Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals
Abstract
:1. Introduction
2. Agricultural Biomass as Mushroom Cultivation Substrates
3. Sources of Heavy Metals in Mushroom Substrates
4. Bioaccumulation of Heavy Metals in Mushrooms
5. Translocation of Heavy Metal Contamination in Mushroom Food Chain
6. Formulation of Mushroom Substrate and Heavy Metal Relation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heads, S.W.; Miller, A.N.; Crane, J.L.; Thomas, M.J.; Ruffatto, D.M.; Methven, A.S.; Raudabaugh, D.B.; Wanf, Y. The oldest fossil mushroom. PLoS ONE 2017, 12, e0178327. [Google Scholar] [CrossRef] [PubMed]
- Bal, C. Benefits and uses of mushroom. J. Bacteriol. Mycol. Open Access 2018, 6, 155–156. [Google Scholar] [CrossRef] [Green Version]
- Samsudin, N.I.P.; Abdullah, N. Edible mushrooms from Malaysia: A literature review on their nutritional and medicinal properties. Int. Food Res. J. 2019, 26, 11–31. [Google Scholar]
- Miller, A.M.; Mills, K.; Wong, T.; Drescher, G.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.; Langstaff, S.; Minor, B.; Guinard, J.X. Flavor-enhancing properties of mushrooms in meat-based dishes in which sodium has been reduced and meat has been partially substituted with mushrooms. J. Food Sci. 2014, 79, s1795–s1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abulude, F.O.; Muhammed, N.M. Fungi: A review on mushrooms. Knowl. Glob. Dev. 2013, 1, 18–31. [Google Scholar]
- Joseph, U.N.; Oku, M.O. Mushroom production for food security in Nigeria. Food Sci. Qual. Manag. 2016, 48, 44–50. [Google Scholar]
- Haimid, M.T.; Rahim, H.; Dardak, R.A. A study of consumer behaviour towards mushroom-based products in Malaysia. Econ. Tech. Mgmt Rev. 2017, 12, 55–63. [Google Scholar]
- Aida, F.M.N.A.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a potential source of prebiotics: A review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar]
- Rai, A.; Rai, P.K.; Singh, S.; Sharma, N.K. Environmental factors affecting edible and medicinal mushroom production. In Production Techniques of Tropical Mushrooms in India, 1st ed.; Nirmal Publisher: New Delhi, India, 2015; pp. 67–81. [Google Scholar]
- Demkova, L.; Arvay, J.; Hauptvogi, M.; Michalkova, J.; Snirc, M.; Harangozo, L.; Bobulska, L.; Bajcan, D.; Kunca, V. Mercury content in three edible wild-growing mushroom species from different environmentally loaded areas in Slovakia: An ecological and human health risk assessment. J. Fungi 2021, 7, 434. [Google Scholar] [CrossRef]
- Garcia, M.G.; Alonso, J.; Melgar, M.J. Lead in edible mushrooms; levels and bioaccumulation factors. J. Hazard. Mater. 2009, 167, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Dilna, D.; Vidya, S.K.; Raj, B.M. Uptake of certain heavy metals from contaminated soil by mushroom-Galerina vittiformis. Ecotoxic. Environ. Saf. 2014, 104, 414–422. [Google Scholar]
- Seyfferth, A.L.; McClatchy, C.; Paukett, M. Arsenic, lead and cadmium in U.S. mushrooms and substrate in relation to dietary exposure. Environ. Sci. Technol. 2016, 50, 9661–9670. [Google Scholar] [CrossRef]
- Lalotra, P.; Gupta, D.; Yangdol, R.; Sharma, Y.P.; Gupta, S.K. Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Curr. Res. Environ. Appl. Mycol. 2016, 6, 159–165. [Google Scholar] [CrossRef]
- Khani, R.; Moudi, M.; Khojeh, V. Contamination level, distribution and health risk assessment of heavy and toxic metallic and metalloid elements in a cultivated mushroom Pleurotus florida (Mont.) singer. Environ. Sci. Pollut. Res. 2017, 24, 4699–4708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saba, M.; Falandysz, J.; Nnorom, I.C. Mercury bioaccumulation by Suillus bovinus mushroom and probable dietary intake with the mushroom meal. Environ. Sci. Pollut. Res. 2016, 23, 14549–14559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (2020). World Food and Agriculture—Statistical Yearbook. 2020. Available online: https://doi.org/10.4060/cb1329en (accessed on 19 December 2021).
- The Global Staple-Ricepedia. Available online: http://ricepedia.org/rice-as-food/the-global-staple-riceconsumers (accessed on 19 December 2021).
- Cruz, P.S. Aquaculture Feed and Fertilizer Resources Atlas of the Philippines; FAO Fisheries Technical Paper: Rome, Italy, 1997; p. 259. [Google Scholar]
- Son, N.H.; Loan, B.T.P.; Minh, N.D. The Current Status of Agricultural Wastes and Residuals Managements and Recycling in Vietnam; Vietnam Academi of Agriculture: Hanoi, Vietnam, 2021. [Google Scholar]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of agriculture waste and payments for a circular agriculture model in Cenral China. Sci. Rep 2020, 10, 10826. [Google Scholar] [CrossRef]
- Millati, R.; Bakticahyono, R.; Ariyanto, T.; Azzahrani, I.N.; Putri, R.U.; Taherzadeh, M.J. Agricultural, industrial, municipal and forest wastes: An overview. In Sustainable Resources Recovery and Zero Waste Approaches; Taherzadeh, M.J., Bolton, K., Wong, J., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–22. [Google Scholar]
- Basalan, M.; Bayhan, R.; Secrist, D.; Hill, J.; Owens, F.; Witt, M.; Kreikemeier, K. Corn maturation: Changes in the grain and cob. Anim. Sci. Res. Rep. 1995, 1, 92e8. [Google Scholar]
- USDA. Grain: World Market and Trade Rice. Available online: https://ipad.fas.usda.gov/rssiws/al/seasia_cropprod.aspx (accessed on 18 December 2021).
