Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence?
Abstract
:1. Introduction
2. The Difficulty of Induction of CADS in Animals
3. Problems for Candida Inoculation
4. Current Scenario and Future Perspectives
5. Conclusions
- In the animal models of CADS induction, there is a consensus in the pertinent literature on the use of rat as an experimental animal, strains of C. albicans for fungal inoculation, intraoral devices simulating acrylic dentures for the development of lesions, and a pasty diet to prevent the detachment of appliances;
- For the maintenance in proper position and correct adaptation in the mouth during the experiments, the intraoral devices must be obtained by individual impression, being exclusively retained by cementation on the molar region;
- Regarding the histological parameters of the support tissue evaluation area, specimens of soft/hard tissues are recommended, as is a region of interest for histopathological analysis corresponding to the area between the first molars;
- There is still a lack of consensus regarding the development of a reproducible, accessible, and reliable murine model for the induction of CADS in which the infection remains for a sufficient period to evaluate the effectiveness of new therapeutic protocols. So, further research is needed to establish the need to induce immunosuppression, as well as whether or not to use antibacterial drugs in rats prior to C. albicans inoculation in intraoral devices;
- It is also essential to determine by clinical, microbiological and histopathological parameters, the extension of the permanence of the acrylic devices into the oral cavity of animals before treatment initiation to allow an adequate evaluation of the therapeutic effect, considering the rapid and efficient murine immune response to C. albicans colonization.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cannon, R.D.; Holmes, A.; Mason, A.; Monk, B. Oral Candida: Clearance, Colonization, or Candidiasis? J. Dent. Res. 1995, 74, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Figueiral, M.H.; Azul, A.; Pinto, E.; Fonseca, P.; Branco, F.M.; Scully, C. Denture-related stomatitis: Identification of aetiological and predisposing factors—A large cohort. J. Oral Rehabil. 2007, 34, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.V. Denture sore mouth as possible etiology. Br. Dent. J. 1962, 112, 357–360. [Google Scholar]
- Horn, D.L.; Neofytos, D.; Anaissie, E.J.; Fishman, J.A.; Steinbach, W.J.; Olyaei, A.J.; Marr, K.A.; Pfaller, M.A.; Chang, C.-H.; Webster, K.M. Epidemiology and Outcomes of Candidemia in 2019 Patients: Data from the Prospective Antifungal Therapy Alliance Registry. Clin. Infect. Dis. 2009, 48, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Moran, C.; Grussemeyer, C.A.; Spalding, J.R.; Benjamin, D.K.; Reed, S.D. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. Am. J. Infect. Control 2010, 38, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. Front. Microbiol. 2015, 6, 455. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, A.; Fakhim, H.; Khodavaisy, S.; Alizadeh, A.; Nazeri, M.; Soleimani, A.; Boekhout, T.; Badali, H. Epidemiological and mycological characteristics of candidemia in Iran: A systematic review and meta-analysis. J. Mycologie Médicale 2017, 27, 146–152. [Google Scholar] [CrossRef]
- Tumbarello, M.; Fiori, B.; Trecarichi, E.M.; Posteraro, P.; Losito, A.R.; De Luca, A.; Sanguinetti, M.; Fadda, G.; Cauda, R.; Posteraro, B. Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital. PLoS ONE 2012, 7, e33705. [Google Scholar] [CrossRef] [Green Version]
- Abaci, O.; Haliki-Uztan, A. Investigation of the susceptibility of Candida species solated from denture wearers to different antifungal antibiotics. Afr. J. Microbiol. Res. 2011, 5, 1398–1403. [Google Scholar]
- Banting, D.W.; Hill, S.A. Microwave disinfection of dentures for the treatment of oral candidiasis. Spec. Care Dent. 2001, 21, 4–8. [Google Scholar] [CrossRef]
