Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Trichoderma Isolates
2.2. Growth of the Trichoderma Isolates in PDA
2.3. Dual Culture Test
2.4. Antifungal Volatile Organic Compounds Bioassay
2.5. Detached Leaf Assay
2.6. Degradation of Sclerotia of Sclerotinia Sclerotiorum by T. aggressivum f. europaeum
2.7. Compatibility of T. aggressivum f. europaeum TAET1 with Fungicides
2.8. Evaluation of T. aggressivum f. europaeum on the Severity of Seven Phytopathogens
2.9. Statistical Analyses
3. Results
3.1. Morphological and Molecular Identification
3.2. Growth of Trichoderma Isolates
3.3. Effects of T. aggressivum f. europaeum Isolates on the Radial Growth of Phytopathogens
3.4. Effect of Volatile Compounds on the Mycelial Growth of Phytopathogenic Fungi
3.5. Detached Leaves Assay
3.6. S. sclerotiorum Sclerotia Degradation
3.7. T. aggressivum f. europaeum Compatibility with Fungicides
3.8. Biocontrol of T. aggressivum f. europaeum against Fungal Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, N.K.; Tewari, S.; Singh, S.; Lal, N.; Maheshwari, D.K. PGPR for protection of plant health under saline conditions. In Bacteria in Agrobiology: Stress Management; Springer: Berlin, Germany, 2012; pp. 239–258. [Google Scholar]
- FAO. Manual on Development and Use of FAO and WHO Specifications for Pesticides; FAO Plant Production and Protection Paper 228; FAO/WHO Joint Work: Rome, Italy, 2016. [Google Scholar]
- Pimentel, D. Pesticides and pest control. In Integrated Pest Management: Innovation-Development Process; Rajinder, P., Dhawan, A., Eds.; Springer: Heidelberg, Germany, 2009; Volume 1, pp. 83–87. [Google Scholar]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144. [Google Scholar]
- FAO. FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/ (accessed on 10 April 2020).
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Gerhardson, B. Biological substitutes for pesticides. Trends Biotechnol. 2002, 20, 338–343. [Google Scholar] [CrossRef]
- Weindling, R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 1932, 22, 837–845. [Google Scholar]
- Sulaiman, M.M.; Yass, S.T.A.; Aish, A.A.; Abdullah, S.J.; Youssef, S.A. Activity of Trichoderma spp. against Erwinia carotovora causal agent of potato tuber soft rot. Plant Arch. 2020, 20, 115–118. [Google Scholar]
- Belanger, R.; Dufuor, N.; Caron, J.; Benhamou, N. Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: Indirect evidence for sequential role of antibiotics and parasitism. Biocontrol Sci. Technol. 1995, 5, 41–54. [Google Scholar] [CrossRef]
- Yedidia, I.; Benhamou, N.; Chet, I. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the Biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 1999, 65, 1061–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.S.; Ezziyyani, M.; Sánchez, C.P.; Candela, M. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur. J. Plant Pathol. 2003, 109, 633–637. [Google Scholar] [CrossRef]
- Fraceto, L.; Maruyama, C.; Guilger, M.; Mishra, S.; Keswani, C.; Singh, H.; Lima, R. Trichoderma harzianum based novel formulations: Potential applications for management of next-gen agricultural challenges. J. Chem. Technol. Biotechnol. 2018, 93, 2056–2063. [Google Scholar] [CrossRef]
- Tan, J.Y.; Shao, X.H.; Chen, L.H.; Chen, L.N.; Xu, H.L. Effect of formulations of Trichoderma harzianum SQR-T037 on the induction of resistance against Fusarium wilt in cucumber. J. Food Agric. Environ. 2012, 10, 1205–1209. [Google Scholar]
- Azeem, W. Evaluation of Trichoderma harzianum and Azadirachta indica in the management of Meloidogyne incognita in Tomato. Pak. J. Zool. 2020, 53, 119–125. [Google Scholar] [CrossRef]
- Yan, L.; Khan, R.A.A. Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum. Egyptia J. Biol. Pest Control 2021, 31, 5. [Google Scholar] [CrossRef]
