Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Experimental Design and Sporocarp Sampling
2.3. Sporocarp Identification
2.4. Soil Sampling and Analysis
2.5. Statistical Analysis
- i and j are the two sites,
- Si is the total number of species counted on site i,
- Sj is the total number of species counted on site j,
- Cij is the sum of only the lesser counts for each species found in both sites.
3. Results
3.1. Macrofungal Taxa Diversity and Richness
3.2. Sporocarp Production
3.3. Macrofungal Taxa Composition and Edaphic Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badege, B. Deforestation and land degradation in the Ethiopian highlands: A strategy for physical recovery. Northeast Afr. Stud. 2001, 8, 7–26. [Google Scholar]
- Jaleta, D.; Mbilinyi, B.; Mahoo, H.; Lemenih, M. Eucalyptus expansion as relieving and provocative tree in Ethiopia. J. Agric. Ecol. Res. Int. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Bekele, M. Forest Plantations and Woodlots in Ethiopia; African Forest Forum: Nairobi, Kenya, 2011; Volume 1, p. 52. [Google Scholar]
- Zewdie, M.; Olsson, M.; Verwijst, T. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass Bioenergy 2009, 33, 421–428. [Google Scholar] [CrossRef]
- Tesfaye, M.A.; Gardi, O.; Anbessa, T.B.; Blaser, J. Aboveground biomass, growth and yield for some selected introduced tree species, namely Cupressus lusitanica, Eucalyptus saligna and Pinus patula in Central Highlands of Ethiopia. J. Ecol. Environ. 2020, 44, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bekele, M.; Lemenih, M. Participatory Forest Management Best Practices, Lesson Learnt and Participatory Forest Management Best Practices, Lesson Learnt and challenges encountered: The Ethiopian and Tanzanian Experiences; Farm Africa/SOS-Sahel: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Dejene, T.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Fungal diversity and succession following stand development in Pinus patula Schiede ex Schltdl. & Cham. plantations in Ethiopia. For. Ecol. Manag. 2017, 395, 9–18. [Google Scholar] [CrossRef]
- Hvidberg-Hansen, H. The growth of some exotic forest trees in the Munessa forest, Ethiopia. Commonw. For. Assoc. 1978, 57, 181–189. [Google Scholar]
- Mesfin, D.; Sterba, H. A yield table model for the growth of pinus patula in ethiopia. J. Trop. For. Sci. 1996, 9, 221–241. [Google Scholar]
- Gezahgne, A. Diseases of Exotic Plantation Forestry Trees in Ethiopia. Ph.D. Thesis, University of Pretoria Pretoria, Pretoria, South Africa, 2003. [Google Scholar]
- Halling, R.E. Ectomycorrhizae: Co-Evolution, Significance, and biogeography. Ann. Missouri Bot. Gard. 2001, 88, 5. [Google Scholar] [CrossRef]
- Egli, S. Mycorrhizal mushroom diversity and productivity—An indicator of forest health? Ann. For. Sci. 2011, 68, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Hall, I.R.; Yun, W.; Amicucci, A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003, 21, 433–438. [Google Scholar] [CrossRef]
- Deacon, J. Fungal Biology, 4th ed.; Blackwell Publishing: Malden, MA, USA; Oxford, UK, 2006. [Google Scholar]
- Westover, K.M.; Bever, J.D. Mechanisms of plant species coexistence: Roles of rhizosphere bacteria and root fungal pathogens. Ecology 2001, 82, 3285–3294. [Google Scholar] [CrossRef]
- Deacon, J. Fungal Biology; John Wiley & Sons: New York, NY, USA, 2009; ISBN 9781405130660. [Google Scholar]
- Ruiz-Almenara, C.; Gándara, E.; Gómez-Hernández, M. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca, Mexico. PeerJ 2019, 7, e8325. [Google Scholar] [CrossRef] [PubMed]
- Boa, E. Wild Edible fungi: A Global Overview of Their Use and Importance to People; FAO: Rome, Italy, 2004; ISBN 9251051577. [Google Scholar]
- Oria-De-Rueda, J.A.; Martín-Pinto, P.; Olaizola, J. Bolete Productivity of cistaceous scrublands in Northwestern Spain. Econ. Bot. 2008, 62, 323–330. [Google Scholar] [CrossRef]
