Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics
Abstract
:1. Introduction
2. Application of Non-Mammalian Eukaryotic Cells in Bioprocessing
2.1. Yeast Cell Systems in Biologics Manufacturing
2.1.1. Polyketides and Non-Ribosomal Peptides
2.1.2. Vaccine Production
2.1.3. Monoclonal Antibodies
2.2. Fungal Cell Systems in Biologics Manufacturing
3. Industrial Considerations
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FDA. Vaccines, Blood & Biologics. Available online: https://www.fda.gov/vaccines-blood-biologics (accessed on 1 October 2022).
- Dumont, J.; Euwart, D.; Mei, B.; Estes, S.; Kshirsagar, R. Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Crit. Rev. Biotechnol. 2016, 36, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med. Drug Discov. 2020, 9, 100075. [Google Scholar] [CrossRef]
- Chiba, C.H.; Knirsch, M.C.; Azzoni, A.R.; Moreira, A.R.; Stephano, M.A. Cell-free protein synthesis: Advances on production process for biopharmaceuticals and immunobiological products. BioTechniques 2021, 70, 126–133. [Google Scholar] [CrossRef]
- Moorkens, E.; Godman, B.; Huys, I.; Hoxha, I.; Malaj, A.; Keuerleber, S.; Stockinger, S.; Mörtenhuber, S.; Dimitrova, M.; Tachkov, K.; et al. The expiry of Humira® market exclusivity and the entry of adalimumab biosimilars in Europe: An overview of pricing and national policy measures. Front. Pharmacol. 2021, 11, 1993. [Google Scholar] [CrossRef]
- Ngo, H.X.; Garneau-Tsodikova, S. What are the drugs of the future? MedChemComm 2018, 9, 757–758. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Cao, J.; Perez-Pinera, P.; Lowenhaupt, K.; Wu, M.-R.; Purcell, O.; De La Fuente-Nunez, C.; Lu, T.K. Versatile and on-demand biologics co-production in yeast. Nat. Commun. 2018, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Ramazi, S.; Zahiri, J. Post-translational modifications in proteins: Resources, tools and prediction methods. Database 2021, 2021, baab012. [Google Scholar] [CrossRef]
- Kulagina, N.; Besseau, S.; Godon, C.; Goldman, G.H.; Papon, N.; Courdavault, V. Yeasts as biopharmaceutical production platforms. Front. Fungal Biol. 2021, 2, 50. [Google Scholar] [CrossRef]
- Madhavan, A.; Arun, K.B.; Sindhu, R.; Krishnamoorthy, J.; Reshmy, R.; Sirohi, R.; Pugazhendi, A.; Awasthi, M.K.; Szakacs, G.; Binod, P. Customized yeast cell factories for biopharmaceuticals: From cell engineering to process scale up. Microb. Cell Fact. 2021, 20, 124. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Du, G.; Chen, J.; Takahashi, S.; Liu, S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol. Adv. 2020, 44, 107630. [Google Scholar] [CrossRef]
- A El Enshasy, H. Fungal morphology: A challenge in bioprocess engineering industries for product development. Curr. Opin. Chem. Eng. 2021, 35, 100729. [Google Scholar] [CrossRef]
- Gutierrez, J.M.; Lewis, N.E. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol. J. 2015, 10, 939–949. [Google Scholar] [CrossRef]
- Barone, P.W.; Wiebe, M.E.; Leung, J.C.; Hussein, I.T.M.; Keumurian, F.J.; Bouressa, J.; Brussel, A.; Chen, D.; Chong, M.; Dehghani, H.; et al. Viral contamination in biologic manufacture and implications for emerging therapies. Nat. Biotechnol. 2020, 38, 563–572. [Google Scholar] [CrossRef]
- Nosaki, S.; Hoshikawa, K.; Ezura, H.; Miura, K. Transient protein expression systems in plants and their applications. Plant Biotechnol. 2021, 38, 297–304. [Google Scholar] [CrossRef]
- Nielsen, J. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering. Bioengineered 2013, 4, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.M.V.; Carmo, T.S.; Carvalho, L.S.; Bahia, F.M.; Parachin, N.S. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, H.; Lv, B.; Li, C. Regulating strategies for producing carbohydrate active enzymes by filamentous fungal cell factories. Front. Bioeng. Biotechnol. 2020, 8, 691. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Chen, X.; Nielsen, J.; Petranovic, D.; Siewers, V. Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microb. Cell Fact. 2021, 20, 134. [Google Scholar] [CrossRef]
- Lestari, C.S.W.; Novientri, G. Advantages of yeast-based recombinant protein technology as vaccine products against infectious diseases. IOP Conf. Ser. Earth Environ. Sci. 2021, 913, 012099. [Google Scholar] [CrossRef]
- Spohner, S.C.; Schaum, V.; Quitmann, H.; Czermak, P. Kluyveromyces lactis: An emerging tool in biotechnology. J. Biotechnol. 2016, 222, 104–116. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res. 2019, 19, foz007. [Google Scholar] [CrossRef] [Green Version]