- Cross, L.J.; Williams, D.W.; Sweeney, C.P.; Jackson, M.S.; Lewis, M.A.O.; Bagg, J. Evaluation of the recurrence of denture stomatitis and Candida colonization in a small group of patients who received itraconazole. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Neppelenbroek, K.H.; Pavarina, A.C.; Spolidorio, D.M.P.; Massucato, E.M.S.; Spolidorio, L.C.; Vergani, C.E. Effectiveness of microwave disinfection of complete dentures on the treatment ofCandida-related denture stomatitis. J. Oral Rehabil. 2008, 35, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Yarborough, A.; Cooper, L.; Duqum, I.; Mendonca, G.; McGraw, K.; Stoner, L. Evidence Regarding the Treatment of Denture Stomatitis. J. Prosthodont. 2016, 25, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Procópio, A.; Da Silva, R.A.; Maciel, J.G.; Sugio, C.; Soares, S.; Urban, V.; Neppelenbroek, K. Antimicrobial and cytotoxic effects of denture base acrylic resin impregnated with cleaning agents after long-term immersion. Toxicol. In Vitro 2018, 52, 8–13. [Google Scholar] [CrossRef]
- Skupien, J.A.; Valentini, F.; Boscatto, N.; Pereira-Cenci, T. Prevention and treatment of Candida colonization on denture liners: A systematic review. J. Prosthet. Dent. 2013, 110, 356–362. [Google Scholar] [CrossRef]
- Junqueira, J.C.; Martins, J.D.S.; Faria, R.L.; Colombo, C.E.D.; Jorge, A.O.C. Photodynamic therapy for the treatment of buccal candidiasis in rats. Lasers Med. Sci. 2009, 24, 877–884. [Google Scholar] [CrossRef]
- Martins, J.D.S.; Junqueira, J.C.; Faria, R.L.; Santiago, N.F.; Rossoni, R.D.; Colombo, C.E.D.; Jorge, A.O.C. Antimicrobial photodynamic therapy in rat experimental candidiasis: Evaluation of pathogenicity factors of Candida albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 111, 71–77. [Google Scholar] [CrossRef]
- Kulak, Y.; Arikan, A.; Delibalta, N.; Arıkan, A. Comparison of three different treatment methods for generalized denture stomatitis. J. Prosthet. Dent. 1994, 72, 283–288. [Google Scholar] [CrossRef]
- Ramage, G.; Tomsett, K.; Wickes, B.L.; López-Ribot, J.L.; Redding, S.W. Denture stomatitis: A role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 98, 11–19. [Google Scholar] [CrossRef]
- Lombardi, T.; Budtz-Jörgensen, E. Treatment of denture-induced stomatitis: A review. Eur. J. Prosthodont. Restor. Dent. 1993, 2, 17–22. [Google Scholar]
- Omran, S.M.; Dastjerdi, M.R.; Zuashkiani, M.; Moqarabzadeh, V.; Armaki, M.T. In Vitro Antifungal Susceptibility ofCandidaSpecies Isolated from Iranian Patients with Denture Stomatitis. BioMed. Res. Int. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truhlar, M.R.; Shay, K.; Sohnle, P. Use of a new assay technique for quantification of antifungal activity of nystatin incorporated in denture liners. J. Prosthet. Dent. 1994, 71, 517–524. [Google Scholar] [CrossRef]
- Pereira-Cenci, T.; Cury, A.D.B.; Crielaard, W.; Cate, J.M.T. Development of Candida-associated denture stomatitis: New insights. J. Appl. Oral Sci. 2008, 16, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mah, T.-F.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Bueno, M.; Urban, V.; Barbério, G.; Da Silva, W.J.; Porto, V.; Pinto, L.; Neppelenbroek, K. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis. 2013, 21, 57–65. [Google Scholar] [CrossRef]
- Schneid, T.R. An in vitro analysis of a sustained release system for the treatment of denture stomatitis. Spec. Care Dent. 1992, 12, 245–250. [Google Scholar] [CrossRef]
- Nett, J.E.; Marchillo, K.; Spiegel, C.A.; Andes, D.R. Development and Validation of an In Vivo Candida albicans Biofilm Denture Model. Infect. Immun. 2010, 78, 3650–3659. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, M.; Ranjan, A.; Thompson, A.; Diaz, P.I.; Sobue, T.; Maas, K.; Dongari-Bagtzoglou, A. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog. 2019, 15, e1007717. [Google Scholar] [CrossRef]
- Borges, A.C.; Lima, G.D.M.G.; Nishime, T.C.; Gontijo, A.V.L.; Kostov, K.G.; Koga-Ito, C.Y. Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study. PLoS ONE 2018, 13, e0199832. [Google Scholar] [CrossRef]
- Carmello, J.C.; Alves, F.; Basso, F.G.; Costa, C.A.D.S.; Bagnato, V.S.; Mima, E.G.D.O.; Pavarina, A.C. Treatment of Oral Candidiasis Using Photodithazine®- Mediated Photodynamic Therapy In Vivo. PLoS ONE 2016, 11, e0156947. [Google Scholar] [CrossRef] [Green Version]
