COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic
Abstract
:1. Introduction
2. Epidemiology
3. Pathogenesis
4. Clinical Manifestations
5. Microbiologic Investigation
6. Laboratory and Radiologic Findings
7. Diagnosis
8. Treatment
9. Outcome
10. COVID-19 Associated with Cryptococcosis among HIV Patients
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Ko, W.C.; Hsueh, P.R. Global epidemiology of coronavirus disease 2019 (COVID-19): Disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. Int. J. Antimicrob. Agents. 2020, 55, 105946. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://covid19.who.int/ (accessed on 10 October 2022).
- Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.-H.; Hsueh, S.-C.; Yen, M.-Y.; Ko, W.-C.; Hsueh, P.-R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 2020, 53, 404–412. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, C.Y.; Hsueh, P.R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Miao, Q.; Ma, Y.; Ling, Y.; Jin, W.; Su, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Chen, H.; Yuan, J.; et al. Evaluation of superinfection, antimicrobial usage, and airway microbiome with metagenomic sequencing in COVID-19 patients: A cohort study in Shanghai. J. Microbiol. Immunol. Infect. 2021, 54, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Parrill, A.; Tsao, T.; Dong, V.; Huy, N.T. SARS-CoV-2-induced immunodysregulation and the need for higher clinical suspicion for co-infection and secondary infection in COVID-19 patients. J. Microbiol. Immunol. Infect. 2021, 54, 105–108. [Google Scholar] [CrossRef]
- Chao, C.M.; Lai, C.C.; Yu, W.L. COVID-19 associated mucormycosis—An emerging threat. J. Microbiol. Immunol. Infect. 2022, 55, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wu, C.J.; Lee, Y.C.; Liu, W.L. COVID-19 associated with concomitant mucormycosis and aspergillosis. J. Microbiol. Immunol. Infect. 2022, 55, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Yu, W.L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2021, 54, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, F.S.; Godman, B.; Sindi, O.N.; Seaton, R.A.; Kurdi, A. Prevalence of bacterial coinfection and patterns of antibiotics prescribing in patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272375. [Google Scholar] [CrossRef] [PubMed]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Regalla, D.; VanNatta, M.; Alam, M.; Malek, A.E. COVID-19-associated Cryptococcus infection (CACI): A review of literature and clinical pearls. Infection 2022, 50, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S. Pulmonary cryptococcosis after recovery from COVID-19 in an immunocompetent patient: A rare case report. Medicine 2022, 101, e30143. [Google Scholar] [CrossRef]
- Chastain, D.B.; Kung, V.M.; Golpayegany, S.; Jackson, B.T.; Franco-Paredes, C.; Barahona, L.V.; Thompson, G.R., III; Henao-Martinez, A.F. Cryptococcosis among hospitalised patients with COVID-19: A multicentre research network study. Mycoses 2022, 65, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.J.; Megharaj, C.; Patil, S.; Rani, P.K. Cryptococcus laurentii endogenous endophthalmitis post COVID-19 infection. BMJ Case Rep. 2022, 15, e246637. [Google Scholar] [CrossRef]
- Chastain, D.B.; Henao-Martínez, A.F.; Dykes, A.C.; Steele, G.M.; Stoudenmire, L.L.; Thomas, G.M.; Kung, V.; Franco-Paredes, C. Missed opportunities to identify cryptococcosis in COVID-19 patients: A case report and literature review. Ther. Adv. Infect. Dis. 2022, 9, 20499361211066363. [Google Scholar] [CrossRef]
- Cafardi, J.; Haas, D.; Lamarre, T.; Feinberg, J. Opportunistic Fungal Infection Associated with COVID-19. Open Forum Infect. Dis. 2021, 8, ofab016. [Google Scholar] [CrossRef]
