A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates
2.2. Gene Sequence Collection and Primer/Probe Set Design
2.3. Primer Specificity and qPCR Conditions
2.4. Assay Conditions
2.5. Production of Infected Plant Material
2.6. Preparation of DNA Standards and PCR Efficiency
2.7. Evaluation of Assay Limit of Detection and Limit of Quantification in Plant Tissue
2.8. Data Analysis from Greenhouse Experiment
3. Results
3.1. Primer and Probe Specificity
3.2. Sensitivity Analysis, Limit of Detection, and Limit of Quantification of the Assay
3.3. Greenhouse Experiment—Validation Assay
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, M.D.; Munkvold, G.P.; Ellis, M.L.; Leandro, L.F.S. Distribution and Frequency of Fusarium species Associated with Soybean Roots in Iowa. Plant Dis. 2013, 97, 1557–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baćanović-Šišić, J.; Šišić, A.; Schmidt, J.H.; Finckh, M.R. Identification and Characterization of Pathogens Associated with Root Rot of Winter Peas Grown under Organic Management in Germany. Eur. J. Plant Pathol. 2018, 151, 745–755. [Google Scholar] [CrossRef]
- Chatterton, S.; Harding, M.W.; Bowness, R.; Mclaren, D.L.; Banniza, S.; Gossen, B.D. Importance and Causal Agents of Root Rot on Field Pea and Lentil on the Canadian Prairies, 2014–2017. Can. J. Plant Pathol. 2019, 41, 98–114. [Google Scholar] [CrossRef]
- Chittem, K.; Mathew, F.M.; Gregoire, M.; Lamppa, R.S.; Chang, Y.W.; Markell, S.G.; Bradley, C.A.; Barasubiye, T.; Goswami, R.S. Identification and Characterization of Fusarium spp. Associated with Root Rots of Field Pea in North Dakota. Eur. J. Plant Pathol. 2015, 143, 641–649. [Google Scholar] [CrossRef]
- Šišić, A.; Baćanović-Šišić, J.; Karlovsky, P.; Wittwer, R.; Walder, F.; Campiglia, E.; Radicetti, E.; Friberg, H.; Baresel, J.P.; Finckh, M.R. Roots of Symptom-Free Leguminous Cover Crop and Living Mulch Species Harbor Diverse Fusarium Communities That Show Highly Variable Aggressiveness on Pea (Pisum sativum). PLoS ONE 2018, 13, e0191969. [Google Scholar] [CrossRef]
- Gaulin, E.; Bottin, A.; Jacquet, C.; Dumas, B. Aphanomyces euteiches and Legumes. In Oomycete Genetics and Genomics. Diversity, Interactions and Research Tools; Lamour, K., Kamoun, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 345–360. [Google Scholar]
- Hwang, S.F.; Chang, K.F. Incidence and Severity of Root Rot Disease Complex of Field Pea in Northeastern Alberta in 1988. Can. Plant Dis. Surv. 1989, 69, 139–141. [Google Scholar]
- Persson, L.; Bødker, L.; Larsson-Wikström, M. Prevalence and Pathogenicity of Foot and Root Rot Pathogens of Pea in Southern Scandinavia. Plant Dis. 1997, 81, 171–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, H.S.; You, M.P.; Khan, T.N.; Barbetti, M.J. Pea Black Spot Disease Complex on Field Pea: Dissecting the Roles of the Different Pathogens in Causing Epicotyl and Root Disease. Eur. J. Plant Pathol. 2016, 144, 595–605. [Google Scholar] [CrossRef]
