Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candidemia Surveillance and Incidence of Candidemia in Kuwait
2.2. Isolation and Species-Specific Identification of Yeast Isolates
2.3. Antifungal Drug Susceptibility Testing (AST) and the Molecular Basis of Drug Resistance
2.4. Statistical Analyses
3. Results
3.1. Epidemiology of Candidemia in Kuwait in 2018
3.2. AST Data and Molecular Basis of Antifungal Drug Resistance
3.3. AST Data of Other Candida/Yeast Species, Clinical Details of Patients, Treatment, and Outcome
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, M.; Lass-Flörl, C. Changing epidemiology of systemic fungal infections. Clin. Microbiol. Infect. 2008, 14, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.; Thompson, G.R., 3rd; Hoenigl, M. Breakthrough invasive fungal infections: Who is at risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.Z.P.; Schwartz, I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi 2019, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudlaugsson, O.; Gillespie, S.; Lee, K.; Vande Berg, J.; Hu, J.; Messer, S.; Herwaldt, L.; Pfaller, M.; Diekema, D. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 2003, 37, 1172–1177. [Google Scholar] [CrossRef]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.A.; Andes, D.R.; Diekema, D.J.; Horn, D.L.; Reboli, A.C.; Rotstein, C.; Franks, B.; Azie, N.E. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2496 patients: Data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 2014, 9, e101510. [Google Scholar] [CrossRef] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [Green Version]
- Koehler, P.; Stecher, M.; Cornely, O.A.; Koehler, D.; Vehreschild, M.J.G.T.; Bohlius, J.; Wisplinghoff, H.; Vehreschild, J.J. Morbidity and mortality of candidaemia in Europe: An epidemiologic meta-analysis. Clin. Microbiol. Infect. 2019, 25, 1200–1212. [Google Scholar] [CrossRef]
- Hassan, I.; Powell, G.; Sidhu, M.; Hart, W.M.; Denning, D.W. Excess mortality, length of stay and cost attributable to candidaemia. J. Infect. 2009, 59, 360–365. [Google Scholar] [CrossRef]
- McCarty, T.P.; Pappas, P.G. Invasive candidiasis. Infect. Dis. Clin. N. Am. 2016, 30, 103–124. [Google Scholar] [CrossRef]
- Diekema, D.; Arbefeville, S.; Boyken, L.; Kroeger, J.; Pfaller, M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn. Microbiol. Infect. Dis. 2012, 73, 45–48. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Jones, R.N.; Castanheira, M. Regional data analysis of Candida non-albicans strains collected in United States medical sites over a 6-year period, 2006–2011. Mycoses 2014, 57, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species from 1997–2016. Open Forum Infect. Dis. 2019, 6 (Suppl. 1), S79–S94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.A.; Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 2014, 4, a019778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciurea, C.N.; Kosovski, I.B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and candidiasis-opportunism versus pathogenicity: A review of the virulence traits. Microorganisms 2020, 8, 857. [Google Scholar] [CrossRef]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20 (Suppl. 6), 5–10. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Ahmad, S.; Al-Sweih, N.; Mokaddas, E.; Al-Banwan, K.; Alfouzan, W.; Al-Obaid, I.; Al-Obaid, K.; Asadzadeh, M.; Jeragh, A.; et al. Changing trends in epidemiology and antifungal susceptibility patterns of six bloodstream Candida species isolates over a 12-year period in Kuwait. PLoS ONE 2019, 14, e0216250. [Google Scholar]
- Khan, Z.U.; Al-Sweih, N.A.; Ahmad, S.; Al-Kazemi, N.; Khan, S.; Joseph, L.; Chandy, R. Outbreak of fungemia among neonates caused by Candida haemulonii resistant to amphotericin B, itraconazole, and fluconazole. J. Clin. Microbiol. 2007, 45, 2025–2027. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Khan, Z.; Al-Sweih, N.; Alfouzan, W.; Joseph, L.; Asadzadeh, M. Candida kefyr in Kuwait: Prevalence, antifungal drug susceptibility and genotypic heterogeneity. PLoS ONE 2020, 15, e0240426. [Google Scholar]