- Madzak, C. Yarrowia lipolytica strains and their biotechnological applications: How natural biodiversity and metabolic engineering could contribute to cell factories improvement. J. Fungi 2021, 7, 548. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Jeon, C.O. High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biol. 2016, 6, 160196. [Google Scholar] [CrossRef] [Green Version]
- Tippelt, A.; Nett, M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb. Cell Fact. 2021, 20, 161. [Google Scholar] [CrossRef]
- Do, H.D.; Vandermies, M.; Fickers, P.; Theron, C.W. Non-Conventional Yeast Species for Recombinant Protein and Metabolite Production; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an alternative and valuable source of nutritional and bioactive compounds for humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- Vandermies, M.; Fickers, P. Bioreactor-scale strategies for the production of recombinant protein in the yeast Yarrowia lipolytica. Microorganisms 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Wefelmeier, K.; Ebert, B.E.; Blank, L.M.; Schmitz, S. Mix and match: Promoters and terminators for tuning gene expression in the methylotrophic yeast Ogataea polymorpha. Front. Bioeng. Biotechnol. 2022, 10, 759. [Google Scholar] [CrossRef]
- Manfrão-Netto, J.H.C.; Gomes, A.M.V.; Parachin, N.S. Advances in using Hansenula polymorpha as chassis for recombinant protein production. Front. Bioeng. Biotechnol. 2019, 7, 94. [Google Scholar] [CrossRef]
- Meier, J.L.; Burkart, M.D. The chemical biology of modular biosynthetic enzymes. Chem. Soc. Rev. 2009, 38, 2012–2045. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.J. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Struct. Biol. 2013, 23, 603–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Goh, S.; Kolakowski, J.; Holder, A.; Pfuhl, M.; Ngugi, D.; Ballingall, K.; Tombacz, K.; Werling, D. Development of a potential yeast-based vaccine platform for Theileria parva infection in cattle. Front. Immunol. 2021, 12, 674484. [Google Scholar] [CrossRef]
- Ardiani, A.; Higgins, J.P.; Hodge, J.W. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010, 10, 1060–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-P.; Tsai, T.-I.; Cheng, T.; Shivatare, V.S.; Wu, C.-Y.; Wong, C.-H. Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc. Natl. Acad. Sci. USA 2018, 115, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, C.; Cheng, J.F.; Evans, R.; Schwartz, C.A.; Wagner, J.M.; Anglin, S.; Beitz, A.; Pan, W.; Lonardi, S.; Blenner, M.; et al. Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 2019, 55, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.; Shah, K. Nanobodies: Next generation of cancer diagnostics and therapeutics. Front. Oncol. 2020, 10, 1182. [Google Scholar] [CrossRef]
- Arias, C.A.; Marques, D.D.; Malpiedi, L.P.; Maranhão, A.Q.; Parra, D.A.; Converti, A.; Pessoa, A. Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source. Braz. J. Microbiol. 2017, 48, 419–426. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Wu, W.; Yuan, Z.; Tsun, A.; Wu, M.; Chen, B.; Li, J.; Miao, X.; Miao, X.; et al. Preclinical characterization of Sintilimab, a fully human anti-PD-1 therapeutic monoclonal antibody for cancer. Antib. Ther. 2018, 1, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fei, K.; Jing, H.; Wu, Z.; Wu, W.; Zhou, S.; Ni, H.; Chen, B.; Xiong, Y.; Liu, Y.; et al. Durable blockade of PD-1 signaling links preclinical efficacy of sintilimab to its clinical benefit. mAbs 2019, 11, 1443–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, C.; Baier, A.S.; Pascolutti, R.; Wegrecki, M.; Zheng, S.; Ong, J.X.; Erlandson, S.C.; Hilger, D.; Rasmussen, S.G.F.; Ring, A.M.; et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 2018, 25, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübeck, M.; Lübeck, P.S. Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides. Microorganisms 2022, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiang, B.; Zhao, S.; Yang, L.; Chen, Y.; Hu, Y.; Hu, S. Construction of a novel filamentous fungal protein expression system based on redesigning of regulatory elements. Appl. Microbiol. Biotechnol. 2022, 106, 647–661. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Møller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [Green Version]