- Xue, A.G. Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941. Phytopathology 2003, 93, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Schena, L.; Nigro, F.; Ippolito, A.; Gallitelli, D. Real-Time Quantitative PCR: A New Technology to Detect and Study Phytopathogenic and Antagonistic Fungi. Eur. J. Plant Pathol. 2004, 110, 893–908. [Google Scholar] [CrossRef] [Green Version]
- Zitnick-Anderson, K.; Simons, K.; Pasche, J.S. Detection and QPCR Quantification of Seven Fusarium species Associated with the Root Rot Complex in Field Pea. Can. J. Plant Pathol. 2018, 40, 261–271. [Google Scholar] [CrossRef]
- Armstrong-Cho, C.; Tetreault, M.; Banniza, S.; Bhadauria, V.; Morrall, R.A.A. National Coordinator/Coordinateur National. Can. Plant Dis. Surv. 2014, 94, 193–194. [Google Scholar]
- Šišić, A.; Baćanović-Šišić, J.; Schmidt, H.; Finckh, M.R. Root Pathogens Occurring on Pea (Pisum sativum) and Faba Bean (Vicia faba) in Germany. In 30th Scientific-Experts Conference of Agriculture and Food Industry: Answers for Forthcoming Challenges in Modern Agriculture; IFMBE Proceedings; Brka, M., Omanović-Mikličanin, E., Karić, L., Falan, V., Toroman, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 78, pp. 69–75. ISBN 978-3-030-40048-4. [Google Scholar]
- Šišić, A.; Baćanović-Šišić, J.; Finckh, M.R. Molecular Characterization and Aggressiveness of Didymella pinodella Isolates Associated with Root Rot of Field Pea (Pisum sativum). In Proceedings of the 61 Deutsche Pflanzenschutztagung “Herausforderung Pflanzenschutz—Wege in die Zukunft”, University Hohenheim, Stuttgart, Germany, 11–14 September 2018; Volume 461, pp. 326–327. [Google Scholar]
- Farr, D.F.; Rossman, A.Y. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Available online: http://nt.ars-grin.gov/fungaldatabases/ (accessed on 14 December 2021).
- Šišić, A.; Baćanović-Šišić, J.; Schmidt, H.; Finckh, M.R. First Report of Didymella lethalis Associated with Roots of Pea, Subterranean Clover and Winter Vetch in Germany, Switzerland and Italy. Plant Dis. 2018, 102, 2642. [Google Scholar] [CrossRef]
- Chen, Q.; Hou, L.W.; Duan, W.J.; Crous, P.W.; Cai, L. Didymellaceae Revisited. Stud. Mycol. 2017, 87, 105–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jiang, J.R.; Zhang, G.Z.; Cai, L.; Crous, P.W. Resolving the Phoma Enigma. Stud. Mycol. 2015, 82, 137–217. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.K.; Lewis, B.G.; Matthews, P. Discovery of the Teleomorph of Phoma medicaginis var. pinodella in Culture. Mycol. Res. 1997, 101, 80–84. [Google Scholar] [CrossRef]
- Aveskamp, M.M.; Verkley, G.J.M.; de Gruyter, J.; Murace, M.A.; Perello, A.; Woudenberg, J.H.C.; Groenewald, J.Z.; Crous, P.W. DNA Phylogeny Reveals Polyphyly of Phoma Section Peyronellaea and Multiple Taxonomic Novelties. Mycologia 2009, 101, 363–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, J.A.; Krysinska-Kaczmarek, M.; Wilmshurst, C.J.; McKay, A.; Herdina; Scott, E.S. Distribution and Survival of Ascochyta Blight Pathogens in Field-Pea-Cropping Soils of Australia. Plant Dis. 2011, 95, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Rigorth, K.S.; Finckh, M.; Šišić, A. First Report of Fusarium venenatum Causing Foot and Root Rot of Wheat (Triticum aestivum) in Germany. Plant Dis. 2021, 105, 1855. [Google Scholar] [CrossRef]