- Tesfaye, M.A.; Bravo-Oviedo, A.; Bravo, F.; Kidane, B.; Bekele, K.; Sertse, D. Selection of tree species and soil management for simultaneous fuelwood production and soil rehabilitation in the Ethiopian central highlands. Land Degrad. Dev. 2015, 26, 665–679. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Kassa, H.; Lemenh, M.; Campbell, B. The role and management of Eucalyptus in Lode Hetosa district, Central Ethiopia. For. Trees Livelihoods 2007, 17, 309–323. [Google Scholar] [CrossRef]
- Paz, C.P.; Gallon, M.; Putzke, J.; Ganade, G. Changes in macrofungal communities following forest conversion into tree plantations in Southern Brazil. Biotropica 2015, 47, 616–625. [Google Scholar] [CrossRef]
- Lei, J.; Du, H.; Duan, A.; Zhang, J. Effect of stand density and soil layer on soil nutrients of a 37-year-old Cunninghamia lanceolata plantation in Naxi, Sichuan Province, China. Sustainability 2019, 11, 5410. [Google Scholar] [CrossRef] [Green Version]
- Soong, J.L.; Janssens, I.A.; Grau, O.; Margalef, O.; Stahl, C.; Van Langenhove, L.; Urbina, I.; Chave, J.; Dourdain, A.; Ferry, B.; et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 2020, 10, 2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ágreda, T.; Cisneros, Ó.; Águeda, B.; Fernández-Toirán, L.M. Age class influence on the yield of edible fungi in a managed Mediterranean forest. Mycorrhiza 2014, 24, 143–152. [Google Scholar] [CrossRef]
- Castaño, C.; Lindahl, B.D.; Alday, J.G.; Hagenbo, A.; Martínez de Aragón, J.; Parladé, J.; Pera, J.; Bonet, J.A. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 2018, 220, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Toirán, L.; Agreda, T.; Olano, J. Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forests in central Spain. Can. J. Bot. 2006, 84, 1249–1258. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, M.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Post-Fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. For. Ecol. Manag. 2013, 289, 48–57. [Google Scholar] [CrossRef]
- Durall, D.M.; Gamiet, S.; Simard, S.W.; Kudrna, L.; Sakakibara, S.M. Effects of clearcut logging and tree species composition on the diversity and community composition of epigeous fruit bodies formed by ectomycorrhizal fungi. Can. J. Bot. 2006, 84, 966–980. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Franklin, J.F.; Lõhmus, A.; Baker, S.C.; Bauhus, J.; Beese, W.; Brodie, A.; Kiehl, B.; Kouki, J.; Pastur, G.M.; et al. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv. Lett. 2012, 5, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Nyland, R.D. Silviculture: Concepts and Applications, 2nd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Trudell, S.A.; Edmonds, R.L. Macrofungus communities correlate with moisture and nitrogen abundance in two old-growth conifer forests, Olympic National Park, Washington, USA. Can. J. Bot. 2004, 82, 781–800. [Google Scholar] [CrossRef]
- Castaño, C.; Dejene, T.; Mediavilla, O.; Geml, J.; Andres, J.; Oria-de-Rueda, J.; Martín-Pinto, P. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 2019, 39, 328–335. [Google Scholar] [CrossRef]
- Kranabetter, J.M.; Friesen, J.; Gamiet, S.; Kroeger, P. Ectomycorrhizal mushroom distribution by stand age in western hemlock—Lodgepole pine forests of northwestern British Columbia. Can. J. For. Res. 2005, 35, 1527–1539. [Google Scholar] [CrossRef]
- Kimaro, A.A.; Timmer, V.R.; Mugasha, A.G.; Chamshama, S.A.O.; Kimaro, D.A. Nutrient use efficiency and biomass production of tree species for rotational woodlot systems in semi-arid Morogoro, Tanzania. Agrofor. Syst. 2007, 71, 175–184. [Google Scholar] [CrossRef]
- Senbeta, F.; Teketay, D. Regeneration of indigenous woody species under the canopies of tree plantations in Central Ethiopia. Trop. Ecol. 2001, 42, 175–185. [Google Scholar]