- Arastehfar, A.; Lass-Flörl, C.; Garcia-Rubio, R.; Daneshnia, F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The quiet and underappreciated rise of drug-resistant invasive fungal pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef]
- Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, diagnosis, pathogenesis, antifungal susceptibility and infection control measures to combat the spread of infections in healthcare facilities. Microorganisms 2021, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Quindos, G. Epidemiology of candidaemia and invasive candidiasis. A changing face. Rev. Iberoam. Micol. 2014, 31, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk. Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchiesi, F.; Orsetti, E.; Mazzanti, S.; Trave, F.; Salvi, A.; Nitti, C.; Manso, E. Candidemia in the elderly: What does it change? PLoS ONE 2017, 12, e0176576. [Google Scholar] [CrossRef] [Green Version]
- Pammi, M.; Holland, L.; Butler, G.; Gacser, A. Candida parapsilosis is a significant neonatal pathogen: A systematic review and meta-analysis. Pediatr. Infect. Dis. J. 2014, 32, e206. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Ahmad, S. Candida auris: An emerging multidrug-resistant pathogen of global significance. Clin. Med. Res. Pract. 2017, 7, 240–248. [Google Scholar] [CrossRef]
- Khan, Z.; Ahmad, S.; Benwan, K.; Purohit, P.; Al-Obaid, I.; Bafna, R.; Emara, M.; Mokaddas, E.; Abdullah, A.A.; Al-Obaid, K.; et al. Invasive Candida auris infections in Kuwait hospitals: Epidemiology, antifungal treatment and outcome. Infection 2018, 46, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Khan, Z.U.; Ahmad, S.; Al-Sweih, N.; Joseph, L.; Alfouzan, F.; Asadzadeh, M. Increasing prevalence, molecular characterization and antifungal drug susceptibility of serial Candida auris isolates in Kuwait. PLoS ONE 2018, 13, e0195743. [Google Scholar] [CrossRef] [Green Version]
- Jamal, W.Y.; Ahmad, S.; Khan, Z.U.; Rotimi, V.O. Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of clinically significant yeasts. Int. J. Infect. Dis. 2014, 26, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Obaid, K.; Asadzadeh, M.; Ahmad, S.; Khan, Z. Population structure and molecular genetic characterization of clinical Candida tropicalis isolates from a tertiary-care hospital in Kuwait reveal infections with unique strains. PLoS ONE 2017, 12, e0182292. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, M.; Ahmad, S.; Hagen, F.; Meis, J.F.; Al-Sweih, N.; Khan, Z. Simple, low-cost detection of Candida parapsilosis complex isolates and molecular fingerprinting of Candida orthopsilosis strains in Kuwait by ITS region sequencing and amplified fragment length polymorphism analysis. PLoS ONE 2015, 10, e0142880. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Ahmad, S.; Al-Sweih, N.; Khan, S.; Joseph, L. Candida lusitaniae in Kuwait: Prevalence, antifungal susceptibility and role in neonatal fungemia. PLoS ONE 2019, 14, e0213532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.U.; Ahmad, S.; Hagen, F.; Fell, J.W.; Kowshik, T.; Chandy, R.; Boekhout, T. Cryptococcus randhawai sp. nov., a novel anamorphic basidiomycetous yeast isolated from tree trunk hollow of Ficus religiosa (peepal tree) from New Delhi, India. Antonie Leeuwenhoek 2010, 97, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standard Institute. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 1st ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Lass-Flörl, C.; Arendrup, M.C.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M.; Donnelly, P.; Hope, W.; European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing. EUCAST technical note on Amphotericin B. Clin. Microbiol. Infect. 2011, 17, E27–E29. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Antifungal Susceptibility Testing and Interpretation. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html (accessed on 30 June 2021).