- Birru, E. Sugar cane industry overview and energy efficiency considerations. KTH Sch. Ind. Eng. Mgmt 2016, 1, 1e61. [Google Scholar]
- Bakker, R.; Elbersen, W.; Poppens, R.; Lesschen, J.P. Rice straw and wheat straw. Potential feedstocks for the biobased economy potential feedstocks for the biobased economy. In NL Energy and Climate Change; NL Agency: Utrecht, The Netherlands, 2013; p. 8. [Google Scholar]
- Papong, S.; Yuvaniyama, C.; Lohsomboon, P.; Malakul, P. Overview of biomass utilization in Thailand. In ASEAN Biomass Meeting; MTEC: Bangkok, Thailand, 2004; pp. 1–11. [Google Scholar]
- Siddiqui, Y.; Naidu, Y. Creating Wealth from Waste: Towards Sustainable Agriculture. Inst. Plant. Studies. 2019. Available online: https://ikp.upm.edu.my/article/creating_wealth_from_waste_towards_sustainable_agriculture-51163 (accessed on 18 December 2021).
- Ozturk, M.; Saba, N.; Altay, V.; Iqbal, R.; Hakeem, K.R.; Jawaid, M.; Ibrahim, F.H. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renew. Sustain. Energy Rev. 2017, 79, 1285–1302. [Google Scholar] [CrossRef]
- Budhijanto, W.; Ariyanto, T.; Cahyono, R.B. Bioenergy potential from agricultural residues and industrial wastes in Indonesia. J. Smart Processing 2019, 8, 253–259. [Google Scholar] [CrossRef]
- Pranoto, B.; Pandin, M.; Fithri, S.R.; Nasution, S. Peta potensi Limbah biomassa pertanian dan kehutanan sebagai basis data pemngembangan energy terbarukan. In Ketenagalistrikan dan Energy Terbarukan; KETJurnal: Jakarta, Indonesia, 2013; Volume 12, pp. 123–130. [Google Scholar]
- Abdul Wahid, F.R.A.; Saleh, S.; Abdul Samad, N.A.F. Estimation of Higher Heating Value of Torrefied Palm Oil Wastes from Proximate Analysis. Energy Procedia 2017, 138, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schawrz, S.; Lachenmeier, D.W. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent ground as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Phonbumrung, T.; Khemsawas, C. Agricultural Crop Residue. In Proceedings of the Sixth Meeting of Regional Working Group on Grazing and Feed Resources for Southeast Asia, Legaspi, Philippines, 5–9 October 1998; pp. 183–187. [Google Scholar]
- Arvanitoyannis, I.S.; Tserkezou, P. Wheat, barley and oat waste: A comparative and critical presentation of methods and potential uses of treated waste. Int. J. Food Sci. Technol. 2008, 43, 694–725. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Gimenez, A.; Perona, M.A.; Pardo, J. Indoor composting of vine by-products to produce substrtaes for mushroom cultivation. Span. J. Agric. Res 2007, 3, 417–424. [Google Scholar] [CrossRef]
- Mdoe, J.E. Agricultural waste as raw materials for production of activated carbon: Can Tanzania venture into this business? Afr. J. Online 2014, 16, 89–103. [Google Scholar]
- Bio Bag. Biobags Capture OTR Coffee Grounds to Close the Loop for Charity. Available online: https://biobagworld.com.au/circular-economy/biobags-capture-otr-coffee-grounds-to-close-the-loop-for-charity/ (accessed on 18 December 2021).