- de Souza, J.T.; Pomella, A.W.; Bowers, J.H.; Pirovani, C.P.; Loguercio, L.L.; Hebbar, K.P. Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches’-broom pathogen. Phytopathology 2006, 96, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Brar, S.K.; Tyagi, R.D.; Sahai, V.; Prévost, D.; Valéro, J.R.; Surampalli, R.Y. Bench-scale fermentation of Trichoderma viride on wastewater sludge: Rheology, lytic enzymes and biocontrol activity. Enzym. Microb. Technol. 2007, 41, 764–771. [Google Scholar] [CrossRef]
- Sreenivasaprasad, S.; Manibushanrao, K. Efficacy of Gliocladium virens and Trichoderma longibrachiatum as biological control agents of groundnut root and stem rot diseases. Int. J. Pest Manag. 1993, 39, 167–171. [Google Scholar] [CrossRef]
- Bansal, R.; Mukherjee, M.; Horwitz, B.A.; Mukherjee, P.K. Regulation of conidiation and antagonistic properties of the soil-borne plant beneficial fungus Trichoderma virens by a novel proline-, glycine-, tyrosine-rich protein and a GPI-anchored cell wall protein. Curr. Genet. 2019, 65, 953–964. [Google Scholar] [CrossRef]
- Park, Y.H.; Chandra Mishra, R.; Yoon, S.; Kim, H.; Park, C.; Seo, S.T.; Bae, H. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J. Ginseng Res. 2019, 43, 408–420. [Google Scholar] [CrossRef]
- Bunbury-Blanchette, A.L.; Walker, A.K. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol. Control 2018, 130, 127–135. [Google Scholar] [CrossRef]
- Diánez, F.; Santos, M.; Carretero, F.; Marín, F. Trichoderma saturnisporum, a new biological control agent. J. Sci. Food Agric. 2016, 96, 1934–1944. [Google Scholar] [CrossRef]
- Sánchez-Montesinos, B.; Diánez, F.; Moreno-Gavíra, A.; Gea, F.J.; Santos, M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int. J. Environ. Res. Public Health 2019, 16, 2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, H.D. Trichoderma as biocontrol agent. In Biocontrol of Plant Diseases; Mukerji, K.G., Garg, K.L., Eds.; CRC Press: New York, NY, USA, 1988; pp. 71–82. [Google Scholar]
- Lewis, K.; Whipps, J.M.; Cooke, R.C. Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist. In Biotechnology of Fungi for Improving Plant Growth; Whipps, J.M., Lumsden, R.D., Eds.; Cambridge University Press: Cambridge, UK, 1989; pp. 191–217. [Google Scholar]
- Suwan, S.; Isobe, M.; Kanokmedhakul, S.; Lourit, N.; Kanokmedhakul, K.; Soytong, K.; Koga, K. Elucidation of high micro-heterogencity of an acidic-neutral trichotoxin mixture from Trichoderma harzianum by electrospray ionization quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 2000, 35, 1438–1451. [Google Scholar] [CrossRef]
- Monte, E. Understanding Trichoderma: Between biotechnology and microbial ecology. Int. Microbiol. 2001, 4, 1–4. [Google Scholar] [PubMed]
- Mohiddin, F.A.; Khan, M.R.; Khan, S.M.; Bhat, B.H. Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant Pathol. J. 2010, 9, 92–102. [Google Scholar] [CrossRef]
- Vinale, F.; Nigro, M.; Sivasithamparam, K.; Flematti, G.; Ghisalberti, E.L.; Ruocco, M.; Varlese, R.; Marra, R.; Lanzuise, S.; Eid, A.; et al. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microb. Lett. 2013, 347, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Harman, G.; Howell, C.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Harman, G.E. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 2006, 96, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Haggag, W.M. Biotechnological aspects of plant resistant for fungal diseases management. Am. Eur. J. Sustain. Agric. 2008, 2, 1–18. [Google Scholar]
- Bisen, K.; Keswani, C.; Patel, J.S.; Sarma, B.K.; Singh, H.B. Trichoderma spp.: Efficient inducers of systemic resistance in plants. In Microbial-Mediated Induced Systemic Resistance in Plants; Choudhary, D., Varma, A., Eds.; Springer: Singapore, 2016; pp. 185–195. [Google Scholar] [CrossRef]
- Benítez, T.; Rincón, A.M.; Limón, M.C.; Codón, A.C. Biocontrol mechanism of Trichoderma strains. Int. Microbiol. 2004, 7, 249–260. [Google Scholar]