- Asadzadeh, M.; Ahmad, S.; Al-Sweih, N.; Khan, Z. Epidemiology and molecular basis of resistance to fluconazole among clinical Candida parapsilosis isolates in Kuwait. Microb. Drug Resist. 2017, 23, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Khan, Z.; Al-Sweih, N.; Alfouzan, W.; Joseph, L. Candida auris in various hospitals across Kuwait and their susceptibility and molecular basis of resistance to antifungal drugs. Mycoses 2020, 63, 104–112. [Google Scholar] [CrossRef]
- Al-Baqsami, Z.; Ahmad, S.; Khan, Z. Antifungal drug susceptibility, molecular basis of resistance to echinocandins and molecular epidemiology of fluconazole resistance among clinical Candida glabrata isolates in Kuwait. Sci. Rep. 2020, 10, 6238. [Google Scholar] [CrossRef]
- Al-Haqqan, A.; Al-Sweih, N.; Ahmad, S.; Khan, S.; Joseph, L.; Varghese, S.; Khan, Z. Azole-resistant Candida blankii as a newly recognized cause of bloodstream infection. New Microbes New Infect. 2018, 26, 25–29. [Google Scholar] [CrossRef]
- Alobaid, K.; Abdullah, A.A.; Ahmad, S.; Joseph, L.; Khan, Z. Magnusiomyces capitatus fungemia: The value of direct microscopy in early diagnosis. Med. Mycol. Case Rep. 2019, 25, 32–34. [Google Scholar] [CrossRef]
- Al-Obaid, K.; Ahmad, S.; Joseph, L.; Khan, Z. Lodderomyces elongisporus: A bloodstream pathogen of greater clinical significance. New Microbes New Infect. 2018, 26, 20–24. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, Z. Invasive candidiasis: A review of nonculture-based laboratory diagnostic methods. Indian J. Med. Microbiol. 2012, 30, 264–269. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Fuursted, K.; Gahrn-Hansen, B.; Schønheyder, H.C.; Knudsen, J.D.; Jensen, I.M.; Bruun, B.; Christensen, J.J.; Johansen, H.K. Semi-national surveillance of fungaemia in Denmark 2004–2006: Increasing incidence of fungaemia and numbers of isolates with reduced azole susceptibility. Clin. Microbiol. Infect. 2008, 14, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Al Bikai, A.; Rafei, R.; Mallat, H.; Dabboussi, F.; Hamze, M. Update on invasive fungal infections in the Middle Eastern and North African region. Braz. J. Microbiol. 2020, 51, 1771–1789. [Google Scholar] [CrossRef]
- Borjian Boroujeni, Z.; Shamsaei, S.; Yarahmadi, M.; Getso, M.I.; Salimi Khorashad, A.; Haghighi, L.; Raissi, V.; Zareei, M.; Saleh Mohammadzade, A.; Moqarabzadeh, V.; et al. Distribution of invasive fungal infections: Molecular epidemiology, etiology, clinical conditions, diagnosis and risk factors: A 3-year experience with 490 patients under intensive care. Microb. Pathog. 2021, 152, 104616. [Google Scholar] [CrossRef]
- Ahmad, S.; Mokaddas, E.; Al-Mutairi, N.M. Prevalence of tuberculosis and multidrug-resistant tuberculosis in the Middle East Region. Expert Rev. Anti Infect. Ther. 2018, 16, 709–721. [Google Scholar] [CrossRef]
- Iqbal, J.; Ahmad, S.; Sher, A.; Al-Awadhi, M. Current epidemiological characteristics of imported malaria, vector control status and malaria elimination prospects in the Gulf Cooperation Council (GCC) Countries. Microorganisms 2021, 9, 1431. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Khan, Z.; Hagen, F.; Meis, J.F. Occurrence of triazole-resistant Aspergillus fumigatus with TR34/L98H mutations in outdoor and hospital environment in Kuwait. Environ. Res. 2014, 133, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, M.; Ahmad, S.; Al-Sweih, N.; Khan, Z. Molecular fingerprinting studies do not support intrahospital transmission of Candida albicans among candidemia patients in Kuwait. Front. Microbiol. 2017, 8, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Ami, R.; Rahav, G.; Elinav, H.; Kassis, I.; Shalit, I.; Gottesman, T.; Megged, O.; Weinberger, M.; Ciobotaro, P.; Shitrit, P.; et al. Distribution of fluconazole-resistant Candida bloodstream isolates among hospitals and inpatient services in Israel. Clin. Microbiol. Infect. 2013, 19, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Tsay, S.V.; Mu, Y.; Williams, S.; Epson, E.; Nadle, J.; Bamberg, W.M.; Barter, D.M.; Johnston, H.L.; Farley, M.M.; Harb, S.; et al. Burden of Candidemia in the United States, 2017. Clin. Infect. Dis. 2020, 71, e449–e453. [Google Scholar] [CrossRef] [PubMed]