- Tambichik, M.A.; Samad, A.A.A.; Mohamad, N.; Ali, A.Z.M.; Mydin, M.A.O.; Bosro, M.Z.M.; Iman, M.A. Effect of combining palm oil fuel ash (POFA) and rice husk as (RHA) as pozzolan to the compressive strength of concrete. J. Integ. Eng. 2018, 10, 61–67. [Google Scholar]
- Agamuthu, P.; Khidzir, K.M.; Hamid, F.S. Drivers of sustainable waste management in asia. J. Sustain. Cir. Econ. 2009, 27, 625–633. [Google Scholar] [CrossRef]
- Hoa, H.T.; Chun, L.W.; Chong, H.W. The effects of different substrates on the growth, yield and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Besufekad, Y.; Mekonnen, A.; Girma, B.; Daniel, R.; Tassema, G.; Melkamu, J.; Asefa, M.; Fikiru, T.; Denboba, L. Selection of appropriate substrate for production of oyster mushroom (Pleurotus ostreatus). J. Yeast Fungal Res. 2020, 11, 15–25. [Google Scholar]
- Wu, N.; Tian, F.; Moodley, O.; Song, B.; Jia, C.; Ye, J.; Lv, R.; Qin, Z.; Li, C. Optimization of agro-residues as substrates for Pleurotus pulmonarius production. AMB Expr. 2019, 9, 184. [Google Scholar] [CrossRef]
- Adjapong, A.O.; Ansah, K.D.; Angfaarabung, F.; Sintim, H.O. Maize residue as a viable substrate for farm scale cultivation of oyster mushroom (Pleurotus ostreatus). Adv. Agr. 2015, 2015, 213251. [Google Scholar] [CrossRef] [Green Version]
- Alananbeh, K.M.; Bouqellah, N.A.; Al-Kaff, N.S. Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro-wastes in Saudi Arabia. Saudi J. Biol. Sci. 2014, 21, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Kamthan, R.; Tiwari, I. Agriculture wastes—Potential substrates for mushroom cultivation. Eur. J. Exp. Biol. 2017, 7, 1–4. [Google Scholar] [CrossRef]
- Odunmbaku, O.K.; Adenipekun, C.O. Cultivation of Pleurotus ostreatus (Jacq Fr.) Kumm on Gossypium hirsutum Roxb. (cotton waste) and Gmelina arborea L. sawdust. Int. Food Res. J. 2018, 25, 1140–1145. [Google Scholar]
- Udayasimha, I.; Vijayalakshmi, Y.C. Sustainable waste management by growing mushroom (Pleurotus florida) on anaerobically digested waste and agro residue. Int. J. Eng. Res. Technol. 2012, 1, 1–8. [Google Scholar]
- Ruiz-Rodriguez, A.; Soler-Rivas, C.; Polonia, I.; Wichers, H.J. Effect of olive mill waste (OMW) supplementation to oyster mushrooms substrates on the cultivation parameters and fruiting bodies quality. Int. Biodeterior. Biodegrad. 2010, 64, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.; Ysunza, F.; Bletran-Garcia, M.J.; Esqueda, M. Biodegradation of vitivulture wastes by Pleurotus: A source of microbial and human and its potential use in animal feeding. J. Agric. Food Chem. 2002, 50, 2537–2542. [Google Scholar] [CrossRef]
- Mata, G.; Savoie, J.M. Shiitake cultivation on straw: An alternative for subtropical regions. In Updates on Tropical Mushrooms. Basic and Applied Research; El Colegio de la Frontera Sur (Ecosur): Chiapas, Mexico, 2018; pp. 1–6. [Google Scholar]
- Philippoussis, A.; Diamantopoulou, F.; Israilides, C. Production of functional food from the sporophores of the medicinal mushroom Lentinula edodes through exploitation of lignocellulosic agricultural residues. Int. Biodeterior. Biodegrad 2007, 59, 216–219. [Google Scholar] [CrossRef]
- Gregori, A.; Kretschmer, N.; Wagner, S.; Boechzelt, H.; Klinar, D.; Bauer, R.; Pohleven, F. Influence of olive oil press cakes on shiitake culinary medicinal mushroom, Lentinus edodes (Berk.) singer (higher basidiomycetes) fruiting bodies production and effect of their crude polysaccharides on CCRF-CEM cell proliferation. Int. J. Med. Mushrooms 2012, 14, 419–424. [Google Scholar] [CrossRef]
- Ediriweera, S.; Ric, W.; Nanayakkara, C.; Ovdsj, W. Comparative study of growth and yield of edible mushrooms, Schizophyllum commune Fr., Auricularia polytricha (Mont.) Sacc. And Lentinus squarrosulus Mont. on lignocellulosic substrates. Mycosphere 2015, 6, 760–765. [Google Scholar] [CrossRef]
- Mangunwardoyo, W.; Zikriyani, H.; Saskiawan, I. Utilization of agricultural waste for cultivation of paddy straw mushrooms (Volvariella volvacea (Bull.) Singer 1951). Int. J. Agri. Technol. 2018, 14, 805–814. [Google Scholar]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Rashad, F.M.; El Kattan, M.H.; Fathy, H.M.; Abd El-Fatah, D.; Tohamy, M.; Farahat, A.A. Recycling of agro-wastes for ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Manag. 2019, 88, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Rugolo, M.; Levin, L.; Lechner, B.E. Flammulina velutipes: An option for “alperujo” use. Rev. Iberoam. Micol. 2016, 33, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.Y.; Chang, C. Does long-term heavy metal cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta? Agri. Eco. Environ. 2003, 94, 89–103. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Avila, S.; Hornung, P.S.; Junior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Sain, M. The use of wheat straw fibres as reinforcements in composites. In Biofiber Reinforcements in Composites Materials; Faruk, O., Sain, M., Eds.; Woodhead Publishing: Toronto, Canada, 2015; pp. 423–453. [Google Scholar]
- Oyetayo, V.O.; Ariyo, O.O. Micro and macronutrient properties of Pleurotus ostreatus (Jacq:Fries) cultivated on different wood substrates. Jordan J. Biol. Sci. 2013, 6, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Fanadzo, M.; Zireva, D.T.; Dube, E.; Mashingaidze, A.B. Evaluation of various substrates and supplements for biological efficiency of Pleurotus sajor-caju and Pleurotus ostreatus. Afr. J. Biotech. 2010, 9, 2756–2761. [Google Scholar]
- Schisler, L.C. Stimulation of yield in the cultivated mushroom by vegetable oils. Appl. Microbiol. 1967, 15, 844–850. [Google Scholar] [CrossRef]
- Yildiz, S.; Umit, C.; Gezer, E.D. Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Proc. Biochem. 2002, 38, 301–306. [Google Scholar] [CrossRef]
- Krupa, P.; Kozdroj, J. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J. Microbiol. Biotechnol. 2004, 20, 427–430. [Google Scholar] [CrossRef]
- Yadav, M.; Gupta, R.; Arora, G.; Yadav, P.; Srivastava, A.; Sharma, R.K. Current status of heavy metal contaminants and their removal/recovery techniques. ACS Symp. Ser. 2020, 3, 41–64. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 20. [Google Scholar] [CrossRef] [Green Version]
- Kirpichtchikova, T.A.; Manceau, A.; Spadini, L.; Panfili, F.; Marcus, M.A.; Jacquet, T. Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorenscence, EXAFS spectroscopy, chemical extraction and thermodynamic modelling. Geochim. Cosmochim. Acta 2006, 70, 2163–2190. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Metals in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- D’Amore, J.J.; Al-Abed, S.R.; Scheckel, K.G.; Ryan, J.A. Methods of speciation of metals in soils: A review. J. Environ. Qual. 1995, 34, 1707–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udochukwu, U.; Nekpen, B.O.; Udnyiwe, O.C.; Omeje, F.I. Bioaccumulation of heavy metals and pollutants by edible mushroom collected from Iselu market Benin-city. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 52–57. [Google Scholar]
- Gillaspy, R. The Industrial Revolution: Impacts on the Environment. Available online: https://study.com/academy/lesson/the-industrial-revolution-impacts-on-the-environment.html#:~:text=to%20perform%20work.-,The%20Industrial%20Revolution%20impacted%20the%20environment.,increased%20use%20of%20fossil%20fuels (accessed on 26 June 2021).
