanakumar, M.; Aravindhan, K.M.; Devi, P.S. The effect of light, temperature, pH on stability of anthocyanin pigments in Musa acuminata bract. Res. Plant Biol. 2011, 1, 5–12. [Google Scholar]
- Tian, X.; Xin, H.; Paengkoum, P.; Paengkoum, S.; Ban, C.; Sorasak, T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Supapong, C.; Cherdthong, A.; Seankamsorn, A.; Khonkhaeng, B.; Wanapat, M.; Uriyapongson, S.; Gunun, N.; Chanjula, P.; Polyorach, S. In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. J. Anim. Feed Sci. 2017, 26, 123–130. [Google Scholar] [CrossRef]
- Norrapoke, T.; Wanapat, M.; Cherdthong, A.; Kang, S.; Phesatcha, K.; Pongjongmit, T. Improvement of nutritive value of cassava pulp and in vitro fermentation and microbial population by urea and molasses supplementation. J. Appl. Anim. Res. 2017, 46, 242–247. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Wachirapakorn, C. Influence of urea-calcium mixtures as rumen slow-release feed on in vitro fermentation using gas production technique. Arch. Anim. Nutr. 2011, 65, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Wachirapakorn, C.; Pilachai, K.; Wanapat, M.; Pakdee, P.; Cherdthong, A. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Anim. Nutr. 2016, 2, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Wanapat, M. In vitro gas production in rumen fluid of buffalo as affected by urea-calcium mixture in high quality feed block. Anim. Sci. J. 2014, 85, 420–426. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Supapong, C.; Anantasook, N.; Gunun, P. Improving rumen ecology and microbial population by dried rumen digesta in beef cattle. Trop. Anim. Health Prod. 2015, 47, 921–926. [Google Scholar] [CrossRef]
- Gottlieb, K.; Wacher, V.; Sliman, J.; Pimental, M. Review article: Inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment. Pharmacol. Ther. 2016, 43, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Xu, L.; Zhao, X.; Bai, J.; Chen, Z.; Zhou, S.; Song, X.; Ouyang, K.; Pan, K.; Liu, C.; et al. Effect of daidzein on fermentation parameters and bacterial community of finishing Xianan cattle. Ital. J. Anim. Sci. 2018, 17, 950–958. [Google Scholar] [CrossRef]
- Boussaada, A.; Arhab, R.; Calabrò, S.; Grazioli, R.; Ferrara, M.; Musco, N.; Thlidjane, M.; Cutrignelli, M.I. Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population. Ann. Anim. Sci. 2018, 18, 753–767. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Samuel, B.S.; Hansen, E.E.; Manchester, J.K. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. USA 2007, 104, 10643–18106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherdthong, A.; Wanapat, M.; Kongmun, P.; Pilajun, R.; Khejornsart, P. Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 2010, 9, 1667–1675. [Google Scholar] [CrossRef]
Indices | DM (%) | OM (%DM) | NDF (%DM) | ADF (%DM) | CP (%DM) | |
---|---|---|---|---|---|---|
Rice straw | Untreated | 94.7 | 91.4 | 79.8 | 52.4 | 3.0 |
P. osteratus | 51.0 | 85.2 | 77.3 | 50.6 | 4.5 | |
V. volvacea | 52.6 | 86.1 | 76.4 | 51.4 | 4.3 | |
Purple corn stover | Untreated | 94.4 | 96.5 | 80.6 | 53.2 | 4.9 |
P. osteratus | 54.5 | 90.6 | 78.6 | 51.4 | 5.6 | |
V. volvacea | 53.6 | 91.3 | 78.4 | 51.6 | 5.5 | |
Purple corn cob | Untreated | 90.4 | 96.8 | 86.7 | 45.7 | 3.3 |
P. osteratus | 56.7 | 60.3 | 82.6 | 41.2 | 4.0 | |
V. volvacea | 56.9 | 61.2 | 81.4 | 40.9 | 4.1 | |
Contrasts | ||||||
Roughage | * | * | * | * | * | |
White-rot fungus type | * | * | ** | ** | * | |
Interaction | ** | ** | ** | ** | ** |
Indices | MAC (mg/100 g) | Lovastatin (mg%) | |
---|---|---|---|
Rice straw | Untreated | 0.60 | 0.00 |
P. osteratus | 0.55 | 39.00 | |
V. volvacea | 0.45 | 31.55 | |
Purple corn stover | Untreated | 11.95 | 0.0 |
P. osteratus | 4.55 | 35.95 | |
V. volvacea | 5.65 | 29.50 | |
Purple corn cob | Untreated | 139.40 | 0.00 |
P. osteratus | 34.25 | 32.00 | |
V. volvacea | 39.50 | 30.95 | |
Contrasts | |||
Roughage | * | * | |
White-rot fungus type | ** | * | |
Interaction | ** | ** |
Indices | Kinetic of Gas, mL/ 0.5 g DM | Cumulative Gas Production, mL Gas/ g DM Incubated | |||