- Puig-Asensio, M.; Padilla, B.; Garnacho-Montero, J.; Zaragoza, O.; Aguado, J.M.; Zaragoza, R.; Montejo, M.; Muñoz, P.; Ruiz-Camps, I.; Cuenca-Estrella, M.; et al. Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: A population-based surveillance in Spain. Clin. Microbiol. Infect. 2014, 20, O245–O254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lausch, K.R.; Søgaard, M.; Rosenvinge, F.S.; Johansen, H.K.; Boysen, T.; Røder, B.; Mortensen, K.L.; Nielsen, L.; Lemming, L.; Olesen, B.; et al. High incidence of candidaemia in a nationwide cohort: Underlying diseases, risk factors and mortality. Int. J. Infect. Dis. 2018, 76, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajjeh, R.A.; Sofair, A.N.; Harrison, L.H.; Lyon, G.M.; Arthington-Skaggs, B.A.; Mirza, S.A.; Phelan, M.; Morgan, J.; Lee-Yang, W.; Ciblak, M.A.; et al. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol. 2004, 42, 1519–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Song, X.; Wu, H.; Zheng, R. Epidemiology, risk factors and outcomes of Candida albicans vs. non-albicans candidaemia in adult patients in Northeast China. Epidemiol. Infect. 2019, 147, e277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Ding, Y.; Tian, G.; Yang, K.; Deng, J.; Li, G.; Liu, J. A seven-year surveillance study of the epidemiology, antifungal susceptibility, risk factors and mortality of candidaemia among paediatric and adult inpatients in a tertiary teaching hospital in China. Antimicrob. Resist. Infect. Control 2020, 9, 133. [Google Scholar] [CrossRef]
- Ricotta, E.E.; Lai, Y.L.; Babiker, A.; Strich, J.R.; Kadri, S.S.; Lionakis, M.S.; Prevots, D.R.; Adjemian, J. Invasive candidiasis species distribution and trends, United States, 2009–2017. J. Infect. Dis. 2021, 223, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Chayakulkeeree, M.; Denning, D.W. Serious fungal infections in Thailand. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Odds, F.C.; Hanson, M.F.; Davidson, A.D.; Jacobsen, M.D.; Wright, P.; Whyte, J.A.; Gow, N.A.R.; Jones, B.L. One year prospective survey of Candida bloodstream infections in Scotland. J. Med. Microbiol. 2007, 56, 1066–1075. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Feng, X.; Liu, Y.; Wang, S.; Zhu, X.; Chen, Q.; Pan, S. Candidemia: Incidence rates, types of species, and risk factors at a tertiary care academic hospital in China. Int. J. Infect. Dis. 2014, 22, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Lee, E.; Kwak, Y.G.; Yoo, H.M.; Choi, J.Y.; Kim, S.R.; Shin, M.J.; Yoo, S.Y.; Cho, N.H.; Choi, Y.H.; et al. Trends in the epidemiology of candidemia in intensive care units from 2006 to 2017: Results from the Korean National Healthcare-Associated Infections Surveillance System. Front. Med. 2020, 7, 606976. [Google Scholar] [CrossRef]
- Tan, B.H.; Chakrabarti, A.; Li, R.Y.; Patel, A.K.; Watcharananan, S.P.; Liu, Z.; Chindamporn, A.; Tan, A.L.; Sun, P.L.; Wu, U.I.; et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clin. Microbiol. Infect. 2015, 21, 946–953. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Jillwin, J.; Iyer, R.; Sharma, A.; Harish, B.N.; Roy, I.; Kindo, A.J.; et al. Characteristics, outcome and risk factors for mortality of paediatric patients with ICU-acquired candidemia in India: A multicentre prospective study. Mycoses 2020, 61, 1149–1163, Online ahead of print. [Google Scholar] [CrossRef]
- Ngamchokwathana, C.; Chongtrakool, P.; Waesamaae, A.; Chayakulkeeree, M. Risk factors and outcomes of non-albicans Candida bloodstream infection in patients with candidemia at Siriraj Hospital-Thailand’s largest national tertiary referral hospital. J. Fungi 2021, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Hasan, F.; Singh, P.K.; Malhotra, R.; Walia, K.; Chowdhary, A. Five-year profile of candidaemia at an Indian trauma centre: High rates of Candida auris blood stream infections. Mycoses 2018, 61, 674–680. [Google Scholar] [CrossRef] [Green Version]
