COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Respiratory Samples and Fungal Diagnostics
2.2. CAPA Definitions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24, E1–E38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, P.E.; Rijnders, B.J.A.; Bruggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Calandra, T.; Clancy, C.J.; Cornely, O.A.; Chiller, T.; et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intens. Care Med. 2020, 46, 1524–1535. [Google Scholar] [CrossRef]
- Schauwvlieghe, A.; Rijnders, B.J.A.; Philips, N.; Verwijs, R.; Vanderbeke, L.; Van Tienen, C.; Lagrou, K.; Verweij, P.E.; Van de Veerdonk, F.L.; Gommers, D.; et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir. Med. 2018, 6, 782–792. [Google Scholar] [CrossRef]
- Lai, C.C.; Yu, W.L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2021, 54, 46–53. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.A.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Florl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef]
- Prattes, J.; Valentin, T.; Hoenigl, M.; Talakic, E.; Reisinger, A.C.; Eller, P. Invasive pulmonary aspergillosis complicating COVID-19 in the ICU-A case report. Med. Mycol. Case Rep. 2021, 31, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Prattes, J.; Wauters, J.; Giacobbe, D.R.; Salmanton-Garcia, J.; Maertens, J.; Bourgeois, M.; Reynders, M.; Rutsaert, L.; Van Regenmortel, N.; Lormans, P.; et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients-a multinational observational study by the European Confederation of Medical Mycology. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef]
- Verweij, P.E.; Bruggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Buil, J.B.; Calandra, T.; Chiller, T.; Clancy, C.J.; Cornely, O.A.; et al. Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergillosis. Intensive Care Med. 2021, 47, 819–834. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Pascale, R.; Cricca, M.; Rinaldi, M.; Maccaro, A.; Bussini, L.; Fornaro, G.; Tonetti, T.; Pizzilli, G.; Francalanci, E.; et al. Epidemiology of invasive pulmonary aspergillosis among COVID-19 intubated patients: A prospective study. Clin. Infect. Dis. 2020, 73, e3606–e3614. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Carvalho, A.; van de Veerdonk, F.L.; Jenks, J.D.; Koehler, P.; Krause, R.; Cornely, O.A.; Perlin, D.S.; Lass-Florl, C.; Hoenigl, M. COVID-19 associated pulmonary aspergillosis (CAPA)-from immunology to treatment. J. Fungi 2020, 6, 91. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Samardzic, E.; Knoll, M. Serology anno 2021-fungal infections: From invasive to chronic. Clin. Microbiol. Infect. 2021, 27, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Lass-Flörl, C. How to make a fast diagnosis in invasive aspergillosis. Med. Mycol. 2019, 57, S155–S160. [Google Scholar] [CrossRef] [PubMed]