- Xu, X.; Zhao, Y.; Zhao, X.; Wang, Y.; Deng, W. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxic. Environ. Saf. 2014, 108, 161–167. [Google Scholar] [CrossRef]
- Vhahangwele, M.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 7, 115–133. [Google Scholar]
- Sharma, B.; Sarkar, P.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Malik, Z.; Ahmad, M.; Abassi, G.H.; Dawood, M.; Hussain, A.; Jamil, M. Xenobiotics in the soil environment: Monitoring, toxicity and management. In Agrochemicals and Soil Microbes: Interaction for Soil Health; Hashmi, M.Z., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 139–152. [Google Scholar]
- Karalic, K.; Loncaric, Z.; Popovic, B.; Zebec, V. Liming effect on soil heavy metals availability. Poljoprivreda 2013, 19, 59–64. [Google Scholar]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadmoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, J.; Wang, Y.; Sun, L.; Yu, H. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221, 82–90. [Google Scholar] [CrossRef]
- Defarge, N.; Spiroux de Vendomois, J.; Seralini, G.E. Toxicity of formulants and heavy metals in glyphosphate-based herbicides and other pesticides. Toxic. Rep. 2018, 5, 156–163. [Google Scholar]
- Quinteros, E.; Ribo, A.; Mejia, R.; Lopez, A.; Belteton, W.; Comandari, A.; Orantes, C.M.; Pleites, E.B.; Hernandez, C.E.; Lopez, D.L. Heavy metals and pesticide exposure from agricultural activities and former agrochemical factory in a Salvadoran rural community. Environ. Sci. Pollut. Res. 2017, 24, 1662–1676. [Google Scholar] [CrossRef]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; Araujo, A.S.F.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci. 2017, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Provolo, G.; Manuli, G.; Fonzi, A.; Lucchioni, G.; Riva, E.; Sacchi, G.A. Effect of pig and cattle slurry application oh heavy metal composition of maize grown on different soils. Sustainability 2018, 10, 2684. [Google Scholar] [CrossRef] [Green Version]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci 2016, 23, S32–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woldetsadik, D.; Drechsel, P.; Keraita, B.; Itanna, F.; Gebrekidan, H. Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. Int. J. Food Contam. 2017, 4, 9. [Google Scholar] [CrossRef]
- Lasat, M.M. Phytoextraction of metals from contaminated soil: Review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subst. Res. 2000, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Dilipkumar, M.; Chuah, T.S.; Goh, S.S.; Sahid, I. Weed management issues, challenges and opportunities in Malaysia. Crop. Prot. 2020, 134, 104347. [Google Scholar] [CrossRef]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agr. 2017, 16, 1819–1831. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.J.; Hamon, R.E.; McLaren, R.G.; Speir, T.W.; Rogers, S.L. A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res. 2000, 38, 1037–1086. [Google Scholar] [CrossRef]
- Wei, W.; Ma, R.; Sun, Z.; Zhou, A.; Bu, J.; Long, X.; Liu, Y. Effects of mining activities on the release of heavy metals in a typical mountain headwater region, the Qianghai-Tibet Plateau in China. Int. J. Environ. Res. Public Health 2018, 15, 1987. [Google Scholar] [CrossRef] [Green Version]
- Castanho, N.R.C.M.; de Oliveira, R.A.; Batista, B.L.; Freire, B.M.; Lange, C.; Lopes, A.M.; Jozala, A.E.; Grotto, D. Comparative study on lead and copper biosorption using three bioproducts from edible mushrooms residues. J. Fungi 2021, 7, 441. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Milenkovic, N.; Damjanovic, M.; Ristic, M. Study of heavy metal pollution in sediments from the iron gate (Danube River), Serbia and Montenegro. Pol. J. Environ. Stud. 2005, 14, 781–787. [Google Scholar]
- Francis, C.W.; Timpson, M.E.; Wilson, J.H. Bench and pilot scale studies relating to the removal of uranium from uranium contaminated soils using carbonate and citrate lixiviants. J. Hazard. Mater. 1999, 66, 67–87. [Google Scholar] [CrossRef]
- Salt, D.E.; Prince, R.C.; Pickering, I.J.; Raskin, I. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol. 1995, 109, 1427–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damodaran, D.; Balakrishnan, R.M.; Shetty, V.K. The uptake mechanism of Cd(II), Cu(II), Pb(II) and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis. BioMed Res. Int. 2013, 2013, 149120. Available online: http://dx.doi.org./10.1155/2013/149120 (accessed on 18 December 2021).