- Zewdie, A. Comparative Floristic Study on Menagesha Suba State Forest on Years 1980 and 2006. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Duguma, L.A.; Hager, H.; Gruber, M. The community-state forest interaction in Menagesha Suba Area, Ethiopia: The challenges and possible solutions. For. Trees Livelihoods 2009, 19, 111–128. [Google Scholar] [CrossRef]
- Bekele, T. Vegetation Ecology of Remnant Afromontane Forests on the Central Plateau of Shewa, Ethiopia; Opulus Press: Uppsala, Sweden, 1994. [Google Scholar]
- Gassibe, P.V.; Fabero, R.F.; Hernández-Rodríguez, M.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Fungal community succession following wildfire in a Mediterranean vegetation type dominated by Pinus pinaster in Northwest Spain. For. Ecol. Manag. 2011, 262, 655–662. [Google Scholar] [CrossRef]
- Luoma, D.L.; Frenkel, R.E.; Trappe, J.M. Fruiting of hypogeous fungi in Oregon Douglas-Fir forests: Seasonal and habitat variation. Mycologia 1991, 83, 335–353. [Google Scholar] [CrossRef]
- Hiiesalu, I.; Bahram, M.; Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol. 2017, 26, 4846–4858. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, S.; Maciá-Vicente, J.G.; Lotz-Winter, H.; Schleuning, M.; Piepenbring, M. Temporal variation of fungal diversity in a mosaic landscape in Germany. Stud. Mycol. 2018, 89, 95–104. [Google Scholar] [CrossRef]
- Antonin, V. Fungus Flora of Tropical Africa, Volume 1: Monograph of Marasmius, Gloiocephala, Palaeocephala and Setulipes in Tropical Africa; National Botanic Garden of Belgium: Devon, UK, 2007; p. 177. [Google Scholar]
- Hama, O.; Maes, E.; Guissou, M.I.; Ibrahim, D.M.; Barrage, M.; Parra, L.A.; Raspe, O.; De Kesel, A. Agaricus subsaharianus, une nouvelle espèce comestible et consommée au Niger, au Burkina Faso et en Tanzanie. Cryptogamie Mycologie 2010, 31, 221–234. [Google Scholar]
- Heinemann, P. Flore Iconographique des Champignons du Congo, Fasc. 5: Agaricus 1; National Botanic Garden of Belgium: Devon, UK, 1956; Volume 5, pp. 99–119. [Google Scholar]
- Hjortstam, K.; Ryvarden, L. New and interesting wood-inhabiting fungi (Basidiomycotina-Aphyllophorales) from Ethiopia. Mycotaxon 1996, 60, 181–190. [Google Scholar]
- Morris, B. An annotated check-list of the macrofungi of Malawi. Kirkia 1990, 13, 323–364. [Google Scholar]
- Pegler, D. Studies on African Agaricales: II. Kew Bull. 1969, 23, 219–249. [Google Scholar] [CrossRef]
- Rammeloo, J.; Walley, R. The edible fungi of Africa South of the Sahara: A literature Survey. Econ. Bot. 1993, 48, 145. [Google Scholar]
- Singer, R. Marasmius. Flore Inconographique des Champignons du Congo; Fascicule 14; Meise Botanic Garden: Meise, Belgium, 1965; pp. 253–278. [Google Scholar]
- Põlme, S.; Abarenkov, K.; Henrik Nilsson, R.; Lindahl, B.D.; Clemmensen, K.E.; Kauserud, H.; Nguyen, N.; Kjøller, R.; Bates, S.T.; Baldrian, P.; et al. Fungal traits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020, 105, 1–16. [Google Scholar] [CrossRef]
- Bonet, J.A.; Fischer, C.R.; Colinas, C. The relationship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forests of the central Pyrenees. For. Ecol. Manag. 2004, 203, 157–175. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 34, 29–38. [Google Scholar] [CrossRef]
- Kim, H.T. Soil Sampling, Preparation and Analysis; CRC Press: Boca Raton, FL, USA, 1996; pp. 139–145. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Kent, M.; Coker, P. Vegetation Description and Analysis: A Practical Approach; Belhaven Press: London, UK, 1993; ISBN 0471948101. [Google Scholar]
- Magurran, A.E. Ecological Diversity and its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Kindt, R.; Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2005; ISBN 92-9059-179-X. [Google Scholar]
- R Core Team A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. 2016. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 21 September 2020).