- Gamon, E.; Tammena, D.; Wattenberg, M.; Augenstein, T. Rare superinfection in a COVID-19 patient-A chronology. Anaesthesist 2022, 71, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, H.; Sivasubramanian, G. Cryptococcus neoformans Meningoencephalitis in an Immunocompetent Patient after COVID-19 Infection. Case Rep. Infect. Dis. 2021, 2021, 5597473. [Google Scholar] [CrossRef]
- Khatib, M.Y.; Ahmed, A.A.; Shaat, S.B.; Mohamed, A.S.; Nashwan, A.J. Cryptococcemia in a patient with COVID-19: A case report. Clin. Case. Rep. 2021, 9, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, V.C.; Perosa, A.H.; de Souza Luna, L.K.; Conte, D.D.; Nascimento, O.A.; Ota-Arakaki, J.; Bellei, N. Detected SARS-CoV-2 in Ascitic Fluid Followed by Cryptococcemia: A Case Report. SN Compr. Clin. Med. 2020, 2, 2414–2418. [Google Scholar] [CrossRef]
- Thyagarajan, R.V.; Mondy, K.E.; Rose, D.T. Cryptococcus neoformans blood stream infection in severe COVID-19 pneumonia. IDCases 2021, 26, e01274. [Google Scholar] [CrossRef]
- Heller, H.M.; Gonzalez, R.G.; Edlow, B.L.; Ard, K.L.; Gogakos, T. Case 40-2020: A 24-Year-Old Man with Headache and COVID-19. N. Eng. J. Med. 2020, 383, 2572–2580. [Google Scholar] [CrossRef]
- Abohelwa, M.; Del Rio-Pertuz, G.; Parmar, K.; Morataya, C.; Siddique, S.; Duangkham, S.; Nugent, K.M. Pulmonary cryptococcosis in the 2019 novel coronavirus, when the coinfection affects the mortality. In TP47. TP047 Covid and Ards Case Reports; American Thoracic Society: New York, NY, USA, 2021; p. A2461. [Google Scholar]
- Alegre-González, D.; Herrera, S.; Bernal, J.; Soriano, A.; Bodro, M. Disseminated Cryptococcus neoformans infection associated to COVID-19. Med. Mycol. Case. Rep. 2021, 34, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Traver, E.C.; Malavé Sánchez, M. Pulmonary aspergillosis and cryptococcosis as a complication of COVID-19. Med. Mycol. Case. Rep. 2022, 35, 22–25. [Google Scholar] [CrossRef]
- Thota, D.R.; Ray, B.; Hasan, M.; Sharma, K. Cryptococcal Meningoencephalitis during Convalescence from Severe COVID-19 Pneumonia. Neurohospitalist 2022, 12, 96–99. [Google Scholar] [CrossRef]
- Karnik, K.; Wu, Y.; Ruddy, S.; Quijano-Rondan, B.; Urban, C.; Turett, G.; Yung, L.; Prasad, N.; Yoon, J.; Segal-Maurer, S. Fatal case of disseminated cryptococcal infection and meningoencephalitis in the setting of prolonged glucocorticoid use in a COVID-19 positive patient. IDCases 2022, 27, e01380. [Google Scholar] [CrossRef]
- Gil, Y.; Gil, Y.D.; Markou, T. The Emergence of Cryptococcemia in COVID-19 Infection: A Case Report. Cureus 2021, 13, e19761. [Google Scholar] [CrossRef]
- Woldie, I.L.; Brown, I.G.; Nwadiaro, N.F.; Patel, A.; Jarrar, M.; Quint, E.; Khokhotva, V.; Hugel, N.; Winger, M.; Briskin, A. Autoimmune Hemolytic Anemia in a 24-Year-Old Patient With COVID-19 Complicated by Secondary Cryptococcemia and Acute Necrotizing Encephalitis: A Case Report and Review of Literature. J. Med. Cases 2020, 11, 362–365. [Google Scholar] [CrossRef]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; et al. Association between Administration of IL-6 Antagonists and Mortality among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar] [PubMed]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar]
- Lin, W.T.; Hung, S.H.; Lai, C.C.; Wang, C.Y.; Chen, C.H. The effect of tocilizumab on COVID-19 patient mortality: A systematic review and meta-analysis of randomized controlled trials. Int. Immunopharmacol. 2021, 96, 107602. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, W.C.; Hsu, C.K.; Chao, C.M.; Lai, C.C. Clinical efficacy and safety of Janus kinase inhibitors for COVID-19: A systematic review and meta-analysis of randomized controlled trials. Int. Immunopharmacol. 2021, 99, 108027. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Coates, C.J.; Seoane, P.I.; Garelnabi, M.; Taylor-Smith, L.M.; Monteith, P.; MacLeod, C.L.; Escaron, C.J.; Brown, G.D.; Hall, R.A.; et al. Characterizing the Mechanisms of Nonopsonic Uptake of Cryptococci by Macrophages. J. Immunol. 2018, 200, 3539–3546. [Google Scholar] [CrossRef] [Green Version]