- Keswani, C.; Mishra, S.; Sarma, B.K.; Singh, S.P.; Singh, H.B. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 2014, 98, 533–544. [Google Scholar] [CrossRef]
- Verma, M.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem. Eng. J. 2007, 37, 1–20. [Google Scholar] [CrossRef]
- Harman, G.; Kubicek, C. Trichoderma Gliocladium; CRC Press: London, UK, 1998; Volume 2. [Google Scholar]
- Geremia, R.A.; Goldman, G.H.; Jacobs, D.; Ardiles, W.; Vila, S.B.; Van Montagu, M.; Herrera-Estrella, A. Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol. Microbiol. 1993, 8, 603–613. [Google Scholar] [CrossRef]
- Hatvani, L.; Antal, Z.; Manczinger, L.; Szekeres, A.; Druzhinina, I.S.; Kubicek, C.P.; Nagy, A.; Nagy, E.; Vágvölgyi, C.; Kredics, L. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 2007, 97, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Kosanović, D.; Potočnik, I.; Duduk, B.; Vukojević, J.; Stajić, M.; Rekanović, E.; Milijašević-Marčić, S. Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Ann. Appl. Biol. 2013, 163, 218–230. [Google Scholar] [CrossRef]
- Jayalal, R.G.U.; Adikaram, N.K.B. Influence of Trichoderma harzianum metabolites on the development of green mould disease in the Oyster mushroom. Ceylon J. Sci. 2007, 36, 53–60. [Google Scholar]
- Kim, C.S.; Park, M.S.; Kim, S.C.; Maekawa, N.; Yu, S.H. Identification of Trichoderma, a competitor of shiitake mushroom (Lentinula edodes), and competition between Lentinula edodes and Trichoderma species in Korea. Plant Pathol. J. 2012, 28, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, L.; Siwulski, M.; Sobieralski, K.; Frużyńska-Jóźwiak, D. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol. 2013, 58, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Cao, X.; Ma, X.; Guo, M.; Liu, C.; Yan, L.; Bian, Y. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. MicrobiologyOpen 2016, 5, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.S.; Bae, K.S.; Yu, S.H. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 2006, 34, 111–113. [Google Scholar] [CrossRef] [Green Version]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Mamoun, L.M.; Savoie, J.M.; Olivier, J.M. Interactions between the pathogen Trichoderma harzianum Th2 and Agaricus bisporus in mushroom compost. Mycologia 2000, 92, 233–240. [Google Scholar] [CrossRef]
- Williams, J.; Clarkson, J.M.; Mills, P.R.; Cooper, R.M. A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Appl. Environ. Microbiol. 2003, 69, 4190–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mumpuni, A.; Sharma, H.; Brown, A.E. Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Appl. Environ. Microbiol. 1998, 64, 5053–5056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoie, J.; Iapicco, R.; Largeteau-Mamoun, M. Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycol. Res. 2001, 105, 1348–1356. [Google Scholar] [CrossRef]
- Kosanovic, D.; Grogan, H.; Kavanagh, K. Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biol. 2020, 124, 814–820. [Google Scholar] [CrossRef]
- O’brien, M.; Grogan, H.; Kavanagh, K. Proteomic response of Trichoderma aggressivum f. europaeum to Agaricus bisporus tissue and mushroom compost. Fungal Biol. 2014, 118, 785–791. [Google Scholar]
- Ordaz-Ochoa, J. Control Biológico y Químico de Armillaria spp., (Vahl.: Fr.) Karsten. Aisladas de Aguacate (Persea americana Mill. var. drymifolia (Schltdl. y Cham.) S.F. Blake). Maestría en Ciencias Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Uruapan Michoacan, Mexico, 2017. [Google Scholar]
- Rodríguez, M.C.H.; Evans, H.C.; de Abreu, L.M.; de Macedo, D.M.; Ndacnou, M.K.; Bekele, K.B.; Barreto, R.W. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Sci. Rep. 2021, 11, 5671. [Google Scholar] [CrossRef]