- Mayerhöfer, T.; Klein, S.J.; Peer, A.; Perschinka, F.; Lehner, G.F.; Hasslacher, J.; Bellmann, R.; Gasteiger, L.; Mittermayr, M.; Eschertzhuber, S.; et al. Changes in characteristics and outcomes of critically ill COVID-19 patients in Tyrol (Austria) over 1 year. Wien. Klin. Wochenschr. 2021, 133, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Köstenberger, M.; Hasibeder, W.; Dankl, D.; Germann, R.; Hörmann, C.; Joannidis, M.; Markstaller, K.; Müller-Muttonen, S.O.; Neuwersch-Sommeregger, S.; Schaden, E.; et al. SARS-CoV-2: Recommendations for treatment in intensive care medicine. Wien. Klin. Wochenschr. 2020, 132, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Lahmer, T.; Kriescher, S.; Herner, A.; Rothe, K.; Spinner, C.D.; Schneider, J.; Mayer, U.; Neuenhahn, M.; Hoffmann, D.; Geisler, F.; et al. Invasive pulmonary aspergillosis in critically ill patients with severe COVID-19 pneumonia: Results from the prospective AspCOVID-19 study. PLoS ONE 2021, 16, e0238825. [Google Scholar] [CrossRef]
- Marr, K.A.; Platt, A.; Tornheim, J.A.; Zhang, S.X.; Datta, K.; Cardozo, C.; Garcia-Vidal, C. Aspergillosis complicating severe coronavirus disease. Emerg. Infect. Dis. 2021, 27, 202896. [Google Scholar] [CrossRef] [PubMed]
- Fekkar, A.; Neofytos, D.; Nguyen, M.H.; Clancy, C.J.; Kontoyiannis, D.P.; Lamoth, F. COVID-19-associated pulmonary aspergillosis (CAPA): How big a problem is it? Clin. Microbiol. Infect. 2021, 27, 1376–1378. [Google Scholar] [CrossRef]
- Lass-Florl, C.; Dietl, A.M.; Kontoyiannis, D.P.; Brock, M. Aspergillus terreus species complex. Clin. Microbiol. Rev. 2021, 34, e0031120. [Google Scholar] [CrossRef] [PubMed]
- Lackner, M.; Coassin, S.; Haun, M.; Binder, U.; Kronenberg, F.; Haas, H.; Jank, M.; Maurer, E.; Meis, J.F.; Hagen, F.; et al. Geographically predominant genotypes of Aspergillus terreus species complex in Austria: S microsatellite typing study. Clin. Microbiol. Infect. 2016, 22, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Dietl, M.; Vahedi-Shahandashti, R.; Kandelbauer, C.; Kraak, B.; Lackner, M.; Houbraken, J.; Lass-Flörl, C. The environmental spread of Aspergillus terreus in Tyrol, Austria. Microorganisms 2021, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.3, E.Def 9.3 and E.Def 11.0 procedures: Version 2, 2020. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 14 November 2021).
- Gheith, S.; Saghrouni, F.; Bannour, W.; Ben Youssef, Y.; Khelif, A.; Normand, A.C.; Piarroux, R.; Ben Said, M.; Njah, M.; Ranque, S. In vitro susceptibility to amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin of Aspergillus spp. isolated from patients with haematological malignancies in Tunisia. Springerplus 2014, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taghizadeh-Armaki, M.; Hedayati, M.T.; Ansari, S.; Omran, S.M.; Saber, S.; Rafati, H.; Zoll, J.; van der Lee, H.A.; Melchers, W.J.G.; Verweij, P.E.; et al. Genetic diversity and in vitro antifungal susceptibility of 200 clinical and environmental Aspergillus flavus isolates. Antimicrob. Agents Chemother. 2017, 61, e00004-17. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Available online: https://clsi.org/standards/products/microbiology/documents/m59/ (accessed on 14 November 2021).