- Gebrelibanos, M.; Megersa, N.; Taddesse, A.M. Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. Int. J. Food. Contam. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Kapahi, M.; Sachdeva, S. Mycoremediation potential of Pleurotus species for heavy metals: A review. Bioresour. Bioprocess 2017, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Obodai, M.; Ferreira, I.C.F.R.; Fernandes, A.; Barros, L.; Mensah, D.L.N.; Dzomeku, M.; Urben, A.F.; Prempeh, J.; Takli, R.K. Evaluation of chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Mole 2014, 19, 19532–19548. [Google Scholar] [CrossRef] [Green Version]
- Ndimele, C.C.; Ndimele, P.E.; Chukwuka, K.S. Accumulation of heavy metals by wild mushroom in Ibadan, Nigeria. J. Health Pollut. 2017, 7, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuzen, M.M.O.; Demirbas, A. Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chem. 1998, 6, 247–251. [Google Scholar] [CrossRef]
- Lasota, W.; Florezak, J.; Karmanska, A. Effects of toxic metals on protein content of mushrooms. Bromatol. Chem. Toksykol. 1990, 23, 95–99. [Google Scholar]
- Javaid, A.; Bajwa, R.; Shafique, U.; Anwar, J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenery 2011, 35, 1675–1682. [Google Scholar] [CrossRef]
- Demirbas, A. Concentration of 21 metals in 18 species of mushrooms growing in the east Black Sea Region. Food Chem. 2001, 75, 453–457. [Google Scholar] [CrossRef]
- Drzewiecka, K.; Siwulski, M.; Mleczek, M.; Golinski, P. The influence of elevated heavy metals content in substrate on morphology and physiology of king oyster mushroom (Pleurotus eryngii). ICHMET 2010, 41, 853–856. [Google Scholar]
- Na, L.; Guode, L.; Shigang, X.; Shiwei, X.; Yan, W.; Fulong, R. Detection and evaluation of heavy metal in Lentinus edodes from Shenyang’s market. Int. Conf. Matl. Environ. Eng. 2014, 57, 9–11. [Google Scholar]
- Mohiuddin, K.M.; Alam, M.M.; Arefin, M.T.; Ahmed, I. Assessment of nutritional composition and heavy metal content in some edible mushroom varieties collected from different areas of Bangladesh. Asian J. Med. Bio. Res. 2015, 1, 495–501. [Google Scholar] [CrossRef] [Green Version]
- An, J.M.; Gu, S.Y.; Kim, D.J.; Shin, H.C.; Hong, K.S.; Kim, Y.K. Arsenic, cadmium, lead and mercury contents of mushroom species in Korea and associated health risk. Int. J. Food Prop. 2020, 23, 992–998. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, J.; Chen, J.; Xu, H.; Wang, C.; Zhao, M. Risk assessment of polychlorinated biphyenyls and heavy metals in soils of an abandoned e-waste site in China. Environ. Pollut. 2014, 185, 258–265. [Google Scholar] [CrossRef]
- Swislowski, P.; Rajfur, M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol. Chem. Eng. Sci. 2018, 25, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Arvay, J.; Tomas, J.; Hauptvogl, M.; Massanyi, P.; Harangozo, L.; Toth, T.; Stanovic, R.; Bryndzova, S.; Bumbalova, M. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J. Environ. Sci. Health 2015, 50, 833–843. [Google Scholar] [CrossRef]
- Neff, J.M. Arsenic in the ocean. In Bioaccumulation in Marine Organisms; Elsivier: London, UK, 2002; pp. 1–24. [Google Scholar]
- Nowakowski, P.; Markiewicz-Zukowska, R.; Soroczynska, J.; Puscion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J. Food. Comp. Anlys. 2021, 96, 103698. [Google Scholar] [CrossRef]
- WHO. Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 23 June 2021).