- Sánchez-Montesinos, B.; Diánez, F.; Moreno-Gavira, A.; Gea, F.J.; Santos, M. Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy 2020, 10, 1004. [Google Scholar] [CrossRef]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, J.; Navarro, M.; Santos, M.; Diánez, F.; Gea, F. Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann. Appl. Biol. 2016, 168, 214–224. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schäffer, A.A. Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24, 1757–1764. [Google Scholar] [CrossRef]
- Santos, M.; Diánez, F.; del Valle, M.A.; Tello, J. Grape marc compost: Microbial studies and suppression of soil-borne mycosis in vegetable seedlings. World J. Microbiol. Biotechnol. 2008, 24, 1493–1505. [Google Scholar] [CrossRef]
- Novak, N.G.; Perez, F.G.; Jones, R.W.; Lawrence, S.D. Detached leaf assays to simplify gene expression studies in potato during infestation by chewing insect Manduca sexta. J. Vis. Exp. 2019, 147, e59153. [Google Scholar] [CrossRef]
- Patial, M.; Kumar, J.; Pal, D. Detached leaf assay for evaluating resistance to leaf rust Pst. 104-2 in wheat (Triticum aestivum L.). Indian J. Exp. Biol. 2017, 55, 789–794. [Google Scholar]
- Diánez, F.; Santos, M.; Blanco, R.; Tello, J.C. Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (Southwestern Spain). Phytoparasitica 2002, 30, 529–534. [Google Scholar] [CrossRef]
- Nene, Y.L.; Thapliyal, R.N. Evaluation of Fungicides for Plant Disease Control, 3rd ed.; IBH Publishing Co.: New Dehli, India, 1993; p. 33. [Google Scholar]
- Viñuela, E.; Jacas, J.A.; Marco, V.; Adan, A.; Budia, F. Los efectos de los plaguicidas sobre los organismos beneficiosos en agricultura. Grupo de trabajo de OILB plaguicidas y organismos beneficiosos. I. Insecticidas y acaricidas. Phytoma 1993, 45, 18–25. [Google Scholar]
- Marín, F.; Diánez, F.; Santos, M.; Carretero, F.; Gea, F.J.; Castañeda, C.; Navarro, M.J.; Yau, J.A. Control of Phytophthora capsici and Phytophthora parasitica on pepper (Capsicum annuum L.) with compost teas from different sources and their effects on plant growth promotion. Phytopathol. Mediterr. 2014, 53, 216–228. [Google Scholar]
- Chen, Y.; Wang, D. Two convenient methods to evaluate soybean for resistance to Sclerotinia sclerotiorum. Plant Dis. 2005, 89, 1268–1272. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.C.; Suresh, M.; Singh, B. Evaluation of trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 2007, 40, 118–127. [Google Scholar] [CrossRef]
- Singh, S.; Balodi, R. Bio-management of soil borne pathogens infesting cucumber (Cucumis sativus L.) under protected cultivation system. Biol. Control 2021, 157, 104569. [Google Scholar] [CrossRef]
- Díaz-Gutiérrez, C.; Arroyave, C.; Llugany, M.; Poschenrieder, C.; Martos, S.; Peláez, C. Trichodermaasperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol. Control 2021, 155, 104537. [Google Scholar] [CrossRef]
- Jamil, A.; Musheer, N.; Ashraf, S. Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporumf. sp. capsici for the management of chilli wilt. J. Plant Dis. Prot. 2021, 128, 161–172. [Google Scholar] [CrossRef]
- El-Komy, M.H.; Saleh, A.A.; Eranthodi, A.; Molan, Y.Y. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol. J. 2015, 31, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Rojo, F.G.; Reynoso, M.M.; Ferez, M.; Chulze, S.N.; Torres, A.M. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Prot. 2007, 26, 549–555. [Google Scholar] [CrossRef]
- Morsy, E.M.; Abdel-Kawi, K.A.; Khalil, M.N.A. Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egypt. J. Phytopathol. 2009, 37, 47–57. [Google Scholar]
- Amira, M.B.; López, D.; Mohamed, A.T.; Khouaja, A.; Chaar, H.; Fumanal, B.; Gousset-Dupont, A.; Bonhomme, L.; Label, P.; Goupil, P. Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biol. Control 2017, 110, 70–78. [Google Scholar] [CrossRef]