- Camacho-Alonso, F.; Yolanda, M.; Carmen, G.M.; Francisco, C.; Julián, B.A.; Leonor, P.; Jesús, S. Use of photodynamic therapy and chitosan for inactivacion of Candida albicans in a murine model. J. Oral Pathol. Med. 2016, 45, 627–633. [Google Scholar] [CrossRef]
- Freire, F.; Ferraresi, C.; Jorge, A.O.C.; Hamblin, M. Photodynamic therapy of oral Candida infection in a mouse model. J. Photochem. Photobiol. B Boil. 2016, 159, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, H.; Fukui, K.; Nakamura, K.; Tanaka, A. Systemic hematogenous dissemination of mouse oral candidiasis is induced by oral mucositis. Odontology 2018, 106, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leão, M.V.P.; Tavares, T.A.A.; Silva, C.R.G.; Dos Santos, S.S.F.; Junqueira, J.C.; Oliveira, L.; Jorge, A.O.C. Lactobacillus rhamnosus intake can prevent the development of Candidiasis. Clin. Oral Investig. 2018, 22, 2511–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleem, D.; Freitas-Blanco, V.S.; Noguti, J.; Zancope, B.R.; Pardi, V.; Murata, R.M. In Vivo Antifungal Activity of Monolaurin against Candida albicans Biofilms. Boil. Pharm. Bull. 2018, 41, 1299–1302. [Google Scholar] [CrossRef]
- Tasaki, S.; Cho, T.; Nagao, J.-I.; Ikezaki, S.; Narita, Y.; Arita-Morioka, K.-I.; Yasumatsu, K.; Toyoda, K.; Kojima, H.; Tanaka, Y. Th17 cells differentiated with mycelial membranes of Candida albicans prevent oral candidiasis. FEMS Yeast Res. 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Whibley, N.; Tritto, E.; Traggiai, E.; Kolbinger, F.; Moulin, P.; Brees, D.; Coleman, B.M.; Mamo, A.J.; Garg, A.V.; Jaycox, J.R.; et al. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J. Leukoc. Boil. 2016, 99, 1153–1164. [Google Scholar] [CrossRef]
- Wong, S.; Kao, R.Y.; Yuen, K.-Y.; Wang, Y.; Yang, D.; Samaranayake, L.P.; Seneviratne, C.J. In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections. PLoS ONE 2014, 9, e85836. [Google Scholar] [CrossRef] [Green Version]
- Olsen, I.; Bondevik, O. Experimental Candida-induced denture stomatitis in the Wistar rat. Eur. J. Oral Sci. 1978, 86, 392–398. [Google Scholar] [CrossRef]
- Samaranayake, Y.H.; Samaranayake, L.P. Experimental Oral Candidiasis in Animal Models. Clin. Microbiol. Rev. 2001, 14, 398–429. [Google Scholar] [CrossRef] [Green Version]
- Jennings, K.; Macdonald, D. Rat palatal histology related to denture-like appliances. J. Dent. 1992, 20, 250–254. [Google Scholar] [CrossRef]
- Johnson, C.C.; Yu, A.; Lee, H.; Fidel, P.L.; Noverr, M.C. Development of a Contemporary Animal Model of Candida albicans-Associated Denture Stomatitis Using a Novel Intraoral Denture System. Infect. Immun. 2012, 80, 1736–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakir, B.; Martin, M.; Smith, C. Effect on experimental palatal candidosis in the Wistar rat of removal and re-insertion of acrylic appliances. Arch. Oral Boil. 1986, 31, 617–621. [Google Scholar] [CrossRef]
- Shakir, B.; Martin, M.; Smith, C. Relative effectiveness of various yeasts, Candida spp. and Torulopsis glabrata, for inducing palatal infection in the Wistar rat. Arch. Oral Boil. 1983, 28, 1069–1071. [Google Scholar] [CrossRef]
- Tobouti, P.L.; Casaroto, A.R.; De Almeida, R.S.C.; Ramos, S.D.P.; Dionísio, T.J.; Porto, V.C.; Santos, C.F.; Lara, V.S. Expression of Secreted Aspartyl Proteinases in an Experimental Model ofCandida albicans-Associated Denture Stomatitis. J. Prosthodont. 2015, 25, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.; Martin, M. An in vitro and in vivo study of the effect of incorporation of chlorhexidine into autopolymerizing acrylic resin plates upon the growth of Candida albicans. Biomaterials 1983, 4, 205–209. [Google Scholar] [CrossRef]
- Martin, M. A comparison of fluconazole and ketoconazole in the treatment of rat palatal candidosis. Med. Mycol. 1989, 27, 63–70. [Google Scholar] [CrossRef]
- Norris, M.; Lamb, D.; Craig, G.; Martin, M. The effect of miconazole on palatal candidosis induced in the Wistar rat. J. Dent. 1985, 13, 288–294. [Google Scholar] [CrossRef]