- Šišić, A.; Baćanović-Šišić, J.; Al-Hatmi, A.M.S.; Karlovsky, P.; Ahmed, S.A.; Maier, W.; de Hoog, G.S.; Finckh, M.R. The ‘Forma specialis’ Issue in Fusarium: A Case Study in Fusarium Solani f. sp. Pisi. Sci. Rep. 2018, 8, 1252. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Letertre, C.; Perelle, S.; Dilasser, F.; Arar, K.; Fach, P. Evaluation of the Performance of LNA and MGB Probes in 5′-Nuclease PCR Assays. Mol. Cell. Probes 2003, 17, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Coons, G.H. Factors Involved in the Growth and the Pycnidium Formation of Plenodomus fuscomaculans. J. Agric. Res. 1916, 5, 713–769. [Google Scholar]
- Sreelakshmi, Y.; Gupta, S.; Bodanapu, R.; Chauhan, V.S.; Hanjabam, M.; Thomas, S.; Mohan, V.; Sharma, S.; Srinivasan, R.; Sharma, R. NEATTILL: A Simplified Procedure for Nucleic Acid Extraction from Arrayed Tissue for Tilling and Other High-Throughput Reverse Genetic Applications. Plant Methods 2010, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forootan, A.; Sjöback, R.; Björkman, J.; Sjögreen, B.; Linz, L.; Kubista, M. Methods to Determine Limit of Detection and Limit of Quantification in Quantitative Real-Time PCR (QPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Oberhänsli, T.; Vorley, T.; Tamm, L.; Schärer, H.J. Development of a Quantitative PCR for Improved Detection of Marssonina coronaria in Field Samples; Fördergemeinschaft Ökologischer Obstbau, University of Hohenheim: Stuttgart, Germany, 2014; pp. 187–190. Available online: https://www.ecofruit.net/proceedings/proceedings-2014 (accessed on 14 December 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Mendiburu, D.F. Agricolae: Statistical Procedures for Agricultural Research, R Package Version 1.4.0; 2014. Available online: https://myaseen208.github.io/agricolae/ (accessed on 14 December 2021).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publication Inc.: Thousand Oaksm, CA, USA, 2019. [Google Scholar]
- Komsta, L. Package ‘Outliers’. A Collection of Some Tests Commonly Used for Identifying Outliers. 2011. Available online: http://www.r-project.org (accessed on 14 December 2021).
- Kassambara, A. Package ‘Ggpubr’: “ggplot2” Based Publication Ready Plots. 2020. Available online: https://rpkgs.datanovia.com/ggpubr/ (accessed on 14 December 2021).
- Pflughöft, O.; Merker, C.; von Tiedemann, A.; Schäfer, B.C. Zur Verbreitung und Bedeutung von Pilzkrankheiten in Körnerfuttererbsen (Pisum sativum L.) in Deutschland. Gesunde Pflanz. 2012, 64, 39–48. [Google Scholar] [CrossRef]
- Saeed, M.F.; Baćanović, J.; Bruns, C.; Schmidt, H.; Finckh, M.R. Seed Health of Organic Peas and Faba Beans and Its Effects on the Health of the Harvested Grains. J. Plant Dis. Prot. 2017, 124, 331–337. [Google Scholar] [CrossRef]