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, UK, 2014. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Parravicini, V.; Micheli, F.; Montefalcone, M.; Villa, E.; Morri, C.; Bianchi, C.N. Rapid assessment of epibenthic communities: A comparison between two visual sampling techniques. J. Exp. Mar. Bio. Ecol. 2010, 395, 21–29. [Google Scholar] [CrossRef]
- Dejene, T.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Fungal diversity and succession under Eucalyptus grandis plantations in Ethiopia. For. Ecol. Manag. 2017, 405, 179–187. [Google Scholar] [CrossRef]
- Mueller, G.M.; Schmit, J.P. Fungal biodiversity: What do we know? what can we predict? Biodivers. Conserv. 2007, 16, 1–5. [Google Scholar] [CrossRef]
- Green, J.; Bohannan, B.J.M. Spatial scaling of microbial biodiversity. Trends Ecol. Evol. 2006, 21, 501–507. [Google Scholar] [CrossRef]
- Megersa, S.; Gure, A.; Feleke, S.; Alemu, M. Macrofungi species richness and diversity in Dagaga and Gambo plantation and natural forests of Arsi Forest Enterprise, Oromia, Ethiopia. Imp. J. Interdiscip. Res. 2017, 3, 1681–1686. [Google Scholar]
- Gassibe, P.V.; Oria-de-Rueda, J.A.; Martín-Pinto, P.P. pinaster under extreme ecological conditions provides high fungal production and diversity. For. Ecol. Manag. 2015, 337, 161–173. [Google Scholar] [CrossRef]
- Mediavilla, O.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Changes in sporocarp production and vegetation following wildfire in a Mediterranean Forest Ecosystem dominated by Pinus nigra in Northern Spain. For. Ecol. Manag. 2014, 331, 85–92. [Google Scholar] [CrossRef]
- Oria-de-Rueda, J.A.; Hernández-Rodríguez, M.; Martín-Pinto, P.; Pando, V.; Olaizola, J. Could artificial reforestations provide as much production and diversity of fungal species as natural forest stands in marginal Mediterranean areas? For. Ecol. Manag. 2010, 260, 171–180. [Google Scholar] [CrossRef]
- Dove, N.C.; Keeton, W.S. Structural complexity enhancement increases fungal species richness in northern hardwood forests. Fungal Ecol. 2015, 13, 181–192. [Google Scholar] [CrossRef]
- Sysouphanthong, P.; Thongkantha, S.; Zhao, R.; Soytong, K.; Hyde, K.D. Mushroom diversity in sustainable shade tea forest and the effect of fire damage. Biodivers. Conserv. 2010, 19, 1401–1415. [Google Scholar] [CrossRef]
- Pinna, S.; Gévry, M.F.; Côté, M.; Sirois, L. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For. Ecol. Manag. 2010, 260, 294–301. [Google Scholar] [CrossRef]
- Toivanen, T.; Markkanen, A.; Kotiaho, J.S.; Halme, P. The effect of forest fuel harvesting on the fungal diversity of clear-cuts. Biomass Bioenergy 2012, 39, 84–93. [Google Scholar] [CrossRef]
- Pérez-Moreno, J.; Martínez-Reyes, M.; Yescas-Pérez, A.; Delgado-Alvarado, A.; Xoconostle-Cázares, B. Wild mushroom markets in central Mexico and a case study at Ozumba. Econ. Bot. 2008, 62, 425–436. [Google Scholar] [CrossRef]
- Peter, T.; Maria, H.; Albino, Q.; Amarilda, L. Native Mushrooms, Local Knowledge, and Potential for Food and Health in the Peruvian Andes; Global Mountain Action Annual Report; Global Mountain Action: Lima, Peru, 2012. [Google Scholar]
- Elizabeth, M.-E.; Felipe, R.-S.; Maribel, I.-M. Conocimiento popular acerca de la K’allampa de pino (Suillus luteus (L.) Roussel) en la localidad de Alalay, Mizque (Cochabamba, Bolivia): Un ejemplo de diálogo de saberes. Asociacion Etnobiologica Mexicana 2018, 16, 76–86. [Google Scholar]
- Liang, Y.; He, X.; Chen, C.; Feng, S.; Liu, L.; Chen, X.; Zhao, Z.; Su, Y. Influence of plant communities and soil properties during natural vegetation restoration on arbuscular mycorrhizal fungal communities in a karst region. Ecol. Eng. 2015, 82, 57–65. [Google Scholar] [CrossRef]
- Rillig, M.; Aguilar-Trigueros, C.; Joana, B.; Erik, V.; Veresoglou, S.; Anika, L. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 2015, 205, 1385–1388. [Google Scholar] [CrossRef]