- Zimand, G.; Elad, Y.; Chet, I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 1996, 86, 1255–1260. [Google Scholar] [CrossRef]
- Kapat, A.; Zimand, Y.; Elad, Y. Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol. Mol. Plant. Pathol. 1998, 52, 127–137. [Google Scholar] [CrossRef]
- Elad, Y.; Kapat, A. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 1999, 105, 177–189. [Google Scholar] [CrossRef]
- Elad, Y. Trichodema harzianum T39 preparation for biocontrol of plant diseases–control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocont. Sci. Technol. 2000, 10, 499–507. [Google Scholar] [CrossRef]
- Yang, H.H.; Yang, S.L.; Peng, K.C.; Lo, C.T.; Liu, S.Y. Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycol. Res. 2009, 113, 924–932. [Google Scholar] [CrossRef]
- Fedele, G.; Brischetto, C.; Rossi, V. Biocontrol of Botrytis cinereal on Grape Berries as influenced by temperature and humidity. Front. Plant Sci. 2020, 11, 1232. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.K.; Singh, N.; Singh, D. Evaluation of the bioformulation of potent native strains of Trichoderma spp. against the foot rot/gummosis of Kinnow mandarin. Egypt. J. Biol. Pest Control 2021, 31, 90. [Google Scholar] [CrossRef]
- Manganiello, G.; Nicastro, N.; Caputo, M.; Zaccardelli, M.; Cardi, T.; Pane, C. Functional hyperspectral imaging by high-related vegetation indices to track the wide-spectrum Trichoderma biocontrol activity against soil-borne diseases of baby-leaf vegetables. Front. Plant Sci. 2021, 12, 630059. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, J.; Goltapeh, E.M.; Rouhani, H. Evaluation of antagonistic effect of Trichoderma species in biological control of causal agents of crown and root rot of sunflower (Sclerotinia minor) in vitro. Agric. Sci. Tabriz 2003, 13, 13–23. [Google Scholar]
- Pandey, S.; Pundhir, V.S. Mycoparasitism of potato black scurf pathogen (Rhizoctonia solani Kuhn) by biological control agents to sustain production. Indian J. Hortic. 2013, 70, 71–75. [Google Scholar]
- Lucon, M.C.M.; Koike, C.M.; Ishikawa, I.A.; Patrício, F.R.A.; Harakava, R. Bioprospection of Trichoderma spp. isolates to control Rhizoctonia solani on cucumber seedling production. Pesquisa Agropecuária Brasileira 2009, 44, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhuang, W.Y. Trichodermabrevicrassum strain TC967 with capacities of diminishing cucumber disease caused by Rhizoctonia solani and promoting plant growth. Biol. Control 2020, 142, 104151. [Google Scholar] [CrossRef]
- Ezziyyani, M.; Requena, M.E.; Egea-Gilabert, C.; Candela, M.E. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Int. J. Environ. Sci. 2007, 155, 342–349. [Google Scholar] [CrossRef]
- Roberts, D.P.; Maul, J.E.; McKenna, L.F.; Emche, S.E.; Meyer, S.L.F.; Collins, R.T.; Bowers, J.H. Selection of genetically diverse Trichoderma spp. isolates for suppression of Phytophthora capsici on bell pepper. Can. J. Microbiol. 2010, 56, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.; Fink, S.; Schwarze, F.W.M.R. Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biol. Control 2008, 45, 111–123. [Google Scholar] [CrossRef]
- Swehla, A.; Pandey, A.K.; Nair, R.M. Bioactivity of Trichoderma harzianum isolates against the fungal root rot pathogens with special reference to Macrophomina phaseolina causing dry root rot of mungbean. Indian Phytopathol. 2020, 73, 787–792. [Google Scholar] [CrossRef]
- Elad, Y. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot. 2000, 19, 709–714. [Google Scholar] [CrossRef]
- Gveroska, B.; Ziberoski, J. Trichoderma harzianum as a biocontrol agent against Alternaria alternata on tobacco. ATI Appl. Tech. Innov. 2012, 7, 67–76. [Google Scholar] [CrossRef]
- Le, H.T.; Black, L.L.; Sikora, R.A. Evaluation of Trichoderma spp. for biocontrol of tomato sudden caused by Pythium aphanidermatum following flooding in tropical hot season. Commun. Agric. Appl. Biol. Sci. 2003, 68, 463–474. [Google Scholar]