- Khan, T.N.; Timmerman-Vaughan, G.M.; Rubiales, D.; Warkentin, T.D.; Siddique, K.H.M.; Erskine, W.; Barbetti, M.J. Didymella pinodes and Its Management in Field Pea: Challenges and Opportunities. Field Crop. Res. 2013, 148, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Hadwiger, L.A. Pea-Fusarium solani Interactions Contributions of a System toward Understanding Disease Resistance. Phytopathology 2008, 98, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Schulz, B.; Boyle, C. The Endophytic Continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schena, L.; Abdelfattah, A.; Mosca, S.; Li Destri Nicosia, M.G.; Agosteo, G.E.; Cacciola, S.O. Quantitative detection of Colletotrichum godetiae and C. acutatum sensu stricto in the phyllosphere and carposphere of olive during four phenological phases. Eur. J. Plant Pathol. 2017, 149, 337–347. [Google Scholar] [CrossRef]
n 1 | Species | Isolate 2 | Host/Substrate | Origin |
---|---|---|---|---|
1 | Boeremia exigua | FOEP 51.11636 | Vicia villosa | Sweden |
2 | B. exigua | FOEP 51.11552 | Prunus sp. | Germany |
3 | Didymella americana | CBS 185.85 | Zea mays | USA |
4 | D. anserina | CBS 397.65 | Plastic | Germany |
5 | D. aurea | CBS 269.93 | Medicago polymorpha | New Zealand |
6 | D. boeremae | CBS 109942 | Medicago littoralis seed | Australia |
7 | D. exigua | CBS 183.55 | Rumex arifolius | France |
8 | D. glomerata | CBS 528.66 | Chrysanthemum sp. | Netherlands |
9 | D. heteroderae | CBS 109.92 | Food | Netherlands |
10 | D. lethalis | FOEP 51.11668 | Vicia villosa | Italy |
11 | D. lethalis | FOEP 51.11595 | Trifolim subterraneum | Switzerland |
12 | D. lethalis | FOEP 51.11597 | Trifolim subterraneum | Switzerland |
31 | D. lethalis | FOEP 51.11588 | Pisum sativum | Germany |
32 | D. lethalis | FOEP 51.11584 | Pisum sativum | Germany |
33 | D. macrostoma | FOEP 51.11637 | Vicia villosa | Switzerland |
13 | D. macrostoma | FOEP 51.11626 | Vicia sativa | Germany |
14 | D. macrostoma | FOEP 51.11551 | Prunus sp. | Germany |
15 | D. maydis | CBS 588.69 | Zea mays | USA |
16 | D. microchlamydospora | CBS 105.95 | Eucalyptus sp. | UK |
17 | D. nigricans | CBS 444.81 | Actinidia chinensis | New Zealand |
18 | D. pedeiae | CBS 124517 | Schefflera elegantissima | Netherlands |
19 | D. pinodella | FOEP 51.11581 | Pisum sativum | Germany |
20 | D. pinodella | FOEP 51.11606 | Subterranean clover | Germany |
21 | D. pinodella | FOEP 51.11604 | Subterranean clover | Germany |
22 | D. pinodella | FOEP 51.11670 | Triticum aestivum | Germany |
23 | D. pinodes | FOEP 51.11583 | Pisum sativum | Germany |
24 | D. pinodes | FOEP 51.11590 | Pisum sativum | Germany |
25 | D. pinodes | FOEP 51.11585 | Pisum sativum | Germany |
26 | D. pomorum | CBS 539.66 | Polygonum tataricum | Netherlands |
27 | D. protuberans | CBS 381.96 | Lycium halifolium | Netherlands |
28 | D. subglomerata | CBS 110.92 | Triticum gramineae | USA |
29 | D. tanaceti | FOEP 51.11629 | Vicia sativa | Germany |