- Llorente-Mirandes, T.; Barbero, M.; Rubio, R.; Lopez-Sanchez, J.F. Occurrence of inorganic arsenic in edible shiitake (Lentinula edodes) products. Food Chem. 2014, 1, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Vetter, J. Arsenic content of some edible mushroom species. Eur. Food Res. Technol. 2004, 219, 71–74. [Google Scholar] [CrossRef]
- Chunhabundit, R. Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol. Res. 2016, 32, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Melgar, M.J.; Alonso-Diaz, J.; Ma, G. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem. Toxic. 2016, 88, 13–20. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.M.S.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food chain and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumhomkul, T.; Panich-pat, T. Load accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble. Bull. Environ. Contam. Toxic. 2013, 91, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Thuc, L.V.; Corales, R.G.; Sajor, J.T.; Truc, N.T.T.; Hien, P.H.; Ramos, R.E.; Bautista, E.; Tado, C.J.M.; Ompad, V.; Son, D.T.; et al. Rice straw mushroom production. In Sustainable Rice Straw Management; Springer Nature: Cham, Switzerland, 2019; pp. 93–95. [Google Scholar]
- Mironczuk-Chodokowska, I.; Socha, K.; Zujko, M.E.; Terlikowska, K.M.; Borawska, M.H.; Witkowska, A.M. Copper, manganese, selenium and zinc in wild-growing edible mushrooms from the eastern territory of “green lungs of Poland”: Nutritional and toxicological implication. Int. J. Environ. Res. Public Health 2019, 19, 3614. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J.; Garcia, M.A.; Perez-Lopez, M.; Meljar, M.L. The concentration and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 2002, 44, 180–188. [Google Scholar] [CrossRef]
- Mihaela, C.E.; Elisabeta, C.L.; Ovidiu, S.; Albu, A. Study of serum and saliva biochemical levels copper, zinc and copper-zinc imbalance in patients with oral cancer and oral potentially malignant disorders and their prostetical and DSSS (dysfunctional syndrome of stomatognathic system) treatment. Rev. Chim. 2016, 67, 1832–1836. [Google Scholar]
- Martinez-Peinado, M.; Rueda, R.A.; Nogueras-Lopez, F.; Villalon-Mir, M.; Oliveras-Lopez, M.J.; Navarro-Alarcon, M. Serum zinc and copper concentrations and ratios in cirrhotic patients: Correlation with severity index. Nutr. Hosp. 2018, 5, 627–632. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, H.; Mehmood, K. Effect of nano copper on visceral organs and the contents of trace elements in weanlings pigs. Toxin. Rev. 2019, 38, 115–120. [Google Scholar] [CrossRef]
- Jain, S.K.; Gujral, G.S.; Vasudejan, P. Heavy metal uptake by Pleurotus sajor-caju from metal enriched duckweed substrate. Biol. Wastes 1988, 24, 275–282. [Google Scholar] [CrossRef]
- Praveena, S.M.; de Burbure, C.; Aris, A.Z.; Hashim, Z. Mini review of mercury contamination in environment and human with an emphasis on Malaysia: Status and needs. Rev. Environ. Heath 2013, 28, 195–202. [Google Scholar] [CrossRef]
- Rzymski, P.; Mleczek, M.; Siwulski, M.; Gasecka, M.; Niedzielski, P. The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J. Food Comp. Anal. 2016, 51, 55–60. [Google Scholar] [CrossRef]
- Slavik, M.; Toth, T.; Harangozo, L.; Arvay, J.; Stanovic, R.; Missik, J. The content of mercury in edible mushrooms from middle spis area. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2115–2124. [Google Scholar]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Lund, B.O.; Miller, D.M.; Woods, J.S. Studies og Hg(II)-induced H202 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol. 1993, 45, 2017–2024. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni III, V.L. Mushroom intake is associated with better nutrient intake and diet quality: 2001-2010 national health and nutrition examination survey. J. Nutr. Food Sci. 2013, 3, 1–6. [Google Scholar]
- Ministry of Agriculture and Agro-Based Industry. Bab7: Memacu Pertumbuhan Pertanian Bernilai Tinggi. In Dasar Agromakanan Negara (2011–2020); Percetakan Watan Sdn Bhd: Putrajaya, Malaysia, 2011; p. 96. [Google Scholar]
- Orywal, K.; Socha, K.; Nowakowski, P.; Zon, W.; Kaczynski, P.; Mroczko, B.; Lozowicka, B.; Perkowski, M. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS ONE 2021, 16, e0252834. [Google Scholar] [CrossRef]
- Means, B. Risk-assessment guidance for superfund. In Interim Report; OSTI.Gov: Oak Ridge, TN, USA, 1989; Volume 1, pp. 1–2. [Google Scholar]
- Chang, S.T.; Miles, P.G. Edible mushroom and their cultivation. In Mushroom Science; CRC Press: Boca Raton, FL, USA, 1989; p. 345. [Google Scholar]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Gimenez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.; Iqbal, M.; Akhtar, M.W. Application of biowaste materials for the sorption of heavy metals in contaminated aqueous medium. Pak. J. Sci. Ind. Res 2002, 45, 206–211. [Google Scholar]