- Ramesh, R. Management of damping off in brinjal using biocontrol agents. J. Mycol. Plant Pathol. 2004, 34, 666–669. [Google Scholar]
- Zhang, S.; Xua, B.; Zhanga, J.; Ganc, Y. Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathgens. Pestic. Biochem. Phys. 2018, 147, 59–66. [Google Scholar] [CrossRef]
- Fernandes, T.; Lopes, A.C.A.; Steindorff, S.A.R.; Jesuino, S.A.R.; Ulhoa, C. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: Evaluation of antagonism and hydrolytic enzyme production. Biotechnol. Lett. 2013, 35, 1461–1468. [Google Scholar]
- Amin, F.; Razdan, V.K.; Mohiddin, F.A.; Bhat, K.A.; Sheikh, P.A. Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro. J. Phytol. 2010, 2, 34–37. [Google Scholar]
- Rini, C.R.; Sulochana, K.K. Management of seedling rot of chilli (Capsicum annuum L.) using Trichoderma spp. and fluorescent pseudomonads (Pseudomonas fluorescens). J. Trop. Agric. 2006, 44, 79–82. [Google Scholar]
- Hafez, Y.M.; El-Nagar, A.S.; Elzaawely, A.A.; Kamel, S.; Maswada, H.F. Biological control of Podosphaera xanthii the causal agent of squash powdery mildew disease by up-regulation of defense-related enzymes. Egyptia J. Biol. Pest Control 2018, 28, 57. [Google Scholar] [CrossRef]
- Khanzada, M.A.; Tanveer, M.; Maitlo, S.A.; Hajano, J.; Ujjan, A.A.; Syed, R.N.; Lodhi, A.M.; Rajput, A.Q. Comparative efficacy of chemical fungicides, plant extracts and biocontrol agents against Fusarium solani under laboratory conditions. Pak. J. Phytopathol. 2016, 28, 133–139. [Google Scholar]
- Pérez-Hernández, A.; Porcel-Rodríguez, E.; Gómez-Vázquez, J. Survival of Fusarium solani f. sp. cucurbitae and fungicide application, soil solarization and biosolarization for control of crown and foot rot of zucchini squash. Plant Dis. 2017, 101, 1507–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberti, R.; Veronesi, A.; Flamigni, F. Evaluation of microbial products for the control of zucchini foot and root rot caused by Fusarium solani f. sp. cucurbitae race 1. Phytopathol. Mediterr. 2012, 51, 317–331. [Google Scholar]
- Radványi, D.; Geösel, A.; Jókai, Z.; Fodor, S.P.; Gere, A. Detection and identification of microbial volatile organic compounds of the green mold disease: MVOC profile on different media. Int. J. Agric. Environ. Inf. Sys. 2020, 11, 14–28. [Google Scholar] [CrossRef]
- Krupke, O.A.; Castle, A.J.; Rinker, D.L. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compoundsin mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol. Res. 2003, 107, 1467–1475. [Google Scholar] [CrossRef]
- Pandey, V.; Shukla, A.; Kumar, J. Physiological and molecular signalling involved in disease management through Trichoderma: An effective biocontrol paradigm. In Current Trends in Plant Disease Diagnostics and Management Practices; Kumar, P., Gupta, V.K., Tiwari, A.K., Kamle, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 317–346. [Google Scholar]
- Mahalakshmi, P.; Yesu, R.I. Biocontrol potential of Trichoderma species against wilt disease of carnation (Dianthus caryophyllus L.) caused by Fusarium oxysporum f. sp. dianthi. J. Biopest. 2013, 6, 32–36. [Google Scholar]
- El-Katatny, M.; Gudelj, M.; Robra, K.H.; Elnaghy, M.; Gübitz, G. Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium Rolfsii. Appl. Microbiol. Biotechnol. 2001, 56, 137–143. [Google Scholar] [CrossRef]
- Luković, J.; Milijašević-Marčić, S.; Hatvani, L.; Kredics, L.; Szűcs, A.; Vágvölgyi, C.; Duduk, N.; Vico, I.; Potočnik, I. Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. J. Environ. Sci. Health 2020, 56, 54–63. [Google Scholar] [CrossRef]