30 | D. tanaceti | FOEP 51.11664 | Trifolium repens | Germany |
34 | Didymellasp. | FOEP 51.11623 | Trifolim subterraneum | Italy |
35 | Didymella sp. | FOEP 51.11624 | Trifolim subterraneum | Italy |
36 | Fusarium acuminatum | FOEP 40.11161 | Vicia faba | Germany |
37 | F. avenaceum | FOEP 11164.1 | Pisum sativum | Germany |
38 | F. crookwellense | FOEP 40.11152.2 | Vicia faba | Germany |
39 | F. culmorum | FOEP 40.11152.1 | Pisum sativum | Germany |
40 | F. equiseti | FOEP 40.11147.1 | Vicia faba | Germany |
41 | F. flocciferum | FOEP 144.16 | Vicia faba | Germany |
42 | F. graminearum | FOEP 40.11189.1 | Vicia faba | Germany |
43 | F. oxysporumf. sp. pisi | FOEP 40.11162 | Vicia faba | Germany |
44 | F. redolens | FOEP 40.11140.1 | Pisum sativum | Germany |
45 | F. solanif.sp. pisi | FOEP 40.21 | Trifolim subterraneum | Germany |
46 | F. solani f.sp. pisi | FOEP 40.11222 | Pisum sativum | Germany |
47 | F. solani f.sp. pisi | FOEP 40.11169 | Vicia faba | Germany |
48 | F. sporotrichioides | FOEP 40.11159 | Pisum sativum | Germany |
49 | F. tricinctum | FOEP 40.11223 | Pisum sativum | Germany |
50 | Juxtiphoma eupyrena (syn. Phoma eupyrena) | FOEP 51.11656 | Trifolium repens | Sweden |
51 | J. eupyrena | FOEP 51.11558 | Vicia faba | Germany |
52 | J. eupyrena | FOEP 51.11571 | Pisum sativum | Germany |
53 | Paraphaeosphaeria sporulosa | FOEP 51.11662 | Trifolium repens | Germany |
54 | P. sporulosa | FOEP 51.11639 | Vicia villosa | Sweden |
55 | D. pinodella (GH-test) | FOEP 51.11643 | Trifolium repens | Germany |
56 | D. pinodella (GH-test) | FOEP 51.11604 | Trifolim subterraneum | Germany |
57 | D. pinodella (GH-test) | FOEP 51.11645 | Trifolium repens | Germany |
58 | D. pinodella (GH-test) | FOEP 51.11606 | Trifolim subterraneum | Germany |
59 | D. pinodella (GH-test) | FOEP 51.11670 | Triticum aestivum | Germany |
60 | D. pinodella (GH-test) | FOEP 51.11673 | Triticum aestivum | Germany |
61 | D. pinodella (GH-test) | FOEP 51.11625 | Vicia sativa | Germany |
62 | D. pinodella (GH-test) | FOEP 51.11679 | Triticum aestivum | Germany |
63 | D. pinodella (GH-test) | FOEP 51.11609 | Trifolim subterraneum | Germany |
64 | D. pinodella (GH-test) | FOEP 51.11633 | Vicia villosa | Sweden |
Primer/Probe Name | Sequence (5′ to 3′) 1 | GC% | Amplicon Length (bp) |
---|---|---|---|
DpinodellaTef_forward | GCACCATGACTTCCTCCA | 56 | 78 |
DpinodellaTef_reverse | CCTGTAATGATTGTTAGCTTTATGA | 32 | |
DpinodellaTef_probe | FAM-TGGCAC[TAT]TGTCGCATTCTCACT–BHQ1 | 46 |
Annealing Temp. (°C) | DNA Concentration (ng/µL) | D. pinodella Cq 1 | D. pinodes Cq | D. lethalis Cq | H2O Cq |
---|---|---|---|---|---|
62.0 | 5 | 28.19 | - | - | n/a |
62.0 | 50 | 24.42 | - | - | n/a |
60.7 | 5 | 28.15 | - | - | n/a |
60.7 | 50 | 24.21 | - | - | n/a |
59.1 | 5 | 28.3 | 34.27 | - | n/a |
59.1 | 50 | 24.7 | 30.31 | - | n/a |
57.2 | 5 | 29.16 | 30.84 | - | n/a |
57.2 | 50 | 25.34 | 27.44 | - | n/a |
55.6 | 5 | 29.4 | 30.17 | - | n/a |
55.6 | 50 | 26.19 | 26.05 | - | n/a |
54.0 | 5 | 30.08 | 30.11 | 34.83 | n/a |