- Smith, J.E.; Molina, R.; Huso, M.M.; Luoma, D.L.; McKay, D.; Castellano, M.A.; Lebel, T.; Valachovic, Y. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can. J. Bot. 2002, 80, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Greeshma, A.A.; Sridhar, K.R.; Pavithra, M.; Ghate, S.D. Impact of fire on the macrofungal diversity in scrub jungles of south-west India. Mycology 2016, 7, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroetaveña, C.; La Manna, L.; Alonso, M.V. Variables affecting Suillus luteus fructification in ponderosa pine plantations of Patagonia (Argentina). For. Ecol. Manag. 2008, 256, 1868–1874. [Google Scholar] [CrossRef]
- Gómez-Hernández, M.; Williams-Linera, G. Diversity of macromycetes determined by tree species, vegetation structure, and microenvironment in tropical cloud forests in Veracruz, Mexico. Botany 2011, 89, 203–216. [Google Scholar] [CrossRef]
- Dighton, J.; Poskitt, J.M.; Howard, D.M. Changes in occurrence of Basidiomycete fruit bodies during forest stand development: With specific reference to mycorrhizal species. Trans. Br. Mycol. Soc. 1986, 87, 163–171. [Google Scholar] [CrossRef]
- Wallander, H. Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 2000, 218, 249–256. [Google Scholar] [CrossRef]
- Brundrett, M. Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 1991, 21, 171–313. [Google Scholar]
- Gibson, F.; Deacon, J.W. Experimental study of establishment of ectomycorrhizas in different regions of birch root systems. Trans. Br. Mycol. Soc. 1988, 91, 239–251. [Google Scholar] [CrossRef]
- Jones, M.D.; Durall, D.M.; Cairney, J.W.G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003, 157, 399–422. [Google Scholar] [CrossRef] [Green Version]
- Giachini, A.J.; Oliveira, V.L.; Castellano, M.A.; Trappe, J.M. Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 2000, 92, 1166–1177. [Google Scholar] [CrossRef]
- Chapela, I.H.; Osher, L.J.; Horton, T.R.; Henn, M.R. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol. Biochem. 2001, 33, 1733–1740. [Google Scholar] [CrossRef]
- Mead, D.J. Sustainable Management of Pinus radiata Plantations; FAO Forestry Paper No. 170; FAO: Rome, Italy, 2013. [Google Scholar]
- Kranabetter, J.M.; de Montigny, L.; Ross, G. Effectiveness of green-tree retention in the conservation of ectomycorrhizal fungi. Fungal Ecol. 2013, 6, 430–438. [Google Scholar] [CrossRef]
- Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 2012, 26, 39–60. [Google Scholar] [CrossRef]
- Simard, S.W. The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. For. Ecol. Manag. 2009, 258, S95–S107. [Google Scholar] [CrossRef]
- Crowther, T.W.; Stanton, D.W.G.; Thomas, S.M.; A’Bear, A.D.; Hiscox, J.; Jones, T.H.; Voříšková, J.; Baldrian, P.; Boddy, L. Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology 2013, 94, 2518–2528. [Google Scholar] [CrossRef]
- Koide, R.T.; Fernandez, C.; Malcolm, G. Determining place and process: Functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol. 2014, 201, 433–439. [Google Scholar] [CrossRef]
- Cozzolino, V.; Di Meo, V.; Monda, H.; Spaccini, R.; Piccolo, A. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol. Fertil. Soils 2016, 52, 15–29. [Google Scholar] [CrossRef]
- Boddy, L.; Hynes, J.; Bebber, D.P.; Fricker, M.D. Saprotrophic cord systems: Dispersal mechanisms in space and time. Mycoscience 2009, 50, 9–19. [Google Scholar] [CrossRef]
- Zakaria, A.J.; Boddy, L. Mycelial foraging by Resinicium bicolor: Interactive effects of resource quantity, quality and soil composition. FEMS Microbiol. Ecol. 2002, 40, 135–142. [Google Scholar] [CrossRef]
- Harrington, T.J. Relationships between macrofungi and vegetation in the burren. Biol. Environ. 2003, 103, 147–159. [Google Scholar] [CrossRef]
- Eaton, R.J.; Barbercheck, M.; Buford, M.; Smith, W. Effects of organic matter removal, soil compaction, and vegetation control on Collembolan populations. Pedobiologia 2004, 48, 121–128. [Google Scholar] [CrossRef]
- Wang, Q.-K.; Wang, S.-L. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations. J. For. Res. 2008, 19, 131–135. [Google Scholar] [CrossRef]