- Shakir, B.; Martin, M.; Smith, C. Induced palatal candidosis in the Wistar rat. Arch. Oral Boil. 1981, 26, 787–793. [Google Scholar] [CrossRef]
- Verma, A.H.; Zafar, H.; Ponde, N.O.; Hepworth, O.W.; Sihra, D.; Aggor, F.E.Y.; Ainscough, J.S.; Ho, J.; Richardson, J.P.; Coleman, B.M.; et al. IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. J. Immunol. 2018, 201, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.-L.; Lei, Z.-G.; Wang, S.-S.; Liang, X.-H.; Ren, X.-H. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma. OncoTargets Ther. 2016, 9, 545–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossa, C.; D’Silva, N.J. Immune-relevant aspects of murine models of head and neck cancer. Oncogene 2019, 38, 3973–3988. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Santos, N.; Huppler, A.R.; Peterson, A.C.; Khader, S.A.; McKenna, K.C.; Gaffen, S.L. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol. 2012, 6, 900–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mima, E.G.D.O.; Pavarina, A.C.; Dovigo, L.N.; Vergani, C.E.; Costa, C.A.D.S.; Kurachi, C.; Bagnato, V.S. Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 392–401. [Google Scholar] [CrossRef]
- Valentini, F.; Luz, M.S.; Boscatto, N.; Pereira-Cenci, T. Biofilm formation on denture liners in a randomised controlled in situ trial. J. Dent. 2013, 41, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.; Yu, A.; Fidel, P.L.; Noverr, M.C. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis. PLoS ONE 2016, 11, e0159692. [Google Scholar] [CrossRef]
- Allen, C.M.; Beck, F.M.; Lurie, F.A.; Pinsky, H.M. Role of tetracycline in pathogenesis of chronic candidiasis of rat tongues. Infect. Immun. 1985, 47, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Takakura, N.; Sato, Y.; Ishibashi, H.; Oshima, H.; Uchida, K.; Yamaguchi, H.; Abe, S. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol. Immunol. 2003, 47, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Regadera, J.; Jimenez, E.; Santos, I.; Gargallo-Viola, D. Antifungal Efficacy of GM237354, a Sordarin Derivative, in Experimental Oral Candidiasis in Immunosuppressed Rats. Antimicrob. Agents Chemother. 2001, 45, 1008–1013. [Google Scholar] [CrossRef] [Green Version]
- Conti, H.R.; Huppler, A.R.; Whibley, N.; Gaffen, S.L. Animal Models for Candidiasis. Curr. Protoc. Immunol. 2014, 105, 19.6.1–19.6.17. [Google Scholar] [CrossRef] [Green Version]
- Hotta, J.; Cral, W.G.; Sakima, V.T.; Lara, V.S.; Urban, V.M.; Neppelenbroek, K.H. Intraoral Device for Optimal Antifungal Delivery in a Rat Model. Curr. Drug Deliv. 2017, 14, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Hotta, J.; Garlet, G.P.; Cestari, T.M.; Lima, J.F.M.; Porto, V.C.; Urban, V.M.; Neppelenbroek, K.H. In vivo biocompatibility of an interim denture resilient liner containing antifungal drugs. J. Prosthet. Dent. 2019, 121, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Bail, M.; Meister, L.M.B.; Campagnoli, E.B.; Jorge, J.H.; Ban, M.D.C.I.; Sánchez-Ayala, A.; Campanha, N.H. Histopathological Changes by the Use of Soft Reline Materials: A Rat Model Study. PLoS ONE 2014, 9, e100293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugio, C.Y.C.; Garcia, A.A.M.N.; Albach, T.; Moraes, G.S.; Bonfante, E.A.; Urban, V.M.; Neppelenbroek, K.H. Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence? J. Fungi 2020, 6, 70. https://doi.org/10.3390/jof6020070
Sugio CYC, Garcia AAMN, Albach T, Moraes GS, Bonfante EA, Urban VM, Neppelenbroek KH. Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence? Journal of Fungi. 2020; 6(2):70. https://doi.org/10.3390/jof6020070
Chicago/Turabian StyleSugio, Carolina Yoshi Campos, Amanda Aparecida Maia Neves Garcia, Thaís Albach, Gustavo Simão Moraes, Estevam Augusto Bonfante, Vanessa Migliorini Urban, and Karin Hermana Neppelenbroek. 2020. "Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence?" Journal of Fungi 6, no. 2: 70. https://doi.org/10.3390/jof6020070
APA StyleSugio, C. Y. C., Garcia, A. A. M. N., Albach, T., Moraes, G. S., Bonfante, E. A., Urban, V. M., & Neppelenbroek, K. H. (2020). Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence? Journal of Fungi, 6(2), 70. https://doi.org/10.3390/jof6020070