54.0 | 50 | 26.29 | 27.02 | 31.19 | n/a |
61.6 | H2O | n/a | n/a | n/a | 37.79 |
54.5 | H2O | n/a | n/a | n/a | - |
Species | Isolate | Cq 1 |
---|---|---|
Didymella pinodella | FOEP 51.11670 | 18.58 |
D. pinodella | FOEP 51.11606 | 18.61 |
D. pinodella | FOEP 51.11604 | 19.27 |
D. heteroderae | CBS 109.92 | 28.25 |
D. microchlamydospora | CBS 105.95 | 30.23 |
D. protuberans | CBS 381.96 | 31.02 |
D. aurea | CBS 269.93 | 31.62 |
D. americana | CBS 185.85 | 34.34 |
Boeremia exigua | FOEP 51.11636 | - |
B. exigua | FOEP 51.11552 | - |
D. anserina | CBS 397.65 | - |
D. boeremae | CBS 109942 | - |
D. exigua | CBS 183.55 | - |
D. glomerata | CBS 528.66 | - |
D. lethalis | FOEP 51.11584 | - |
D. lethalis | FOEP 51.11588 | - |
D. lethalis | FOEP 51.11595 | - |
D. lethalis | FOEP 51.11597 | - |
D. lethalis | FOEP 51.11668 | - |
D. macrostoma | FOEP 51.11626 | - |
D. macrostoma | FOEP 51.11551 | - |
D. macrostoma | FOEP 51.11637 | - |
D. maydis | CBS 588.69 | - |
D. nigricans | CBS 444.81 | - |
D. pedeiae | CBS 124517 | - |
D. pinodes | FOEP 51.11583 | - |
D. pinodes | FOEP 51.11585 | - |
D. pinodes | FOEP 51.11590 | - |
D. pomorum | CBS 539.66 | - |
D. subglomerata | CBS 110.92 | - |
D. tanaceti | FOEP 51.11664 | - |
D. tanaceti | FOEP 51.11629 | - |
Didymella sp. | FOEP 51.11624 | - |
Didymella sp. | FOEP 51.11623 | - |
Fusarium acuminatum | FOEP 40.11161 | - |
F. avenaceum | FOEP 11164.1 | - |
F. crookwellense | FOEP 40.11152.2 | - |
F. culmorum | FOEP 40.11152.1 | - |
F. equiseti | FOEP 40.11147.1 | - |
F. flocciferum | FOEP 144.16 | - |
F. graminearum | FOEP 40.11189.1 | - |
F. oxysporum f. sp. pisi | FOEP 40.11162 | - |
F. redolens | FOEP 40.11140.1 | - |
F. solani f. sp. pisi | FOEP 40.21 | - |
F. solani f. sp. pisi | FOEP 40.11169 | - |
F. solani f. sp. pisi | FOEP 40.11222 | - |
F. sporotrichioides | FOEP 40.11159 | - |
F. tricinctum | FOEP 40.11223 | - |
Juxtiphoma eupyrena (syn. Phoma eupyrena) | FOEP 51.11558 | - |
J. eupyrena | FOEP 51.11571 | - |
J. eupyrena | FOEP 51.11656 | - |
Paraphaeosphaeria sporulosa | FOEP 51.11639 | - |
P. sporulosa | FOEP 51.11662 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šišić, A.; Oberhänsli, T.; Baćanović-Šišić, J.; Hohmann, P.; Finckh, M.R. A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts. J. Fungi 2022, 8, 41. https://doi.org/10.3390/jof8010041
Šišić A, Oberhänsli T, Baćanović-Šišić J, Hohmann P, Finckh MR. A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts. Journal of Fungi. 2022; 8(1):41. https://doi.org/10.3390/jof8010041
Chicago/Turabian StyleŠišić, Adnan, Thomas Oberhänsli, Jelena Baćanović-Šišić, Pierre Hohmann, and Maria Renate Finckh. 2022. "A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts" Journal of Fungi 8, no. 1: 41. https://doi.org/10.3390/jof8010041
APA StyleŠišić, A., Oberhänsli, T., Baćanović-Šišić, J., Hohmann, P., & Finckh, M. R. (2022). A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts. Journal of Fungi, 8(1), 41. https://doi.org/10.3390/jof8010041