- Crabtree, C.D.; Keller, H.W.; Ely, J.S. Macrofungi associated with vegetation and soils at Ha Ha Tonka State Park, Missouri. Mycologia 2010, 102, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, A.; et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 2019, 136, 107521. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Xiang, X.; He, J.-S.; Wang, C.; Cao, G.; Adams, J.; Chu, H. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biol. Fertil. Soils 2016, 52, 1059–1072. [Google Scholar] [CrossRef]
- Shi, L.; Mortimer, P.; Ferry, S.J.W.; Zou, X.-M.; Xu, J.; Feng, W.-T.; Qiao, L. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 2014, 64, 305–315. [Google Scholar] [CrossRef]
Soil Parameter | Stand Age | ||
---|---|---|---|
Young | Medium-Aged | Mature | |
Sand (%) | 65.63 a | 56.97 a | 57.49 a |
Silt (%) | 19.93 a | 15.26 a | 16.72 a |
Clay (%) | 14.44 a | 27.78 b | 25.79 b |
pH-H2O | 5.33 a | 5.54 a | 5.62 a |
Na (meq/100 g soil) | 1.74 a | 2.38 a | 1.79 a |
K (meq/100 g soil) | 0.37 a | 0.73 b | 0.33 a |
Ca (meq/100 g soil) | 22.62 a | 13.70 b | 17.81 a |
Mg (meq/100 g soil) | 6.96 a | 5.71 b | 5.27 b |
CEC (meq/100 g soil) | 41.19 a | 43.49 a | 33.10 b |
N (%) | 0.37 a | 0.52 b | 0.32 a |
P (mg P2O5/kg soil) | 31.04 a | 33.37 a | 23.78 b |
Organic matter (%) | 6.36 a | 8.93 b | 10.14 b |
C/N | 10.74 a | 10.12 a | 15.52 b |
Species | Phylum | Order | Family | G | E | 5y | 14y | 28y |
---|---|---|---|---|---|---|---|---|
Agaricus cf. campestroides Heinem. and Gooss.-Font. | Ba | Agaricales | Agaricaceae | SS | E | x | x | |
Agaricus sp. Fr. | Ba | Agaricales | Agaricaceae | SS | E | x | ||
Armillaria sp. (Fr.) Staude | Ba | Agaricales | Physalacriaceae | LS | E | x | ||
Bovista cf. dermoxantha (Vittad.) De Toni | Ba | Agaricales | Agaricaceae | SS | x | x | ||
Calvatia subtomentosa Dissing and M. Lange | Ba | Agaricales | Agaricaceae | SS | E | x | x | |
Camarophyllopsis sp. Herink | Ba | Agaricales | Hygrophoraceae | SS | x | x | ||
Chlorophyllum cf. brunneum (Farl. and Burt) Vellinga | Ba | Agaricales | Agaricaceae | LS | x | x | x | |
Chlorophyllum molybdites (G. Mey.) Massee | Ba | Agaricales | Agaricaceae | LS | x | x | x | |
Clitocybe sp. (Fr.) Staude | Ba | Agaricales | Tricholomataceae | LS | x | x | ||
Collybia sp. (Fr.) Staude | Ba | Agaricales | Tricholomataceae | MP | x | x | ||
Conocybe sp. Fayod | Ba | Agaricales | Bolbitiaceae | SS | x | |||
Coprinellus domesticus (Bolton) Vilgalys, Hopple and Jacq. Johnson | Ba | Agaricales | Psathyrellaceae | SS | x | x | x | |
Coprinopsis sp. P. Karst. | Ba | Agaricales | Psathyrellaceae | SS | x | x | x | |
Cotylidia sp. Pers. | Ba | Hymenochaetales | Repetobasidiaceae | MS | x | x | x | |
Crepidotus sp. (Fr.) Staude | Ba | Agaricales | Inocybaceae | WS | x | x | x | |
Cyptotrama asprata (Berk.) Redhead and Ginns | Ba | Agaricales | Physalacriaceae | WS | x | x | x | |
Favolus tenuiculus P. Beauv. | Ba | Polyporales | Polyporaceae | WS | x | x | x | |
Galerina marginata (Batsch) Kühner | Ba | Agaricales | Hymenogastraceae | WS | x | x | x | |
Geastrum cf. triplex Jungh. | Ba | Geastrales | Geastraceae | LS | x | x | x | |
Geastrum saccatum Fr. | Ba | Geastrales | Geastraceae | LS | x | x | ||
Geastrum sp1 Pers. | Ba | Geastrales | Geastraceae | LS | x | |||
Geastrum sp2 Pers. | Ba | Geastrales | Geastraceae | LS | x | x | x | |
Gerronema hungo (Henn.) Degreef and Eyi | Ba | Agaricales | Marasmiaceae | WS | x | x | x | |
Gymnopilus pampeanus (Speg.) Singer | Ba | Agaricales | Strophariaceae | WS | E | x | x | x |
Gymnopilus sp. P. Karst. | Ba | Agaricales | Strophariaceae | WS | x | x | ||
Gymnopus foetidus (Sowerby) J. L. Mata and R. H. Petersen | Ba | Agaricales | Omphalotaceae | LS | x | x | ||
Hygrophoropsis aurantiaca (Wulfen) Maire | Ba | Boletales | Hygrophoropsidaceae | LS | E | x | x | x |
Hymenagaricus sp. Heinem. | Ba | Agaricales | Agaricaceae | SS | E | x | x | x |