- van Schalkwyk, E.; Mpembe, R.S.; Thomas, J.; Shuping, L.; Ismail, H.; Lowman, W.; Karstaedt, A.S.; Chibabhai, V.; Wadula, J.; Avenant, T.; et al. Epidemiologic shift in candidemia driven by Candida auris, South Africa, 2016–2017. Emerg. Infect. Dis. 2019, 25, 1698–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, R.D.; Revathi, G.; Okinda, N.; Fontaine, M.; Shah, J.; Kagotho, E.; Castanheira, M.; Pfaller, M.A.; Maina, D. Analysis of Candida auris fungemia at a single facility in Kenya. Int. J. Infect. Dis. 2019, 85, 182–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shastri, P.S.; Shankarnarayan, S.A.; Oberoi, J.; Rudramurthy, S.M.; Wattal, C.; Chakrabarti, A. Candida auris candidaemia in an intensive care unit-Prospective observational study to evaluate epidemiology, risk factors, and outcome. J. Crit. Care 2020, 57, 42–48. [Google Scholar] [CrossRef]
- Xiang, M.J.; Liu, J.Y.; Ni, P.H.; Wang, S.; Shi, C.; Wei, B.; Ni, Y.X.; Ge, H.L. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 2013, 13, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Alfouzan, W.; Ahmad, S.; Dhar, R.; Asadzadeh, M.; Almerdasi, N.; Abdo, N.M.; Joseph, L.; de Groot, T.; Alali, W.Q.; Khan, Z.; et al. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J. Fungi 2020, 6, 307. [Google Scholar] [CrossRef]
- Bougnoux, M.E.; Dannaoui, E.; Accoceberry, I.; Angoulvant, A.; Bailly, E.; Botterel, F.; Chevrier, S.; Chouaki, T.; Cornet, M.; Dalle, F.; et al. Multicenter comparison of the Etest and EUCAST methods for antifungal susceptibility testing of Candida isolates to micafungin. Antimicrob. Agents Chemother. 2016, 60, 5088–5091. [Google Scholar] [CrossRef] [Green Version]
- Bienvenu, A.L.; Leboucher, G.; Picot, S. Comparison of fks gene mutations and minimum inhibitory concentrations for the detection of Candida glabrata resistance to micafungin: A systematic review and meta-analysis. Mycoses 2019, 62, 835–846. [Google Scholar] [CrossRef]
- Song, Y.; Chen, X.; Yan, Y.; Wan, Z.; Liu, W.; Li, R. Prevalence and antifungal susceptibility of pathogenic yeasts in China: A 10-year retrospective study in a teaching hospital. Front. Microbiol. 2020, 11, 1401. [Google Scholar] [CrossRef]
- Desnos-Ollivier, M.; Lortholary, O.; Bretagne, S.; Dromer, F. Azole susceptibility profiles of more than 9,000 clinical yeast isolates belonging to 40 common and rare species. Antimicrob. Agents Chemother. 2021, 65, e02615–e02620. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Lu, P.L.; Tan, B.H.; Chakrabarti, A.; Wu, U.I.; Yang, J.H.; Patel, A.K.; Li, R.Y.; Watcharananan, S.P.; Liu, Z.; et al. The epidemiology of non-Candida yeast isolated from blood: The Asia Surveillance Study. Mycoses 2019, 62, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrou, A.A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. The changing spectrum of Saccharomycotina yeasts causing candidemia: Phylogeny mirrors antifungal susceptibility patterns for azole drugs and amphothericin B. FEMS Yeast Res. 2019, 19, foz037. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, A.A.; Pérez-Hansen, A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. Elevated minimum inhibitory concentrations to antifungal drugs prevail in 14 rare species of candidemia-causing Saccharomycotina yeasts. Med. Mycol. 2020, 58, 987–995. [Google Scholar] [CrossRef]
- Jung, I.Y.; Jeong, S.J.; Kim, Y.K.; Kim, H.Y.; Song, Y.G.; Kim, J.M.; Choi, J.Y. A multicenter retrospective analysis of the antifungal susceptibility patterns of Candida species and the predictive factors of mortality in South Korean patients with candidemia. Medicine 2020, 99, e19494. [Google Scholar] [CrossRef]