- Ghelfenstein-Ferreira, T.; Saade, A.; Alanio, A.; Bretagne, S.; Araujo de Castro, R.; Hamane, S.; Azoulay, E.; Bredin, S.; Delliere, S. Recovery of a triazole-resistant Aspergillus fumigatus in respiratory specimen of COVID-19 patient in ICU-A case report. Med. Mycol. Case Rep. 2021, 31, 15–18. [Google Scholar] [CrossRef]
ID | Age (Y) | Sex (F/M) | Reason for Hospitalization | ICU Stay (Weeks) | IV (Weeks) | Underlying Risk Factors | Cortisteroid Treatment | CF and I | Antifungal Treatment | Death within 6 Weeks (Days after Culture Positivity, Cause) | CAPA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 73 | m | COVID-19 | 3–4 | 3–4 | KTR, AVR | Yes | Yes | Ani | (4, COVID-19) | Probable |
2 | 70 | m | COVID-19 | 3–4 | ≤2 | none | Yes | Yes | Possible | ||
3 | 20 | m | COVID-19 | >4 | >4 | OB | Yes | Yes | Cas | Probable | |
4 | 84 | m | COVID-19 | ≤2 | ≤2 | DM, M | Yes | Yes | (6, Lung failure) | Probable | |
5 | 79 | f | COVID-19 | >4 | >4 | A | Yes | Yes | Amp | (35, COVID-19) | Possible |
6 | 76 | f | COVID-19, SMI | 3–4 | ≤2 | S | Yes | Amp | (3, Pneumonia) | Probable | |
7 | 77 | f | COVID-19 | ≤2 | ≤2 | DM, OB | Yes | Yes | Amp | (7, COVID-19) | Probable |
8 | 56 | m | COVID-19 | >4 | >4 | COPD, DM, S, OB | Yes | Yes | Vor, Amp | Possible | |
9 | 61 | m | COVID-19 | >4 | >4 | none | Yes | Vor, Pos | Probable | ||
10 | 50 | m | COVID-19 | ≤2 | ≤2 | DM | Yes | Yes | Amp | Possible | |
11 | 83 | f | COVID-19 | ≤2 | ≤2 | COPD, S, DM | Yes | Yes | Possible | ||
12 | 39 | f | COVID-19, cholecystectomy | ≤2 | ≤2 | KTR, OFD1 | Yes | Ani, Amp | (6, Sepsis with MOF) | Probable | |
13 | 60 | m | COVID-19 | >4 | >4 | OB | Yes | Yes | Possible | ||
14 | 59 | m | UTI, COVID-19 | >4 | >4 | DM, S, KTR, PTR, ex-TBP | Yes | Yes | Vor, Amp, Ani | Probable | |
15 | 53 | m | COVID-19 | 3–4 | ≤2 | none | Yes | (17, COVID-19) | Possible | ||
16 | 58 | m | CP, sepsis, COVID-19 | >4 | 3–4 | DM, NTR | Yes | Yes | Vor | Probable | |
17 | 82 | m | COVID-19 | ≤2 | ≤2 | DM, S | Yes | Vor, Amp | (5, MOF after COVID-19) | Possible | |
18 | 55 | m | COVID-19 | 3–4 | ≤2 | DM, OB | Yes | Yes | Vor, Amp | Possible | |
19 | 74 | f | COVID-19 | ≤2 | ≤2 | COPD, DM, S | Yes | Yes | Flu | (2, AKF after COVID-19) | Possible |
20 | 47 | m | COVID-19 | >4 | ≤2 | OB | Yes | Yes | Vor | Possible | |
21 | 72 | m | COVID-19 | 3–4 | 3–4 | M | Yes | Yes | Isa | (20, Lung failure) | Probable |
22 | 75 | m | COVID-19 | 3–4 | 3–4 | S | Yes | Vor | (12, Sepsis with MOF) | Possible | |
23 | 83 | m | COVID-19 | 3–4 | ≤2 | S | Yes | Possible |
ID | Culture | Etest© MICs (mg/L) | GM | PCR | CFW | Fungal Diagnostics Requested by Clinician | CAPA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SM | Species | CAS | AMB | VOR | POS | ISA | MICA | SM | Index | SM | Species | SM | Septate Mycelium | |||
1 | TS | A. fumigatus | 0.06 | 0.5 | 0.12 | 0.032 | 0.12 | 0.008 | Serum | 2.59 | - | - | TS | Pos | Probable Possible | |
A. flavus | 0.008 | 8 | 0.12 | 0.12 | 0.12 | 0.002 | ||||||||||
2 | TS | A. fumigatus | 0.06 | 0.5 | 0.12 | 0.032 | 0.12 | 0.008 | Serum | Neg | - | - | - | - | Probable Probable | |