- Musoni, M.; Destain, J.; Thonart, P.; Bahama, J.B.; Delvigne, F. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: From traditional methods to engineered systems. BASE 2015, 19, 430–442. [Google Scholar]
- Arora, S.; Rani, R.; Ghosh, S. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J. Biotechnol. 2018, 269, 16–34. [Google Scholar] [CrossRef]
- Manan, M.A.; Webb, C. Performance of fungal growth through integrated Gompertz model and respiratory quotient by solid state fermentation in multi-layer squared tray solid state bioreactor with aeration strategies. Preprint 2021. [Google Scholar] [CrossRef]
- Jozala, A.F.; Geraldes, D.C.; Tundisi, L.L.; Feitosa, V.D.A.; Breyer, C.A.; Cardoso, S.L.; Mazzola, P.; Nascimento, L.D.O.; Rangel-Yagui, C.; Magalhães, P.D.O.; et al. Biopharmaceuticals from microorganisms: From production to purification. Braz. J. Microbiol. 2016, 47, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Soliman, S.S.M.; Raizada, M.N. Darkness: A crucial factor in fungal taxol production. Front. Microbiol. 2018, 9, 353. [Google Scholar] [CrossRef]
- Moubasher, H.A.; Balbool, B.A.; Helmy, Y.A.; Alsuhaibani, A.M.; Atta, A.A.; Sheir, D.H.; Abdel-Azeem, A.M. Insights into Asparaginase from endophytic fungus Lasiodiplodia theobromae: Purification, characterization and antileukemic activity. Int. J. Environ. Res. Public Health 2022, 19, 680. [Google Scholar] [CrossRef]
- Saied, E.M.; El-Maradny, Y.A.; Osman, A.A.; Darwish, A.M.; Abo Nahas, H.H.; Niedbała, G.; Piekutowska, M.; Abdel-Rahman, M.A.; Balbool, B.A.; Abdel-Azeem, A.M. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021, 13, 1759. [Google Scholar] [CrossRef] [PubMed]
- Rantasalo, A.; Vitikainen, M.; Paasikallio, T.; Jäntti, J.; Landowski, C.; Mojzita, D. Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci. Rep. 2019, 9, 5032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meade, E.; Hehir, S.; Rowan, N.; Garvey, M. Mycotherapy: Potential of fungal bioactives for the treatment of mental health disorders and morbidities of chronic pain. J. Fungi 2022, 8, 290. [Google Scholar] [CrossRef]
- Weesner, J.A.; Annunziata, I.; Yang, T.; Acosta, W.; Gomero, E.; Hu, H.; van de Vlekkert, D.; Ayala, J.; Qiu, X.; Fremuth, L.E.; et al. Preclinical enzyme replacement therapy with a recombinant β-galactosidase-lectin fusion for CNS delivery and treatment of GM1-gangliosidosis. Cells 2022, 11, 2579. [Google Scholar] [CrossRef] [PubMed]
- Shankar, R.; Upadhyay, P.K.; Kumar, M. Protease enzymes: Highlights on potential of proteases as therapeutics agents. Int. J. Pept. Res. Ther. 2021, 27, 1281–1296. [Google Scholar] [CrossRef]
- Parenteau, J.; Durand, M.; Véronneau, S.; Lacombe, A.-A.; Morin, G.; Guérin, V.; Cecez, B.; Gervais-Bird, J.; Koh, C.-S.; Brunelle, D.; et al. Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol. Biol. Cell 2008, 19, 1932–1941. [Google Scholar] [CrossRef] [Green Version]
- Moabbi, A.M.; Agarwal, N.; El Kaderi, B.; Ansari, A. Role for gene looping in intron-mediated enhancement of transcription. Proc. Natl. Acad. Sci. USA 2012, 109, 8505–8510. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Wu, Y.; Deng, J.; Chen, N.; Zheng, Z.; Wei, Y.; Luo, X.; Keasling, J.D. Promoter architecture and promoter engineering in Saccharomyces cerevisiae. Metabolites 2020, 10, 320. [Google Scholar] [CrossRef]
- Bernhard, F.; Klammt, C.; Rüterjans, H. Recombinant deoxyribonucleic acid and protein expression. Compr. Med. Chem. II 2007, 3, 107–128. [Google Scholar] [CrossRef]
- Fu, H.; Liang, Y.; Zhong, X.; Pan, Z.; Huang, L.; Zhang, H.; Xu, Y.; Zhou, W.; Liu, Z. Codon optimization with deep learning to enhance protein expression. Sci. Rep. 2020, 10, 17617. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.-H.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, E6117–E6125. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, K.; Han, Y.; Xing, Y.; Zhang, Y.; Yang, Q.; Zhou, M. Codon usage bias regulates gene expression and protein conformation in yeast expression system P. pastoris. Microb. Cell Fact. 2021, 20, 91. [Google Scholar] [CrossRef] [PubMed]
- Westman, J.O.; Franzén, C.J. Current progress in high cell density yeast bioprocesses for bioethanol production. Biotechnol. J. 2015, 10, 1185–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malairuang, K.; Krajang, M.; Sukna, J.; Rattanapradit, K.; Chamsart, S. High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of Fed-Batch at Cell level (FBC). Processes 2020, 8, 1321. [Google Scholar] [CrossRef]