Hypholoma fasciculare (Huds.) P. Kumm. | Ba | Agaricales | Strophariaceae | WS | x | x | x | |
Infundibulicybe mediterranea Vizzini, Contu and Musumeci | Ba | Agaricales | Tricholomataceae | LS | x | x | x | |
Lactocollybia sp. Singer | Ba | Agaricales | Marasmiaceae | LS | x | x | x | |
Lentinus sp. Fr. | Ba | Polyporales | Polyporaceae | WS | x | x | x | |
Lepiota cf. felina (Pers.) P. Karst. | Ba | Agaricales | Agaricaceae | LS | x | x | ||
Lepiota sp. Singer | Ba | Agaricales | Agaricaceae | LS | x | |||
Lepista sordida (Schumach.) Singer | Ba | Agaricales | Tricholomataceae | LS | E | x | ||
Lepista sordida var. lilacea (Quél.) Bon | Ba | Agaricales | Tricholomataceae | LS | E | x | x | |
Leucoagaricus sp. Locq. ex Singer | Ba | Agaricales | Agaricaceae | SS | E | x | x | x |
Leucocoprinus sp. Pat. | Ba | Agaricales | Agaricaceae | SS | x | x | x | |
Lycoperdon cf. perlatum Pers. | Ba | Agaricales | Agaricaceae | LS | E | x | x | x |
Lycoperdon cf. umbrinum Pers. | Ba | Agaricales | Agaricaceae | LS | E | x | x | x |
Lycoperdon sp. Pers. | Ba | Agaricales | Agaricaceae | LS | E | x | x | x |
Macrolepiota africana (R. Heim) Heinem. | Ba | Agaricales | Agaricaceae | LS | E | x | x | x |
Macrolepiota sp. Singer | Ba | Agaricales | Agaricaceae | LS | E | x | x | x |
Marasmius buzungolo Singer | Ba | Agaricales | Marasmiaceae | LS | x | x | x | |
Marasmius cf. lilacinoalbus Beeli | Ba | Agaricales | Marasmiaceae | LS | x | x | x | |
Marasmius katangensis Singer | Ba | Agaricales | Marasmiaceae | LS | x | x | x | |
Marasmius sp. Fr. | Ba | Agaricales | Marasmiaceae | LS | x | x | x | |
Morchella cf. americana Clowez and C. Matherly | As | Pezizales | Morchellaceae | SS | E | x | x | |
Morchella anatolica Isiloglu, Spooner, Alli and Solak | As | Pezizales | Morchellaceae | SS | E | x | x | |
Mycena sp. (Pers.) Roussel | Ba | Agaricales | Mycenaceae | LS | E | x | x | |
Omphalotus illudens (Schwein.) Bresinsky and Besl | Ba | Agaricales | Marasmiaceae | WS | E | x | x | x |
Pisolithus sp. (Schwein.) Alb. and Schwein. | Ba | Boletales | Sclerodermataceae | ECM | x | x | ||
Pluteus sp. Fr. | Ba | Agaricales | Pluteaceae | LS | x | x | ||
Polyporus badius (Pers.) Schwein. | Ba | Polyporales | Polyporaceae | WS | E | x | x | x |
Polyporus tenuiculus (P. Beauv.) Fr. | Ba | Polyporales | Polyporaceae | WS | E | x | x | x |
Polyporus tuberaster (Jacq. ex Pers.) Fr. | Ba | Polyporales | Polyporaceae | WS | E | x | x | x |
Psathyrella sp. Fr. ex Quél. | Ba | Agaricales | Psathyrellaceae | WS | x | x | x | |
Psilocybe cyanescens Wakef. | Ba | Agaricales | Hymenogastraceae | LS | x | x | x | |
Psilocybe merdaria (Fr.) Ricken | Ba | Agaricales | Hymenogastraceae | LS | x | x | x | |
Ramaria stricta (Pers.) Quél. | Ba | Gomphales | Gomphaceae | ECM | x | x | x | |
Rhizopogon sp. Fr. and Nordholm | Ba | Boletales | Rhizopogonaceae | ECM | x | x | ||
Rhodocybe sp. Maire | Ba | Agaricales | Entolomataceae | LS | x | x | ||
Sarcoscypha cf. macaronesica Baral and Korf | As | Pezizales | Sarcoscyphaceae | WS | x | x | ||
Schizophyllum commune Fr. | Ba | Agaricales | Schizophyllaceae | WS | E | x | x | x |
Scleroderma bovista Fr. | Ba | Boletales | Sclerodermataceae | ECM | x | x | ||
Stereum hirsutum (Willd.) Pers. | Ba | Russulales | Stereaceae | WS | x | x | x | |
Suillus luteus (L.) Roussel | Ba | Boletales | Suillaceae | ECM | E | x | x | x |
Tapinella panuoides (Fr.) E.-J. Gilbert | Ba | Boletales | Tapinellaceae | WS | x | x | x | |
Trametes sp. Fr. | Ba | Polyporales | Polyporaceae | WS | x | x | x | |
Tricholomopsis rutilans (Schaeff.) Singer | Ba | Agaricales | Tricholomataceae | WS | E | x | x | x |
Tylopilus niger (Heinem. and Gooss.-Font.) Wolfe. | Ba | Boletales | Boletaceae | ECM | x | x | ||
Xerula cf. longipes (Quél.) Maire | Ba | Agaricales | Physalacriaceae | PP | x | x | x | |
Xerula sp. Maire | Ba | Agaricales | Physalacriaceae | PP | x | x | x | |