---|---|---|---|---|---|
a | b | c | |||
Rice straw | Untreated | 1.14 | 79.12 | 0.044 | 81.78 |
P. osteratus | −0.67 | 75.11 | 0.051 | 71.43 | |
V. volvacea | −0.74 | 72.84 | 0.050 | 52.93 | |
Purple corn stover | Untreated | −1.11 | 65.57 | 0.052 | 64.89 |
P. osteratus | −2.47 | 66.62 | 0.064 | 62.73 | |
V. volvacea | −0.86 | 65.58 | 0.064 | 49.84 | |
Purple corn cob | Untreated | −0.34 | 70.81 | 0.048 | 69.91 |
P. osteratus | −0.58 | 71.60 | 0.050 | 70.06 | |
V. volvacea | 0.59 | 71.80 | 0.053 | 71.17 | |
Contrasts | |||||
Roughage | * | * | * | * | |
White-rot fungus type | * | ** | * | * | |
Interaction | ** | ns | ns | ** |
Indices | NH3-N (mg/dl) | pH4 | pH8 | IVDMD12 (%DM) | IVDMD24 (%DM) | |
---|---|---|---|---|---|---|
Rice straw | Untreated | 3.60 | 6.87 | 6.83 | 56.15 | 58.22 |
P. osteratus | 12.26 | 6.81 | 6.77 | 58.02 | 67.66 | |
V. volvacea | 11.90 | 6.83 | 6.76 | 58.73 | 68.50 | |
Purple corn stover | Untreated | 5.63 | 6.83 | 6.66 | 49.84 | 56.29 |
P. osteratus | 12.67 | 6.85 | 6.72 | 54.62 | 65.10 | |
V. volvacea | 11.84 | 6.89 | 6.71 | 57.88 | 65.39 | |
Purple corn cob | Untreated | 5.71 | 6.85 | 6.71 | 60.08 | 61.96 |
P. osteratus | 12.69 | 6.91 | 6.60 | 67.69 | 69.53 | |
V. volvacea | 11.78 | 6.90 | 6.66 | 63.31 | 67.88 | |
Contrasts | ||||||
Roughage | * | * | * | * | * | |
White-rot fungus type | ** | * | ** | * | * | |
Interaction | ns | ns | ns | ** | ns |
4 Hours after Incubation | Total VFA (mmol/l) | 8 Hours after Incubation | Total VFA (mmol/l) | ||||||
---|---|---|---|---|---|---|---|---|---|
Indices (mmol/l) | C2 (%) | C3 (%) | C4 (%) | C2 (%) | C3 (%) | C4 (%) | |||
Rice straw | Untreated | 73.42 | 17.95 | 11.52 | 102.05 | 71.88 | 18.57 | 10.25 | 100.02 |
P. osteratus | 68.53 | 19.85 | 9.69 | 99.26 | 68.97 | 21.15 | 8.55 | 98.77 | |
V. volvacea | 67.84 | 20.16 | 9.78 | 98.59 | 68.08 | 21.11 | 9.51 | 99.12 | |
Purple corn stover | Untreated | 74.94 | 18.36 | 17.20 | 100.63 | 74.00 | 16.46 | 10.91 | 102.55 |
P. osteratus | 67.03 | 19.95 | 13.43 | 101.32 | 70.60 | 21.30 | 10.40 | 100.70 | |
V. volvacea | 66.05 | 19.48 | 11.22 | 101.30 | 71.27 | 22.64 | 10.15 | 101.15 | |
Purple corn cob | Untreated | 60.41 | 20.53 | 7.71 | 96.86 | 60.85 | 19.41 | 9.77 | 96.27 |
P. osteratus | 59.66 | 22.05 | 6.78 | 93.64 | 59.17 | 21.82 | 8.09 | 95.11 | |
V. volvacea | 58.05 | 20.99 | 6.25 | 95.10 | 58.68 | 21.98 | 8.19 | 95.01 | |
Contrasts | |||||||||
Roughage | * | * | ** | * | * | * | * | * | |
White-rot fungus type | ** | * | * | * | * | * | ** | * | |
Interaction | ns | ns | ** | ns | ns | * | ns | ns |
Indices | Methane (CH4) Production (mL/L) | ||
---|---|---|---|
4 Hours after Incubation | 8 Hours after Incubation | ||
Rice straw | Untreated | 32.08 | 32.03 |
P. osteratus | 29.92 | 28.54 | |
V. volvacea | 29.50 | 28.54 | |
Purple corn stover | Untreated | 33.78 | 31.88 |
P. osteratus | 31.50 | 27.23 | |
V. volvacea | 32.10 | 27.40 | |
Purple corn cob | Untreated | 29.04 | 27.52 |
P. osteratus | 27.62 | 26.37 | |
V. volvacea | 27.71 | 26.55 | |
Contrasts | |||
Roughage | * | * | |
White-rot fungus type | ** | * | |
Interaction | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonkhaeng, B.; Cherdthong, A. Improving Nutritive Value of Purple Field Corn Residue and Rice Straw by Culturing with White-Rot Fungi. J. Fungi 2020, 6, 69. https://doi.org/10.3390/jof6020069
Khonkhaeng B, Cherdthong A. Improving Nutritive Value of Purple Field Corn Residue and Rice Straw by Culturing with White-Rot Fungi. Journal of Fungi. 2020; 6(2):69. https://doi.org/10.3390/jof6020069
Chicago/Turabian StyleKhonkhaeng, Benjamad, and Anusorn Cherdthong. 2020. "Improving Nutritive Value of Purple Field Corn Residue and Rice Straw by Culturing with White-Rot Fungi" Journal of Fungi 6, no. 2: 69. https://doi.org/10.3390/jof6020069
APA StyleKhonkhaeng, B., & Cherdthong, A. (2020). Improving Nutritive Value of Purple Field Corn Residue and Rice Straw by Culturing with White-Rot Fungi. Journal of Fungi, 6(2), 69. https://doi.org/10.3390/jof6020069