- Levitz, S.M. Receptor-mediated recognition of Cryptococcus neoformans. Nihon. Ishinkin. Gakkai. Zasshi. 2002, 43, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Kitai, Y.; Sato, K.; Tanno, D.; Yuan, X.; Umeki, A.; Kasamatsu, J.; Kanno, E.; Tanno, H.; Hara, H.; Yamasaki, S.; et al. Role of Dectin-2 in the Phagocytosis of Cryptococcus neoformans by Dendritic Cells. Infect. Immun. 2021, 89, e0033021. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.M.; Kelly, R.M.; Lee, C.K.; Levitz, S.M. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect. Immun. 2008, 76, 2362–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syme, R.M.; Spurrell, J.C.; Amankwah, E.K.; Green, F.H.; Mody, C.H. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect. Immun. 2002, 70, 5972–5981. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.K.; Schlesinger, L.S.; Levitz, S.M. Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 2002, 168, 2872–2879. [Google Scholar] [CrossRef] [Green Version]
- Lizarazo, J.; Castañeda, E. Central Nervous System Cryptococcosis due to Cryptococcus gattii in the Tropics. Curr. Trop. Med. Rep. 2022, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Tirado, F.H.; Onken, M.D.; Cooper, J.A.; Klein, R.S.; Doering, T.L. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio 2017, 8, e02183-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Han, X.; Du, W.; Meng, Y.; Li, Y.; Sun, T.; Liang, Q.; Li, C.; Suo, C.; Gao, X.; et al. Comparative miRNA transcriptomics of macaques and mice reveals MYOC is an inhibitor for Cryptococcus neoformans invasion into the brain. Emerg. Microbes. Infect. 2022, 11, 1572–1585. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Lei Zhao, L.X.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef] [PubMed]
- Moon, C. Fighting COVID-19 exhausts T cells. Nat. Rev. Immunol. 2020, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 2020, 20, 529–536. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, P.J.; Cheng, H.; Kao, Y.H.; Wang, Y.-H.; Chiu, C.-C.; Chialng, W.-F.; Kuo, C.-C.; Chuu, C.-P.; Wu, K.-A. Comparison of laboratory diagnosis, clinical manifestation, and management of pulmonary cryptococcosis: Report of the clinical scenario and literature review. Clin. Chim. Acta 2022, 524, 78–83. [Google Scholar] [CrossRef]
- Xie, L.X.; Chen, Y.S.; Liu, S.Y.; Shi, Y.X. Pulmonary cryptococcosis: Comparison of CT findings in immunocompetent and immunocompromised patients. Acta Radiol. 2015, 56, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yan, Y.; Wang, Y.; Liu, X.; Su, X. Plain and contrast-enhanced chest computed tomography scan findings of pulmonary cryptococcosis in immunocompetent patients. Exp. Ther. Med. 2017, 14, 4417–4424. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yu, L.; Luo, J.; Shen, J.; Wang, D.; Kuang, P.; Fu, G. Characterization of Clinical and CT Manifestations of Pulmonary Cryptococcosis with Consolidation. Arch. Iran. Med. 2021, 24, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Saag, M.S.; Graybill, R.J.; Larsen, R.A.; Pappas, P.G.; Perfect, J.R.; Powderly, W.G.; Sobel, J.D.; Dismukes, W.E. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2000, 30, 710–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.-H.; et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50, 291–322. [Google Scholar] [CrossRef] [Green Version]
- Štingl, J.; Hylmarová, J.; Lengerová, M.; Maláska, J.; Stašek, J. Cryptococcal Pneumonia: An Unusual Complication in a COVID-19 Patient. Diagnostics 2022, 12, 1944. [Google Scholar] [CrossRef]