- Bretagne, S.; Desnos-Ollivier, M.; Sitbon, K.; Lortholary, O.; Che, D.; Dromer, F.; Participants of the YEASTS. No Impact of fluconazole to echinocandins replacement as first-line therapy on the epidemiology of yeast fungemia (hospital-driven active surveillance, 2004–2017, Paris, France). Front. Med. 2021, 8, 641965. [Google Scholar] [CrossRef]
- Lin, H.C.; Lin, H.Y.; Su, B.H.; Ho, M.W.; Ho, C.M.; Lee, C.Y.; Lin, M.H.; Hsieh, H.Y.; Lin, H.C.; Li, T.C.; et al. Reporting an outbreak of Candida pelliculosa fungemia in a neonatal intensive care unit. J. Microbiol. Immunol. Infect. 2013, 46, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, W.; Ding, L.; Yang, L.; Su, J.; Wu, B. Two different clones of Candida pelliculosa bloodstream infection in a tertiary neonatal intensive care unit. J. Infect. Dev. Ctries. 2021, 15, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Stielow, J.B.; Upadhyaya, G.; Singh, P.K.; Singh, A.; Meis, J.F. Candida blankii: An emerging yeast in an outbreak of fungaemia in neonates in Delhi, India. Clin. Microbiol. Infect. 2020, 26, 648.e5–648.e8. [Google Scholar] [CrossRef] [PubMed]
- Al-Sweih, N.; Ahmad, S.; Khan, S.; Joseph, L.; Asadzadeh, M.; Khan, Z. Cyberlindnera fabianii fungemia outbreak in preterm neonates in Kuwait and literature review. Mycoses 2019, 62, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alp, S.; Gulmez, D.; Ayaz, C.M.; Arikan-Akdagli, S.; Akova, M. Fungaemia due to rare yeasts in a tertiary care university centre within 18 years. Mycoses 2020, 63, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Singh, S.; Mandya Rudramurthy, S.; Jayashree, M.; James Peters, N.; Ray, P.; Samujh, R.; Ghosh, A.; Chakrabarti, A. Fungaemia due to rare yeasts in paediatric intensive care units: A prospective study. Mycoses 2021. [Google Scholar] [CrossRef] [PubMed]
Hospital Name | Type of Facility | Catchment Area in Kuwait | No. of Beds | Major Units and/or Specialties Available |
---|---|---|---|---|
Adan | Secondary care | Ahmadi | 826 | MED, SUR, PAE, GAS, PUL, RHE, NEO, CAR, NEU, OBS, and GYN |
KOC | Secondary care | Ahmadi | 300 | MED, SUR, PAE, GAS, PUL, RHE, and NEU |
MAK | Secondary care | Hawally | 726 | MED, SUR, PAE, GAS, PUL, RHE, CAR, and NEU |
Amiri | Secondary care | Capital | 428 | MED, SUR, GAS, PUL, RHE, CAR, and NEU |
Al-Sabah a | Secondary care | Central | 372 | MED, SUR, PUL, RHE, ENT, and OPT |
NBK a | Tertiary care | Entire Kuwait | 67 | P-HAE & P-ONC |
Farwaniya | Secondary care | Farwaniya | 868 | MED, SUR, PAE, GAS, PUL, RHE, NEO, NEU, OBS, and GYN |
Jahra | Secondary care | Jahra | 765 | MED, SUR, PAE, GAS, PUL, RHE, NEO, OBS, and GYN |
Maternity | Specialized | Capital, Hawally | 453 | NEO, OBS, and GYN |
Ibn Sina b | Tertiary care | Entire Kuwait | 355 | Burn, NEU, NES, P-HAE, P-SUR, and KT |
KCCC b | Tertiary care | Entire Kuwait | 199 | A-HAE, A-ONC, and BMT |
Chest | Tertiary care | Entire Kuwait | 323 | CAR, Cardiac, Pulmonary and Thoracic specialties |
Al-Razi | Tertiary care | Entire Kuwait | 465 | Orthopedic |
Primer Name | Fragment Location | Nucleotide Position * | Direction | DNA Sequence |
---|---|---|---|---|
CalERG11F1 | N-terminal fragment | −415 to −394 | Forward | 5′-CACGACAACTTTCAAAGATTGA-3′ |
CalERG11R1 | N-terminal fragment | 149 to 127 | Reverse | 5′-AATGGAGCTCTATCTTTTCTTAA-3′ |
CalERG11F2 | Internal fragment 1 | −93 to −71 | Forward | 5′-AAAGAAAGGGAATTCAATCGTTA-3′ |
CalERG11R2 | Internal fragment 1 | 576 to 554 | Reverse | 5′-TTGAGTTTTCATAACATTGGCAA-3′ |
CalERG11F3 | Internal fragment 2 | 440 to 462 | Forward | 5′-AATTTGCTTTGACTACTGATTCA-3′ |
CalERG11R3 | Internal fragment 2 | 1043 to 1021 | Reverse | 5′-AAATCACCACCTTTTTCTTTCAA-3′ |
CalERG11F4 | Internal fragment 3 | 909 to 931 | Forward | 5′-TATTCTTATGGGTGGTCAACATA-3′ |
CalERG11R4 | Internal fragment 3 | 1445 to 1424 | Reverse | 5′-GTTCCCAATTGAACATAAGCAA-3′ |
CalERG11F5 | C-terminal fragment | 1315 to 1337 | Forward | 5′-TTTAACTCTTCTGATGAAGTTGA-3′ |
CalERG11R5 | C-terminal fragment | 1762 to 1739 | Reverse | 5′-ATTGAGTCATCCTAACAATTACAA-3′ |