- Boaponsem, G.A.; Obeng, A.K.; Osei-Kwateng, M.; Badu, A.O. Accumulation of heavy metals by Pleurotus Ostreatus from metal scrap sites. Int. J. Curr. Res. Rev. 2013, 5, 1–9. [Google Scholar]
- Abd Rasib, N.A.; Zakaria, Z.; Tompang, M.F.; Abdul Rahman, R. Characterization of biochemical composition for different types of spent mushroom substrates in Malaysia. Malays. J. Anal. Sci 2015, 19, 41–45. [Google Scholar]
- Tham, L.X.; Matsuhashi, S.; Kume, T. Responsoes of Ganoderma lucidum to heavy metals. Mycoscience 1999, 40, 209–213. [Google Scholar] [CrossRef]
Continents | Country | Agricultural Biomass Produced | References |
---|---|---|---|
Asia | Philippines | Rice hulls, rice straw, corn cobs, corn husks, corn leaves, corn stalks, coconut husk, sugarcane leaves, sugarcane bagasse, banana trunk, banana leaves, banana peels, pineapple crown, pineapple peel, coffee pulp, mango peel, mango pulp, cacao pods, cassava trunk, cassava leaves, cassava peel, peanut pods. | Cruz, 1997 [20] |
Vietnam | Rice straw, rice husk, corn leaves, corn cobs, cassava leaves and tops, cassava stalks, pulp and cortex, sugarcane leaves and bagasse, coffee stem, leaves, husk and coffee ground, Soybean steam, leaves, branches and shells. | Son et al., 2021 [21] | |
China | Rice husk and straw, corn cobs, husk, leaves and stalks, sugarcane bagasse, wheat straw | Atinkut et al., 2020 [22] Millati et al., 2019 [23] Basalan et al., 1995 [24] USDA, 2018 [25] Birru et al., 2016 [26] Bakker et al., 2013 [27] | |
Thailand | Rice straw and husk, oil palm empty fruit bunch, sugarcane bagasse, stumps and leaves, coconut husk and shells, cassava leaves and peels, rubber sawdust | Papong et al., 2004 [28] | |
Malaysia | Rice straw and husk, oil palm empty fruit bunch, oil palm trunk and frond, timber, coconut husk, coir and trunk, sugarcane bagasse, stumps and leaves | Siddiqui et al., 2019 [29] Ozturk et al., 2017 [30] | |
Indonesia | Rice husk and straw, corn cob, stalk and husk, cassava stalk, oil palm mesocarp fibre, oil palm kernel shell and empty fruit bunch, coconut husk and shell, forest and wood residues, sugarcane tops and bagasse Coffee leaves, pulp, husk and spent coffee grounds | Budhijanto et al., 2019 [31] Pranoto et al., 2013 [32] Abdul Wahid et al., 2017 [33] Klingel et al., 2020 [34] | |
India | Rice husk and bran, Wheat bran and straw, corn stover, husk and skins, miller stover, sugarcane tops, bagasse and molasses Apple pomace | Phonbumrung et al., 1998 [35] Arvanitoyannis et al., 2008 [36] Bhuvaneshwari et al., 2019 [37] Lyu et al., 2020 [38] | |
Europe | Covers 28 EU countries | Vine shoots, grape stalks and grape pomace Coffee leaves, pulp, husk and spent coffee grounds Apple pomace | Pardo-Gimenez et al., 2007 [39] Klingel et al., 2020 [34] Lyu et al., 2020 [38] |
Africa | Tanzania | Rice husks, coconut shells, cashew nuts shells and palm fruit shells | Mdoe, 2014 [40] |
Oceania | Australia | Coffee husk and coffee pulp powder Apple pomace | Bio Bag, 2020 [41] Lyu et al., 2020 [38] |
Mushroom Species | Agriculture Residue as Substrates | References |
---|---|---|
Pleurotus sp. (oyster mushroom) | Wheat straw, rice straw, soybean straw, corn straw, peanut straw, rape straw. Sawdust, corn husk, corn cob, corn stalk. Date palm leaves, wheat straw, sawdust. Rice straw, wheat straw, cotton straw, tea leaves, banana leaves. Cotton waste, sawdust Paddy straw, coir pith, banana leaf Wheat straw and olive mill waste Vineyard pruning and grape pomace | Wu et al., 2019 [46] et al., 2015 [47] Alananbeh et al., 2014 [48] Kamthan et al., 2017 [49] Odunmbaku et al., 2018 [50] Udayasimha et al., 2012 [51] Ruiz-Rodriguez et al., 2010 [52] Sanchez et al., 2002 [53] |
Lentinula edodes (button mushroom) | Rice bran, coffee pulp, coffee husk, spent coffee grounds, sugarcane bagasse, corn cob, millet straw, wheat straw, tea leaves, peanut hulls, cottonseed hulls, sunflower seed hulls, dried grass powder, water hyacinth, etc. Wheat straw Wheat straw, corn cobs, oak-wood sawdust Beech sawdust, wheat bran, olive oil press cakes, gypsumGrape stalks and vine shoots | Kamthan et al., 2017 [49] Mata et al., 2018 [54] Philippoussis et al., 2007 [55] Gregori et al., 2012 [56] Pardo-Gimenez et al., 2007 [39] |
Schizophyllum commune (split gills mushroom) | Banana leaves, coconut leaves, paddy straw, coir dust, rubber sawdust | Ediriweera et al., 2015 [57] |
Volvariella volvacea (straw mushroom) | Tea leaves, paddy straw, water hyacinth, oil palm bunch, oil palm pericarp waste, banana leaves, sawdust, cotton waste and sugarcane bagasse. Paddy straw, cotton waste, banana leavesRice straw | Kamthan et al., 2017 [49] Mangunwardoyo et al., 2018 [58] Biswas et al., 2014 [59] |
Ganoderma lucidum (lingzhi mushroom) | Sawdust Broad beanstalks, cotton stalk, corn straw, paddy straw, sugarcane bagasse and wheat straw | Kamthan et al., 2017 [49] Rashad et al., 2019 [60] |
Flammulina velutipes (enoki mushroom) | Olive waste and poplar wood shavings | Rugolo et al., 2016 [61] |