Xylaria hypoxylon (L.) Grev. | As | Xylariales | Xylariaceae | WS | x | x | x | |
Xylaria sp. Hill ex Schrank | As | Xylariales | Xylariaceae | WS | x | x | x | |
Undefined sp1 | Un | Un | Un | Un | x | x | x | |
Undefined sp2 | Un | Un | Un | Un | x | x | x | |
Undefined sp3 | Un | Un | Un | Un | x | x | x | |
Undefined sp4 | Un | Un | Un | Un | x | x | ||
Undefined sp5 | Un | Un | Un | Un | x | |||
Undefined sp6 | Un | Un | Un | Un | x | |||
Undefined sp7 | Un | Un | Un | Un | x | |||
Undefined sp8 | Un | Un | Un | Un | x | |||
Undefined sp9 | Un | Un | Un | Un | x | |||
Undefined sp10 | Un | Un | Un | Un | x | |||
Undefined sp11 | Un | Un | Un | Un | x | x | ||
Undefined sp12 | Un | Un | Un | Un | x | x | x | |
Undefined sp13 | Un | Un | Un | Un | x | x | ||
Undefined sp14 | Un | Un | Un | Un | x | x | ||
Undefined sp15 | Un | Un | Un | Un | x | x | ||
Undefined sp16 | Un | Un | Un | Un | x | x | ||
Undefined sp17 | Un | Un | Un | Un | x | x | x |
Pairwise Comparisons | R Values | p |
---|---|---|
Young and medium-aged stands | 0.889 | 0.001 |
Young and mature stands | 0.815 | 0.001 |
Medium-aged and mature stands | 0.519 | 0.009 |
Variables | Explains % | Contribution % | Pseudo-F | p |
---|---|---|---|---|
OM | 30.4 | 30.4 | 3.1 | 0.01 |
C/N | 19.5 | 19.5 | 2.3 | 0.08 |
CEC | 20.6 | 20.6 | 3.5 | 0.03 |
Species | Individual Contribution to the Dissimilarity | Cumulative Contribution to the Dissimilarity | Edibility Status |
---|---|---|---|
Young and Medium-Aged Stands | |||
Infundibulicybe mediterranea | 4.19 | 4.18 | |
Polyporus tuberaster | 2.83 | 7.01 | E |
Ramaria stricta | 2.79 | 9.81 | |
Tapinella panuoides | 2.72 | 12.52 | |
Lactocollybia sp. | 2.63 | 15.15 | |
Sarcoscypha cf. macaronesica | 2.56 | 17.71 | |
Hygrophoropsis aurantiaca | 2.42 | 20.13 | E |
Undefined1 | 2.11 | 22.24 | |
Hymenagaricus sp. | 1.94 | 24.18 | E |
Undefined3 | 1.94 | 26.12 | |
Stereum hirsutum | 1.89 | 28.01 | |
Undefined13 | 1.86 | 29.87 | |
Young and Mature Stands | |||
Psilocybe cyanescens | 2.39 | 2.39 | |
Pluteus sp. | 2.38 | 4.77 | |
Infundibulicybe mediterranea | 2.34 | 7.11 | |
Conocybe sp. | 2.28 | 9.39 | |
Geastrum triplex | 2.27 | 11.67 | |
Omphalotus illudens | 2.18 | 13.85 | E |
Lactocollybia sp. | 2.13 | 15.98 | |
Scleroderma bovista | 2.04 | 18.03 | |
Ramaria stricta | 1.86 | 19.88 | |
Gymnopus foetidus | 1.72 | 21.60 | |
Schizophyllum commune | 1.71 | 23.31 | E |
Tylopilus niger | 1.69 | 25.00 | E |
Chlorophyllum cf. brunneum | 1.67 | 26.67 | |
Geastrum saccatum | 1.58 | 28.25 | |
Undefined2 | 1.58 | 29.83 | |
Medium-Aged and Mature Stands | |||
Infundibulicybe mediterranea | 3.18 | 3.18 | |
Ramaria stricta | 2.34 | 5.51 | |
Geastrum triplex | 2.22 | 7.73 | |
Lactocollybia sp. | 2.20 | 9.94 | |
Conocybe sp. | 2.13 | 12.07 | |
Polyporus tuberaster | 1.97 | 14.03 | E |
Psilocybe cyanescens | 1.96 | 15.99 | |
Sarcoscypha cf. macaronesica | 1.62 | 17.61 | |
Schizophyllum commune | 1.61 | 19.22 | E |
Undefined1 | 1.59 | 20.81 | |
Marasmius sp. | 1.51 | 22.32 | |
Tapinella panuoides | 1.48 | 23.80 | |
Gymnopus foetidus | 1.43 | 25.23 | |
Undefined17 | 1.42 | 26.66 | |
Pluteus sp. | 1.42 | 28.08 | |
Marasmius cf. lilacinoalbus | 1.40 | 29.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dejene, T.; Worku, E.; Martín-Pinto, P. Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia. J. Fungi 2021, 7, 702. https://doi.org/10.3390/jof7090702
Dejene T, Worku E, Martín-Pinto P. Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia. Journal of Fungi. 2021; 7(9):702. https://doi.org/10.3390/jof7090702
Chicago/Turabian StyleDejene, Tatek, Emanda Worku, and Pablo Martín-Pinto. 2021. "Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia" Journal of Fungi 7, no. 9: 702. https://doi.org/10.3390/jof7090702
APA StyleDejene, T., Worku, E., & Martín-Pinto, P. (2021). Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia. Journal of Fungi, 7(9), 702. https://doi.org/10.3390/jof7090702