Case (Country) | Age | Sex | Underlying Disease | COVID-19 Severity | Use of Corticosteroid for COVID-19 | Cryptococcal Infection | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sites of Involvement | Diagnosis | Pathogen | Treatment | Outcome | Timing of Diagnosis, Day | ||||||
Abohelwa et al. [28] (USA) | 78 | F | HTN, DM | Severe | NA | Pulmonary | Tracheal aspirate Cx | C. neoformans | FLZ | Dead | NA |
Alegre-Gonz’alez et al. [29] (Spain) | 78 | M | HTN, DM, CKD | Severe | Yes | Disseminated | Blood Cx, CSF Cx, CSF CrAg | C. neoformans | L-AmB + FC -> FLZ | Dead | D75 |
Cafardi et al. [21] (USA) | 78 | M | HTN, COPD | Severe | Yes | Pulmonary | BAL Cx, | C. neoformans | L-AmB -> ISZ | Dead | D22 |
Chastain et al. [20] (USA) | 70+ | M | HTN, COPD, CKD, CAD, stroke, obesity | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | Postmortem |
Choi et al. [17] (Korea) | 46 | M | Nil | Mild | NA | Pulmonary | BAL Cx and Cr Ag | C. neoformans | FLZ | Alive | D90 |
Deepa et al. [19] (India) | 50+ | M | DM | NA | Yes | Ocular | Vitreous Cx | C. laurentii | FLZ + Intravitreal VCZ | Alive | NA |
Gamon et al. [22] (German) | 55 | M | Dilated cardiomyopathy | Severe | Yes | Pulmonary | Respiratory specimen Cx | C. neoformans | L-AmB -> FLZ | Alive | D13 |
Ghanem et al. [23] (USA) | 73 | F | None | Severe | Yes | Meningeal | CSF Cx and CrAg | C. neoformans | L-AmB + FC -> FLZ | Alive | D7 |
Gil et al. [33] (USA) | 59 | M | HTN, DM, obesity | Severe | Yes | Disseminated | Blood Cx | C. neoformans | L-AmB -> FLZ | Alive | D33 |
Heller et al. [27] (USA) | 24 | M | HIV | Mild | No | Meningeal | CSF Cx and CrAg | C. neoformans | L-AmB + FC -> FLZ | Alive | D5 |
Karnik et al. [32] (USA) | 57 | M | HTN | Severe | Yes | Disseminated | Blood Cx, CSF Cx and CrAg | C. neoformans | L-AmB + FC | Dead | D36 |
Khatib et al. [24] (Qatar) | 60 | M | HTN, DM, ischemia heart disease | Severe | Yes | Disseminated | Blood Cx | C. neoformans | L-AmB + FC | Dead | D48 |
Passarelli et al. [25] (Brazil) | 75 | M | HTN, renal transplant | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | Postmortem |
Thota et al. [31] (USA) | 76 | F | HTN | Severe | Yes | Disseminated | Blood Cx, CSF Cx and CrAg | C. neoformans | L-AmB + FC -> FLZ | Alive | D49 |
Thyagarajan et al. [26] (USA) | 75 | M | DM, HTN, obesity | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | Postmortem |
Traver et al. [30] (USA) | 59 | M | COPD, DM, CHF, liver cirrhosis, obesity | Severe | Yes | Pulmonary | BAL Cx | C. neoformans | L-AmB + FC -> FLZ | Dead | D10 |
Woldie et al. [34] (Canada) | 24 | M | Autoimmune hemolytic anemia | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | D23 |
Štingl et al. [35] (Czech) | 60 | M | HTN | Severe | Yes | Pulmonary | BAL Cx, CrAg | C. neoformans | L-Amb + FLZ | Dead | D22 |
● CNS disease |
|
● Isolated pulmonary disease |
|
● Isolated cryptococcemia |
- Treat like CNS disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, K.-S.; Lai, C.-C.; Yu, W.-L.; Chao, C.-M. COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic. J. Fungi 2022, 8, 1111. https://doi.org/10.3390/jof8101111
Chan K-S, Lai C-C, Yu W-L, Chao C-M. COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic. Journal of Fungi. 2022; 8(10):1111. https://doi.org/10.3390/jof8101111
Chicago/Turabian StyleChan, Khee-Siang, Chih-Cheng Lai, Wen-Liang Yu, and Chien-Ming Chao. 2022. "COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic" Journal of Fungi 8, no. 10: 1111. https://doi.org/10.3390/jof8101111
APA StyleChan, K. -S., Lai, C. -C., Yu, W. -L., & Chao, C. -M. (2022). COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic. Journal of Fungi, 8(10), 1111. https://doi.org/10.3390/jof8101111