Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus Metarhizium robertsii Differs between Sexes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Animals
2.2. Experimental Treatments
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Folstad, I.; Karter, A.J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 1992, 139, 603–622. [Google Scholar] [CrossRef]
- Roberts, M.L.; Buchanan, K.L.; Evans, M.R. Testing the immunocompetence handicap hypothesis: A review of the evidence. Anim. Behav. 2004, 68, 227–239. [Google Scholar] [CrossRef]
- Rantala, M.; Koskimaki, J.; Taskinen, J.; Tynkkynen, K.; Suhonen, J. Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc. R. Soc. B Biol. Sci. 2000, 267, 2453–2457. [Google Scholar] [CrossRef]
- Rantala, M.; Jokinen, I.; Kortet, R.; Vainikka, A.; Suhonen, J. Do pheromones reveal male immunocompetence? Proc. R. Soc. B Biol. Sci. 2002, 269, 1681–1685. [Google Scholar] [CrossRef] [PubMed]
- Siva-Jothy, M. A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc. R. Soc. B Biol. Sci. 2000, 267, 2523–2527. [Google Scholar] [CrossRef] [PubMed]
- Ahtiainen, J.; Alatalo, R.; Kortet, R.; Rantala, M. Sexual advertisement and immune function in an arachnid species (Lycosidae). Behav. Ecol. 2004, 15, 602–606. [Google Scholar] [CrossRef]
- Krams, I.; Daukšte, J.; Kivleniece, I.; Krama, T.; Rantala, M.J. Previous encapsulation response enhances within individual protection against fungal parasite in the mealworm beetle Tenebrio molitor. Insect Sci. 2013, 20, 771–777. [Google Scholar] [CrossRef]
- Rantala, M.; Vainikka, A.; Kortet, R. The role of juvenile hormone in immune function and pheromone production trade-offs: A test of the immunocompetence handicap principle. Proc. R. Soc. B Biol. Sci. 2003, 270, 2257–2261. [Google Scholar] [CrossRef]
- Sreng, L.; Leoncini, I.; Clement, J.L. Regulation of sex pheromone production in the male Nauphoeta cinerea cockroach: Role of brain extracts, corpora allata (CA), and juvenile hormone (JH). Arch. Insect Biochem. Physiol. 1999, 40, 165–172. [Google Scholar] [CrossRef]
- Marquez-Garcia, A.; Canales-Lazcano, J.; Rantala, M.J.; Contreras-Garduno, J. Is juvenile hormone a potential mechanism that underlay the “branched Y-model”? Gen. Comp. Endocrinol. 2016, 230–231, 170–176. [Google Scholar] [CrossRef]
- Contreras-Garduno, J.; Cordoba-Aguilar, A.; Lanz-Mendoza, H.; Rivera, A.C. Territorial behaviour and immunity are mediated by juvenile hormone: The physiological basis of honest signalling? Funct. Ecol. 2009, 23, 157–163. [Google Scholar] [CrossRef]
- Flatt, T.; Tu, M.P.; Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 2005, 27, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kim, Y. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponoineutidae). Biol. Control 2007, 42, 72–76. [Google Scholar] [CrossRef]
- Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002, 32, 1295–1309. [Google Scholar] [CrossRef]
- Rolff, J.; Siva-Jothy, M. Copulation corrupts immunity: A mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. USA 2002, 99, 9916–9918. [Google Scholar] [CrossRef]
- Valtonen, T.M.; Viitaniemi, H.; Rantala, M.J. Copulation enhances resistance against an entomopathogenic fungus in the mealworm beetle Tenebrio molitor. Parasitology 2010, 137, 985–989. [Google Scholar] [CrossRef]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Chapter nine—Entomopathogenic fungi: New insights into host–pathogen interactions. Adv. Gen. 2016, 94, 307–364. [Google Scholar]
- Krams, I.; Daukšte, J.; Kivleniece, I.; Krama, T.; Rantala, M.J.; Ramey, G.; Šauša, L. Female choice reveals terminal investment in male mealworm beetles, Tenebrio molitor, after a repeated activation of the immune system. J. Insect Sci. 2011, 11, 56. [Google Scholar] [CrossRef]
- Mukherjee, K.; Dubovskiy, I.; Grizanova, E.; Lehmann, R.; Vilcinskas, A. Epigenetic mechanisms mediate the experimental evolution of resistance against parasitic fungi in the greater wax moth Galleria mellonella. Sci. Rep. 2019, 9, 1626. [Google Scholar] [CrossRef]
- Braude, S.; Tang-Martinez, Z.; Taylor, G.T. Stress, testosterone, and the immunoredistribution hypothesis. Behav. Ecol. 1999, 10, 345–350. [Google Scholar] [CrossRef]
- Zuk, M.; Stoehr, A.M. Immune defence and host life history. Am. Nat. 2002, 160, S9–S22. [Google Scholar] [CrossRef] [PubMed]
- Kecko, S.; Mihailova, A.; Kangassalo, K.; Elferts, D.; Krama, T.; Krams, R.; Luoto, S.; Rantala, M.J.; Krams, I.A. Sex-specific compensatory growth in the larvae of the greater wax moth Galleria mellonella. J. Evol. Biol. 2017, 30, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, L.A.D.; Poulin, R.; Ward, D.F.; Zuk, M. Sex differences in parasitic infections among arthropod hosts: Is there a male bias? Oikos 2000, 88, 327–334. [Google Scholar] [CrossRef]
- Rantala, M.J.; Roff, D.A.; Rantala, M.J. Forceps size and immune function in the earwig Forficula auricularia L. Biol. J. Linn. Soc. 2007, 90, 509–516. [Google Scholar] [CrossRef]
- McKean, K.A.; Nunney, L. Bateman’s principle and immunity: Phenotypically plastic reproductive strategies predict changes in immunological sex differences. Evolution 2005, 59, 1510–1517. [Google Scholar] [CrossRef]
- Rantala, M.; Roff, D. Inbreeding and extreme outbreeding cause sex differences in immune defence and life history traits in Epirrita autumnata. Heredity 2007, 98, 329–336. [Google Scholar] [CrossRef]
- Vilcinskas, A.; Matha, V. Effect of the entomopathogenic fungus Beauveria bassiana on the humoral immune response of Galleria mellonella larvae (Lepidoptera: Pyralidae). Eur. J. Entomol. 1997, 94, 461–472. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rantala, M.J.; Dubovskiy, I.M.; Pölkki, M.; Krama, T.; Contreras-Garduño, J.; Krams, I.A. Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus Metarhizium robertsii Differs between Sexes. J. Fungi 2020, 6, 298. https://doi.org/10.3390/jof6040298
Rantala MJ, Dubovskiy IM, Pölkki M, Krama T, Contreras-Garduño J, Krams IA. Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus Metarhizium robertsii Differs between Sexes. Journal of Fungi. 2020; 6(4):298. https://doi.org/10.3390/jof6040298
Chicago/Turabian StyleRantala, Markus J., Ivan M. Dubovskiy, Mari Pölkki, Tatjana Krama, Jorge Contreras-Garduño, and Indrikis A. Krams. 2020. "Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus Metarhizium robertsii Differs between Sexes" Journal of Fungi 6, no. 4: 298. https://doi.org/10.3390/jof6040298
APA StyleRantala, M. J., Dubovskiy, I. M., Pölkki, M., Krama, T., Contreras-Garduño, J., & Krams, I. A. (2020). Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus Metarhizium robertsii Differs between Sexes. Journal of Fungi, 6(4), 298. https://doi.org/10.3390/jof6040298