- Komon-Zelazowska, M.; Bissett, J.; Zafari, D.; Hatvani, L.; Manczinger, L.; Woo, S.; Lorito, M.; Kredics, L.; Kubicek, C.P.; Druzhinina, I.S. Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl. Environ. Microbiol. 2007, 73, 7416–7426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oskiera, M.; Szczecha, M.; Stępowska, A.; Smolińska, U.; Bartoszewski, G. Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biol. Control 2017, 113, 65–72. [Google Scholar] [CrossRef]
- Destri Nicosia, M.G.L.; Mosca, S.; Mercurio, R.; Schena, L. Dieback of Pinus nigra seedlings caused by a strain of Trichoderma viride. Plant Dis. 2015, 99, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Pfordt, A.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. Trichoderma Afroharzianum Ear Rot—A new disease on maize in Europe. Front. Agron. 2020, 2, 547758. [Google Scholar] [CrossRef]
- Tijerino, A.; Cardoza, R.E.; Moraga, J.; Malmierca, M.G.; Vicente, F.; Aleu, J.; Collado, I.G.; Gutierrez, S.; Monte, E.; Hermosa, R. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet. Biol. 2011, 48, 285–296. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, S.; Tan, Y.; Liu, N.; Wu, A. Individual and combined cytotoxic effects of co-occurring deoxynivalenol family mycotoxins on human gastric epithelial cells. Toxins 2017, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, F.M.; Demmler, G.J.; Travis, W.R.; Ogden, A.K.; Rossmann, S.N.; Rinaldi, M.G. Trichoderma longibrachiatum infection in a pediatric patient with aplastic anemia. J. Clin. Microbiol. 1997, 35, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Sautour, M.; Chrétien, M.L.; Valot, S.; Lafon, I.; Basmaciyana, L.; Legouge, C.; Verrier, T.; Gonssaud, B.; Abou-Hanna, H.; Dalle, F.; et al. First case of proven invasive pulmonary infection due to Trichoderma longibrachiatum in a neutropenic patient with acute leukemia. J. Mycol. Med. 2018, 28, 659–662. [Google Scholar] [CrossRef] [PubMed]
Doses (ppm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
D1 (0.5 × D2) | D2 | D3 | D4 (1.5 × D3) | |||||||
Fungicide—Action Mechanisms | D2 | D3 | Growth | Inhib. | Growth | Inhib. | Growth | Inhib. | Growth | Inhib. |
Thiophanate-methyl 70% (WP) w/w—(1) (F: D1 D2 D3 D4) | 500 | 1000 | 0 ± 0a | 100.0% | 0 ± 0a | 100.0% | 0 ± 0a | 100.0% | 0 ± 0a | 100.0% |
Pencycuron 25% (SC) w/v—(1) | 5000 | 8000 | 55.8 ± 3.3a | 19.1% | 52 ± 1.6b | 24.6% | 50.8 ± 1.3b | 26.4% | 46 ± 0.7c | 33.3% |
Iprodione 50% (SC) w/v—(2) | 1000 | 1500 | 63 ± 2.3a | 8.7% | 53 ± 1.6b | 23.2% | 43.6 ± 4.5c | 36.8% | 33.4 ± 5d | 51.6% |
Flutriafol 12.5% (SC) w/v—(3) | 2000 | 2500 | 23.4 ± 1.7a | 64.7% | 19.4 ± 1.3b | 70.7% | 18.3 ± 1.2bc | 72.4% | 16.6 ± 2.6c | 74.9% |
Triadimenol 25% (EC) w/v—(3) | 250 | 500 | 61.8 ± 3.7a | 6.6% | 55 ± 4.5b | 16.9% | 39 ± 3.1c | 41.1% | 34.2 ± 1.3d | 48.3% |
Myclobutanil 24% (EC) w/v—(3) | 200 | 400 | 23.8 ± 0.8a | 52.2% | 16 ± 1.4b | 67.9% | 5.6 ± 0.5c | 88.8% | 3.4 ± 0.5d | 93.2% |
Fenhexamid 50% (WG) w/w—(3) | 1500 | 2000 | 30 ± 0.7a | 53.6% | 26.8 ± 0.8b | 58.5% | 25.2 ± 0.4c | 61.0% | 23.4 ± 0.5d | 63.8% |
Pyrimethanil 40% (SC) P/V—(4) | 1500 | 2000 | 5 ± 0a | 92.7% | 3.62 ± 0.4b | 94.7% | 2.28 ± 0.4c | 96.7% | 1.5 ± 0.9c | 97.8% |
Azoxystrobin 25% (SC) w/v—(5) | 800 | 1000 | 35.3 ± 2.3a | 46.7% | 33.3 ± 1b | 49.7% | 31.2 ± 0.8bc | 52.9% | 30.7 ± 1.2c | 53.6% |
Kresoxim-methyl 50% (WG) w/w—(5) | 200 | 500 | 60.4 ± 6.1a | 14.0% | 58.8 ± 7.7a | 16.2% | 49.3 ± 1.2b | 29.8% | 45.9 ± 0.7b | 34.6% |
Propamocarb 60.5% (SL) w/v—(6) | 2500 | 5000 | 66.4 ± 1.5a | 3.8% | 54.6 ± 9.3b | 20.9% | 29.8 ± 4.1c | 56.8% | 21 ± 2.9d | 69.6% |
Copper hydroxide 35% (WG) w/w—(7) | 2000 | 3000 | 24 ± 1.2a | 62.8% | 16.8 ± 1.5b | 74.0% | 15.2 ± 1.3b | 76.5% | 9.4 ± 0.5c | 85.4% |
Mancozeb 80% (WG) w/w—(7) (f: D2D3) (F: D4) | 2000 | 3000 | 7 ± 7.3a | 85.9% | 0 ± 0b | 100.0% | 0 ± 0b | 100.0% | 0 ± 0b | 100.0% |
Chlorothalonil 50% (SC) w/v—(7) | 2500 | 3000 | 3.6 ± 1.5a | 94.6% | 3 ± 1.2ab | 95.5% | 1.8 ± 0.8bc | 97.3% | 1 ± 1.2c | 98.5% |