Hospital | Total No. of | Gender | No. Candidemia of Patients of Different Age (years) | Hospital Unit | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Patients | Male | Female | <1 | ≥1–19 | ≥20–49 | ≥50–64 | ≥65 | ICU | Ward | |
Adan | 38 | 24 a | 13 a | 10 | 3 | 10 | 2 | 13 | 22 | 16 |
Mubaral Al-Kabeer | 36 | 17 | 19 | 0 | 5 | 3 | 4 | 24 | 5 | 31 |
Amiri | 14 | 5 | 9 | 0 | 0 | 2 | 2 | 10 | 3 | 11 |
Al-Sabah | 21 | 16 | 5 | 0 | 3 | 4 | 3 | 10 | 9 a | 11 a |
Ibn Sina | 18 | 9 | 9 | 0 a | 2 a | 7 a | 4 a | 4 a | 10 | 8 |
Maternity | 33 | 16 | 17 | 33 | 0 | 0 | 0 | 0 | 33 | 0 |
Jahra | 15 | 8 | 7 | 2 | 7 | 1 | 1 | 4 | 8 | 7 |
Farwaniya | 33 | 18 | 15 | 3 | 1 | 8 | 6 | 15 | 17 | 16 |
Others * | 15 | 9 | 6 | 0 | 1 | 3 | 4 | 7 | 8 | 7 |
Age (in years) of Candidemia Patients | Candida Species Isolates Identified as | |||||
---|---|---|---|---|---|---|
C. albicans, n = 74 | C. parapsilosis,n = 54 | C. tropicalis, n = 35 | C. auris, n = 33 | C. glabrata, n = 32 | Others a, n = 11 | |
<1 | 27 | 13 | 2 | 0 | 6 | 7 |
≥1–19 | 6 | 9 | 2 | 1 | 0 | 0 |
≥20–49 | 11 | 7 | 10 | 7 | 8 | 0 |
≥50–64 | 11 | 2 | 4 | 5 | 4 | 1 |
≥65 | 19 | 23 | 16 | 20 | 14 | 3 |
Unknown | 0 | 0 | 1 | 0 | 0 | 0 |
Hospital Name | Unit | No. of Candidemic Episodes Caused by | Total | |||||
---|---|---|---|---|---|---|---|---|
C. albicans | C. parapsilosis | C. tropicalis | C. auris | C. glabrata | Other Candida Species a | |||
Adan | ICU | 12 | 2 | 1 | 1 | 6 | 0 | 22 |
Ward | 3 | 5 | 3 | 1 | 3 | 1 | 16 | |
Mubarak Al-Kabeer | ICU | 2 | 1 | 0 | 0 | 1 | 2 | 6 |
Ward | 11 | 13 | 7 | 0 | 4 | 1 | 36 | |
Amiri | ICU | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
Ward | 3 | 1 | 5 | 2 | 3 | 0 | 14 | |
Al-Sabah | ICU | 1 | 1 | 1 | 8 | 1 | 0 | 12 |
Ward | 1 | 3 | 2 | 6 | 0 | 0 | 12 | |
Ibn-Sina | ICU | 2 | 2 | 3 | 3 | 0 | 0 | 10 |
Ward | 0 | 3 | 4 | 1 | 0 | 0 | 8 | |
Maternity | ICU | 18 | 8 | 0 | 0 | 4 | 4 | 34 |
Ward | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Jahra | ICU | 2 | 3 | 2 | 0 | 1 | 1 | 9 |
Ward | 4 | 1 | 1 | 0 | 0 | 0 | 6 | |
Farwaniya | ICU | 5 | 2 | 2 | 7 | 1 | 1 | 18 |
Ward | 4 | 3 | 2 | 4 | 5 | 0 | 18 | |
Others * | ICU | 6 | 5 | 0 | 0 | 2 | 1 | 14 |
Ward | 0 | 1 | 0 | 0 | 1 | 0 | 2 | |
Total | 74 | 54 | 35 | 33 | 32 | 11 | 239 |
Candida Species | Antifungal Drug | MIC Range (μg/mL) | GM ± SD | Resistant, n (%) |
---|---|---|---|---|
C. albicans (n = 74) | Amphotericin B | 0.012–0.19 | 0.05 ± 0.04 | 0 |
Fluconazole | 0.047–8 | 0.58 ± 1.14 | 1 (1.4) | |
Caspofungin | 0.003–0.19 | 0.06 ± 0.056 | 0 | |
Voriconazole | 0.002–1 | 0.03 ± 0.13 | 1 (1.4) | |
C. parapsilosis (n = 54) | Amphotericin B | 0.002–0.5 | 0.05 ± 0.13 | 0 |
Fluconazole | 0.19–256 | 1.43 ± 39.91 | 9 (16.7) | |
Caspofungin | 0.064–1.5 | 0.32 ± 0.2 | 0 | |
Voriconazole | 0.002–1 | 0.04 ± 0.21 | 1 (1.9) | |
C. tropicalis (n = 35) | Amphotericin B | 0.002–0.5 | 0.115 ± 0.123 | 0 |
Fluconazole | 0.19–1.5 | 0.7 ± 0.36 | 0 | |
Caspofungin | 0.004–0.25 | 0.08 ± 0.06 | 0 | |
Voriconazole | 0.012–0.19 | 0.07 ± 0.05 | 0 | |
C. auris (n = 33) | Amphotericin B | 0.047–2 | 0.855 ± 0.419 | 9 (27.3) |
Fluconazole | 32–256 | 212.66 ± 62.13 | 33 (100) | |
Caspofungin | 0.016–0.5 | 0.24 ± 0.14 | 0 | |
Voriconazole | 0.047–3 | 0.59 ± 0.89 | 6 (18.1) | |
C. glabrata (n = 32) | Amphotericin B | 0.047–0.75 | 0.19 ± 0.2 | 0 |
Fluconazole | 3–256 | 13.91 ± 71.38 | 4 (12.5) | |
Caspofungin | 0.012–0.38 | 0.11 ± 0.07 | 1 * (3) | |
Voriconazole | 0.064–16 | 0.28 ± 2.92 | 4 (12.5) |
Patient No. | Patients Details | Date of Onset of Fungemia | Isolate No. | Candida or Yeast spp. | Etest MIC (µg/mL) for | Antifungal Treatment | Outcome | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hospital | Unit | Gender | Age | AMB | FLU | VOR | CFG | |||||||
1 | MAK | Ward | Female | 77 Years | 18.01.2018 | Kw217/1/18 | C. krusei | 0.25 | 8 | 0.125 | 0.25 | CFG, 14 days | Discharged, 22.07.2018 | This study |
2 | MAK | ICU | Female | 58 Years | 16.04.2018 | Kw183/4/18 | C. krusei ** | 0.75 | 48 | 0.25 | 0.25 | CFG, 6 days | Expired, 24.04.2018 | This study |