Sources | Type of Activities | Heavy Metal | References |
---|---|---|---|
Fertilisers | Phosphate, Potash and Nitrate fertiliser Lime | Zn, Pb, Cr, Cd, As | Karalic et al., 2013 [82], Atafar et al., 2010 [83], Sun et al., 2013 [84], Kelepertzis 2014 [85]. |
Pesticides | Herbicides Insecticides Fungicides | As, Co, Cr, Ni, Pb, Cu, Zn, Cd | Defarge et al., 2018 [86], Kelepertzis, 2014 [85], Quinteros et al., 2017 [87], Srivastava et al., 2017 [88] |
Manure and bio-solid | Livestock manure Composts Sewage sludge | Cu, Zn, Mn, Cr, Pb, Ni, Cd | Provolo et al., 2018 [89], Wuana et al., 2011 [72], Srivastava et al., 2017 [88], Sharma et al., 2017 [85] |
Wastewater | Irrigation with municipal wastewater Industrial waste water | Zn, Cu, Ni, Pb, Cd, Cr, As, Hg | Wuana et al., 2011 [72] Balkhair et al., 2016 [90], Woldetsadik et al., 2017 [91] |
Atmospheric deposition | Mining, transportation, waste incineration | Cr, Pb, Zn, As, Cd, Hg, Ni | Wuana et al., 2011 [72] |
Mushroom Species | Edibility | Heavy Metal Concentration in Fruit Bodies | References |
---|---|---|---|
Pleurotus sajor-caju | Edible | Cd (98.94), Ni (97.22), Fe (88.24) * | Yadav et al., 2020 [71] |
Pleurotus ostreatus | Edible | Cu (53.56), Fe (220.87), Zn (89.68), Mn (47.55) * Pb (3.24), Cd(1.18), Hg (0.42), Cu (13.6), Mn (6.27), Zn (29.8), Fe (86.1) *Pb (0.11), Cd (0.55), Hg (0.31), Fe (48.6), Cu (5.0), Mn (10.3), Zn (19.3) * Cd (11.2), Hg (1.2), Zn (0.8), Pb (0.0) * | Gebrelibanos et al., 2016 [103] Demirbas, 2001 [110] Tuzen et al., 1998 [107] Lasota et al., 1990 [108] |
Pleurotus florida | Edible | Cu (53.56), Fe (243.92), Zn (95.26), Mn (41.29) * Cd (98.93), Ni (97.22), Fe (84.84) * | Gebrelibanos et al., 2016 [103] Yadav et al., 2020 [71] |
Pleurotus eryngii | Edible | Cu (0.00), Zn (1.00), Cd (0.03), Co (1.00), Ni (0.00) *** | Drzewiecka et al., 2010 [111] |
Lentinula edodes | Edible | Ni (1.6), Cr (3.25), Pb (0.84), Cd (1.15), As (1.21), Hg (0.0) * | Na et al., 2014 [75] |
Schizophyllum commune | Edible | Hg (0.0), Fe (11.00), Zn (6.46), Pb (1.56), Cu (1.76), Cd (2.25), Ni (4.24) * | Udochukwu et al., 2014 [112] |
Volvariella volvacea | Edible | Cu (93.59), Pb (98.69)Hg (0.0), Fe (8.25), Zn (27.33), Pb (1.25), Cu (1.55), Cd (4.88), Ni (5.75) * Fe (322.5), Cu (101.8), Zn (36.5), Mn (78.5), Cr (0.24), Pb (0.25) ** | Yadav et al., 2013 [71] Udochukwu et al., 2014 [112] Mohiuddin et al., 2015 [113] |
Ganoderma lucidum | Edible | Pb (0.08), Cd (0.11), As (0.03), Hg (0.01) * Fe (303.0), Cu (72.5), Zn (52.2), Mn (64.0), Cr (0.21), Pb (0.13) ** | An et al., 2020 [114] Mohiuddin et al., 2015 [113] |
Metals | WHO/FAO (mg/L) | Normal Range in Plant (mg/L) |
---|---|---|
Cu | 30.0 | 2.5 |
Pb | 2.0 | 0.50–30.0 |
Zn | 60.0 | 20.0–100.0 |
Fe | 48.0 | 400.0–500.0 |
As | 0.2 | 0.2–1.5 |
Mushroom Species | Mushroom Substrates | Biochemical Composition | Substrate Heavy Metal Content | References |
---|---|---|---|---|
Pleurotus sajor-caju and Pleurotus ostreatus (grey oyster mushroom) | Rubber sawdust with rice bran and hydrated lime | Protein (14.5), Carbohydrate (61.45), Fat (23.22), Lignin (70.27), Ash (5.146) * | Cu (0.020), Zn (0.539), Mn (0.580), Fe (3.233) * | Abd Rasib et al., 2015 [146] Boamponsem et al., 2013 [145] |
Pleurotus florida (white oyster mushroom) | wheat straw with 2% of aqueous formalin | Protein (16.1), Carbohydrate (63.57), Fat (23.78), Lignin (70.67), Ash (5.299) * | Cu (1.034), Fe (0.920), Zn (1.483), Mn (0.660) *** | Abd Rasib et al., 2015 [146] Gebrelibanos et al., 2016 [103] |
Pleurotus eryngii(king oyster mushroom) | 50% sawdust with 25% cotton seed hulls and 25% wheat bran supplemented with gypsum | Protein (21.5), Ash (6.02), Fiber (62.0), Lipid (0.54) * | As (0.16), Cr (0.12), Cd (0.83), Hg (0.00006), Pb (2.110), Na (244.00), K (3927.00), Ca (4671.00), Mg (1391.00), P (1262.00), Cu (2.90), Mn (13.10), Zn (5.60), Fe (19.50) ** | Sun et al., 2013 [84] |
Ganoderma lucidium(ganoderma) | Rubber sawdust with rice bran and hydrated lime | Protein (36.6), Carbohydrate (70.42), Fat (25.56), Lignin (72.13), Ash (5.605) * | Cu (24.00), Mn (31.00), Zn (31.00), Cd (<0.05), Hg (0.01), Pb (2.00) ** | Abd Rasib et al., 2015 [146] Tham et al., 1999 [147] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ab Rhaman, S.M.S.; Naher, L.; Siddiquee, S. Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals. J. Fungi 2022, 8, 42. https://doi.org/10.3390/jof8010042
Ab Rhaman SMS, Naher L, Siddiquee S. Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals. Journal of Fungi. 2022; 8(1):42. https://doi.org/10.3390/jof8010042
Chicago/Turabian StyleAb Rhaman, Siti Maryam Salamah, Laila Naher, and Shafiquzzaman Siddiquee. 2022. "Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals" Journal of Fungi 8, no. 1: 42. https://doi.org/10.3390/jof8010042
APA StyleAb Rhaman, S. M. S., Naher, L., & Siddiquee, S. (2022). Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals. Journal of Fungi, 8(1), 42. https://doi.org/10.3390/jof8010042