Fosetyl-AL 80% (WG) w/w—(8) | 2500 | 3000 | 45.2 ± 1.8a | 9.2% | 33 ± 0.7b | 33.7% | 27.8 ± 1.8c | 44.2% | 19.2 ± 1.3d | 61.4% |
Cymoxanil 60% (WG) w/w—(9) | 200 | 300 | 70 ± 1a | −8.4% | 65.8 ± 1.3b | −1.9% | 61.2 ± 2.8c | 5.3% | 57.8 ± 2.4d | 10.5% |
Cyprodinil 37.5% + Fludioxonil 25% (WG) w/w—(4 + 2) | 600 | 1000 | 7.8 ± 1.8a | 84.3% | 6.4 ± 0.5a | 87.1% | 4.6 ± 0.5b | 90.8% | 4.7 ± 1b | 90.6% |
Folpet 40% + Metalaxyl-M 10% (WP) w/w—(7 + 10) | 2000 | 2500 | 14.6 ± 0.5a | 78.8% | 12.3 ± 0.7b | 82.2% | 10.2 ± 0.8c | 85.2% | 7.4 ± 0.5d | 89.3% |
Dimethomorph 7.5% + Mancozeb 66.7% (WG) w/w—(11 + 7) | 2000 | 3000 | 53.6 ± 1.5a | 22.3% | 49.8 ± 1.3b | 27.8% | 45.8 ± 0.8c | 33.6% | 43.4 ± 1.1d | 37.1% |
% Inhibition of Mycelial Growth Plant Pathogens | ||||||
---|---|---|---|---|---|---|
Isolates | Botrytis cinerea | Sclerotinia sclerotiorum | Fusarium solani | Rhizoctonia solani | Mycosphaerella melonis | Pythium aphanidermatum |
TAE492 | 74.25 ± 1.11 d | 85.25 ± 0.55 a | 84.25 ± 1.42 e | 80.75 ± 2.27 c | 87.25 ± 2.05 ab | 63.5 ± 0.55 b |
TAE493 | 76.5 ± 2.40 bcd | 84.00 ± 0.55 ab | 85.75 ± 0.68cd | 81.75 ± 1.42 bc | 87.25 ± 2.03 cd | 63.75 ± 0.88 ab |
TAE880 | 76.75 ± 1.11 abcd | 84.25 ± 1.42 ab | 86.00 ± 0.55 bcd | 80.50 ± 0.68 c | 87.00 ± 1.11 de | 55.00 ± 1.25 e |
TAE1320 | 70.25 ± 2.4 e | 83.75 ± 1.25 abc | 82.00 ± 0.68 f | 76.00 ± 1.04 e | 85.50 ± 1.42 b | 58.5 ± 1.04 c |
TAE1409 | 77.5 ± 3.30 abcd | 83.5 ± 1.36 abcd | 85.75 ± 1.42 cd | 81.50 ± 1.04 bc | 87.00 ± 1.11 ab | 65.00 ± 0.88 a |
TAEB80 | 78.25 ± 3.81 abc | 81.75 ± 3.37 bcd | 86.50 ± 0.55 bcd | 80.50 ± 0.68 c | 86.75 ± 2.59 ab | 53.5 ± 0.55 f |
TAET1 | 80.00 ± 1.76 a | 84.00 ± 1.62 ab | 89.75 ± 2.85 a | 82.75 ± 0.55 ab | 87.50 ± 0.88 ab | 63.00 ± 1.11 b |
TAE13 | 75.00 ± 5.79 cd | 83.00 ± 2.27 abcd | 87 ± 0.68 bc | 76.75 ± 1.42 e | 88.25 ± 2.09 a | 59 ± 1.04 c |
TAET2 | 75.50 ± 1.11 cd | 83.25 ± 3.13 abcd | 85.50 ± 0.68 de | 78.50 ± 1.36 d | 87.25 ± 2.05 ab | 54.25 ± 1.42 ef |
TAET3 | 76.75 ± 1.42 abcd | 81.00 ± 2.40 cd | 87.25 ± 0.55 b | 82.25 ± 0.55 ab | 87.00 ± 0.68 ab | 58 ± 2.27 cd |
TAET4 | 79.00 ± 1.04 ab | 82.25 ± 4.27 bcd | 89.25 ± 0.68 a | 82.25 ± 0.55 ab | 88.75 ± 0.88 a | 65.00 ± 0.88 a |
TAET5 | 78.00 ± 2.27 abc | 80.75 ± 1.89 d | 86.5 ± 0.55 bcd | 83.25 ± 0.68 a | 86.75 ± 0.68 ab | 56.75 ± 0.68 d |
P | 0.0001 | 0.0818 | 0.0000 | 0.0000 | 0.2860 | 0.0000 |
Mycelial Growth (cm) of Plant Pathogens | ||||||
---|---|---|---|---|---|---|
Isolates | B. cinerea | S. sclerotiorum | F. solani | R. solani | M. melonis | P. aphanidermatum |
Control | 4.26 ± 0.05 | 4.36 ± 0.11 | 4.26 ± 0.05 | 4.25 ± 0.05 | 4.20 ± 0.17 | 4.40 ± 0.10 |
TAET1 | 4.20 ± 0.17 | 4.16 ± 0.23 | 3.50 ± 0.40 * | 4.10 ± 0.23 | 3.66 ± 0.25 * | 4.23 ± 0.11 |
p | 0.5614 | 0.2508 | 0.0303 | 0.2377 | 0.0390 | 0.2901 |
Sclerotia Recovered | Sclerotial Germination (%) | TAET1 Colonization (%) | |
---|---|---|---|
Control | 5 | 63.2 | 0 |
TAET1 | 2.1 * | 0 * | 36.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Montesinos, B.; Santos, M.; Moreno-Gavíra, A.; Marín-Rodulfo, T.; Gea, F.J.; Diánez, F. Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. J. Fungi 2021, 7, 598. https://doi.org/10.3390/jof7080598
Sánchez-Montesinos B, Santos M, Moreno-Gavíra A, Marín-Rodulfo T, Gea FJ, Diánez F. Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. Journal of Fungi. 2021; 7(8):598. https://doi.org/10.3390/jof7080598
Chicago/Turabian StyleSánchez-Montesinos, Brenda, Mila Santos, Alejandro Moreno-Gavíra, Teresa Marín-Rodulfo, Francisco J. Gea, and Fernando Diánez. 2021. "Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides" Journal of Fungi 7, no. 8: 598. https://doi.org/10.3390/jof7080598
APA StyleSánchez-Montesinos, B., Santos, M., Moreno-Gavíra, A., Marín-Rodulfo, T., Gea, F. J., & Diánez, F. (2021). Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. Journal of Fungi, 7(8), 598. https://doi.org/10.3390/jof7080598