3 | Maternity | ICU | Female | 5 Days | 07.10.2018 | Kw136/10/18 | C. krusei | 0.004 | 64 | 0.25 | 0.094 | L-AMB, 14 days | Not available | This study |
4 | KOC | ICU | Male | 73 Years | 19.08.2018 | Kw210/8/18 | C. krusei | 0.25 | 32 | 0.19 | 0.19 | Not available | Not available | This study |
5 | Maternity | ICU | Male | 15 Days | 05.12.2018 | Kw94/12/18 | C. lusitaniae | 0.016 | 0.25 | 0.012 | 0.032 | L-AMB, 14 days | Discharged, 19.12.2018 | This study |
6 | Farwaniya | ICU | Female | 28 Days | 30.12.2018 | Kw39/1/2019 | C. lusitaniae | 0.016 | 0.38 | 0.016 | 0.008 | L-AMB, 14 days; CFG, 15 days | Discharged, 18.02.2019 | This study |
7 | Jahra | ICU | Male | 9 Days | n. A. | Kw51/6/18 | C. lusitaniae | 0.047 | 0.25 | 0.006 | 0.125 | L-AMB, 21 days | Discharged, 29.07.2018 | This study |
8 | Maternity | ICU | Male | 4 Months | 14.03.2018 | Kw142/3/18 | C. blankii | 0.125 | 12 | 0.38 | 0.25 | L-AMB, 14 days | Discharged, 06.12.2018 | [42] |
9 | Adan | Ward | Male | 5 Months | 17.05.2018 | Kw205/5/18 | C. guilliermondii | 0.032 | 4 | 0.094 | 0.38 | Not available | Not available | This study |
10 | Maternity | ICU | Male | 3 Days | 21.05.2018 | Kw251/5/2018 | C. pelliculosa | 0.023 | 6 | 0.19 | 0.032 | L-AMB, 14 days | Discharged, 06.12.2018 | This study |
11 | MAK | ICU | Female | 76 Years | 14.08.2018 | Kw152/8/18 | C. dubliniensis | 0.016 | 0.38 | 0.064 | 0.01 | CFG, 3 days | Expired, 26.08.2018 | This study |
12 | Maternity | ICU | Male | 1 Month | 14.03.2018 | Kw80/4/18 | C. fabianii | 0.25 | 2 | 0.125 | 0.38 | L-AMB + CFG, 14 days; FLU + CFG, 14 days | Discharged, 28.05.2018 | This study |
13 | Amiri | ICU | Male | 54 Years | 26.06.2018 | Kw146/7/18 | C. fabianii | 0.5 | 2 | 0.064 | 0.094 | None * | Expired, 27.06.2018 | This study |
14 | Maternity | ICU | Male | 8 Days | 28.07.2018 | Kw303/7/18 | C. fabianii | 0.064 | 6 | 0.19 | 0.047 | L-AMB, 14 days | Not available | This study |
15 | Maternity | ICU | Male | 3 Months | 09.09.2018 | Kw106/9/18 | C. fabianii | 0.5 | 1.5 | 0.094 | 0.094 | L-AMB, 6 weeks | Discharged, 27.03.2019 | This study |
16 | MAK | ICU | Female | 67 Years | 20.09.2018 | Kw159/9/18 | M. capitatus | 1.5 | 12 | 0.5 | 32 | None * | Expired, 21.09.2018 | [43] |
17 | Amiri | ICU | Female | 85 Years | 03.06.2018 | Kw86/6/18 | M. capitatus | 0.5 | 3 | 0.19 | 32 | None * | Expired, 06.06.2018 | [43] |
18 | MAK | Ward | Female | 71 Years | 21.02.2018 | Kw261/2/18 | L. elongisporus | 0.012 | 0.125 | 0.004 | 0.064 | CFG, One dose only | Expired, 22.02.2018 | [44] |
19 | Amiri | Ward | Female | 79 Years | 25.10.2018 | Kw25/11/18 | K. ohmeri | 0.008 | 256 | 0.19 | 0.19 | None * | Expired, 27.10.2018 | This study |
20 | Adan | Ward | Female | 28 Days | 29.10.2018 | Kw162/11/18 | R. minuta | 6 | 256 | 2 | 32 | Not available | Not available | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alobaid, K.; Ahmad, S.; Asadzadeh, M.; Mokaddas, E.; Al-Sweih, N.; Albenwan, K.; Alfouzan, W.; Al-Obaid, I.; Jeragh, A.; Al-Roomi, E.; et al. Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study. J. Fungi 2021, 7, 673. https://doi.org/10.3390/jof7080673
Alobaid K, Ahmad S, Asadzadeh M, Mokaddas E, Al-Sweih N, Albenwan K, Alfouzan W, Al-Obaid I, Jeragh A, Al-Roomi E, et al. Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study. Journal of Fungi. 2021; 7(8):673. https://doi.org/10.3390/jof7080673
Chicago/Turabian StyleAlobaid, Khaled, Suhail Ahmad, Mohammad Asadzadeh, Eiman Mokaddas, Noura Al-Sweih, Khalifa Albenwan, Wadha Alfouzan, Inaam Al-Obaid, Ahlam Jeragh, Ebtihal Al-Roomi, and et al. 2021. "Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study" Journal of Fungi 7, no. 8: 673. https://doi.org/10.3390/jof7080673
APA StyleAlobaid, K., Ahmad, S., Asadzadeh, M., Mokaddas, E., Al-Sweih, N., Albenwan, K., Alfouzan, W., Al-Obaid, I., Jeragh, A., Al-Roomi, E., Khan, Z., Joseph, L., & Varghese, S. (2021). Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study. Journal of Fungi, 7(8), 673. https://doi.org/10.3390/jof7080673