- van Rensburg, E.; Den Haan, R.; Smith, J.; van Zyl, W.H.; Görgens, J.F. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl. Microbiol. Biotechnol. 2012, 96, 197–209. [Google Scholar] [CrossRef]
- Clarke, L.; Kitney, R. Developing synthetic biology for industrial biotechnology applications. Biochem. Soc. Trans. 2020, 48, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.L.; Rodrigues, L.R. Synthetic biology: Perspectives in industrial biotechnology. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 239–269. [Google Scholar]
- Liu, Z.; Zhang, Y.; Nielsen, J. Synthetic biology of yeast. Biochemistry 2019, 58, 1511–1520. [Google Scholar] [CrossRef]
Small Molecule Drugs | Biologics |
---|---|
Predictable pharmacokinetics and pharmacodynamics profiles [6] | Biologic proteins are highly specific and potent with extended effect [11] |
Easier manufacturing, characterizing, and regulatory processes [6] | Biologics are less toxic |
Cheaper for consumers, cheaper to manufacture | Targeted treatment, e.g., CAR T cell therapy [7] |
Oral bioavailability and stability | Can produce large peptides and proteins [4] |
Generic versions available | Applicable to real time process control |
Do not suffer microbial contamination issues to the same extent | Many biologics are losing their patent protection and other exclusivity rights leading to production of biosimilars [4] |
Advantages | Limitations |
---|---|
Less susceptibility to contaminations by phages [11] | Limited glycosylation capacity compared to mammalian cells |
Scalable at industrial level | Difficulty in cell disruption [16] |
Existing regulatory approval [16] | Proteins denaturation, temperature changes, pH, organic solvents presence, surface and interface interactions that can form protein aggregates at [21] |
More improved secretion efficiency than bacteria [11] | Ethanol production by S. cerevisiae (Crabtree effect) [22] |
Yeast has tolerance to low Ph and fermentation inhibitors and harsh fermentation conditions [20] | Extracellular excretion is not large [22] |
Yeast efficiently modifies its recombinant proteins post transnationally | Yeast glycosylation is dissimilar to mammalian glycosylation (high mannose type) [10] |
Considered GRAS [10] | Heterologous proteins expressed in S. cerevisiae are hyperglycosylated [23] |
More adaptable to harsh industrial scale up [18] | |
Yeast based vaccines which are edible, economic and induce immune response [23] | |
Y. lipolytica strains biosynthesis of metallic nanoparticles for biomedical applications [24] |
Biologic/Therapeutic | Filamentous Fungi | Disease Treatment |
---|---|---|
Paclitaxel (Taxol) | Taxomyces andrenae, F. oxysporum and A. niger | Cancer [51] |
Beta-galactosidase | A. foetidus | Lactose intolerance, GM1-gangliosidosis [57] |
Lovastatin (statin) | Monascus ruber, A. terreus | high blood cholesterol and reduce the risk of cardiovascular disease |
l-asparaginase | M.hiemalis, A.niger, A. flavus, A. nidulans, A. terreus [53] | Acute lymphoblastic leukemia and non-Hodgkin lymphoma |
Ergot alkaloids | Claviceps purpurea | Parkinson’s disease, cluster headaches and migraine [56] |
Hericenones and erinacines (cyathane derivatives) | Hericium erinaceus | Alzheimer’s and Parkinson’s disease [56] |
Proteases/proteinases/peptidases | Aspergillus and Penicillium species | Cardiovascular disease, emerging agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis [58] |
Amphotericin B (AMP B) | Penicillium nalgiovense | Antifungal, treatment of invasive fungal infections mucormycosis, aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, and cryptococcosis [51] |
Griseofulvin | P. griseofulvum | Antifungal, treatment of dermatophytoses |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvey, M. Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics. J. Fungi 2022, 8, 1179. https://doi.org/10.3390/jof8111179
Garvey M. Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics. Journal of Fungi. 2022; 8(11):1179. https://doi.org/10.3390/jof8111179
Chicago/Turabian StyleGarvey, Mary. 2022. "Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics" Journal of Fungi 8, no. 11: 1179. https://doi.org/10.3390/jof8111179
APA StyleGarvey, M. (2022). Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics. Journal of Fungi, 8(11), 1179. https://doi.org/10.3390/jof8111179