A. flavus | 0.016 | 4 | 0.12 | 0.12 | 0.12 | 0.002 | ||||||||||
3 | BAL | A. fumigatus | 0.06 | 0.5 | 0.06 | 0.03 | 0.12 | 0.008 | Serum | Neg | BAL | Neg | BAL | Neg | Possible | |
4 | TS | A. fumigatus | 0.12 | 0.5 | 0.12 | 0.06 | 0.12 | 0.008 | Serum | 0.63 | - | - | - | - | Probable | |
5 | TS | A. fumigatus | 0.032 | 0.25 | 0.12 | 0.032 | 0.12 | 0.008 | BAL | Neg | - | - | BAL | Neg | Probable | |
6 | BAL | A. fumigatus | 0.06 | 0.25 | 0.06 | 0.008 | 0.12 | 0.008 | BAL | 3.51 | BAL | A. fumigatus | BAL | Pos | Culture, GM, PCR, CFW | Possible |
7 | TS | A. fumigatus | 0.06 | 1 | 0.12 | 0.016 | 0.06 | 0.004 | Serum | 0.66 | - | - | - | - | Probable | |
8 | TS | A. fumigatus | 0.06 | 0.25 | 0.12 | 0.032 | 0.12 | 0.008 | Serum BAL | Neg | - | - | BAL | Neg | Possible | |
9 | BAL | A. fumigatus | 0.016 | 0.5 | 0.06 | 0.032 | 0.25 | 0.008 | BAL | Neg | BAL | Neg | BAL | Neg | Culture, CFW | Possible |
10 | TS | A. fumigatus | 0.06 | 0.5 | 0.12 | 0.06 | 0.12 | 0.004 | Serum | Neg | - | - | - | - | Probable | |
11 | SP | A. fumigatus | 0.12 | 0.25 | 0.12 | 0.032 | 0.06 | 0.008 | Serum | Neg | - | - | - | - | Possible | |
12 | TS | A. fumigatus | 0.12 | 1 | 0.12 | 0.06 | 0.12 | 0.004 | BAL | 4.83 | BAL | A. fumigatus | BAL | Pos | Probable Possible | |
EDTA-blood | A. fumigatus | |||||||||||||||
13 | TS | A. fumigatus | 0.25 | 0.5 | 0.12 | 0.06 | 0.12 | 0.004 | Serum | Neg | - | - | - | - | Probable | |
14 | TS | A. fumigatus | 0.032 | 0.5 | 0.12 | 0.032 | 0.25 | 0.002 | BAL | Neg | EDTA-blood | A. fumigatus | BAL | Pos | Possible Possible | |
A. nidulans | 0.032 | 0.25 | 0.06 | 0.06 | 0.032 | 0.004 | ||||||||||
15 | TS | A. fumigatus | 0.12 | 0.5 | 0.12 | 0.032 | 0.12 | 0.004 | Serum | Neg | - | - | BAL | Neg | Possible | |
16 | BAL | A. fumigatus | 0.12 | 0.5 | 0.12 | 0.06 | 0.25 | 0.008 | BAL | 6.82 | BAL | A. fumigatus | BAL | Pos | Possible | |
17 | TS | A. fumigatus | 0.12 | 1 | 0.06 | 0.032 | 0.12 | 0.002 | Serum | Neg | - | - | - | - | Probable | |
18 | TS | A. fumigatus | 0.12 | 1 | 0.12 | 0.032 | 0.12 | 0.016 | Serum | Neg | - | - | - | - | Possible | |
19 | TS | A. fumigatus | 0.032 | 0.5 | 0.12 | 0.06 | 0.25 | 0.002 | Serum | Neg | - | - | - | - | Possible | |
20 | TS | A. fumigatus | 0.03 | 0.5 | 0.06 | 0.03 | 0.12 | 0.008 | Serum | Neg | - | - | BS | Neg | Probable | |
21 | TS | A. fumigatus | 0.06 | 0.5 | 0.12 | 0.06 | 0.12 | 0.016 | BAL | 6.69 | BAL | A. fumigatus | BAL | Pos | Culture | Possible Probable |
BAL | Cult., GM, PCR, CFW | |||||||||||||||
22 | TS | A. fumigatus | 0.06 | 0.5 | 0.12 | 0.06 | 0.12 | 0.002 | Serum | Neg | BS | Neg | BS | Neg | Probable | |
23 | SP | A. niger | 0.06 | 2 | 1 | 0.5 | 0.25 | 0.004 | Serum | Neg | - | - | - | - | Possible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lackner, N.; Thomé, C.; Öfner, D.; Joannidis, M.; Mayerhöfer, T.; Arora, R.; Samardzic, E.; Posch, W.; Breitkopf, R.; Lass-Flörl, C. COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility. J. Fungi 2022, 8, 93. https://doi.org/10.3390/jof8020093
Lackner N, Thomé C, Öfner D, Joannidis M, Mayerhöfer T, Arora R, Samardzic E, Posch W, Breitkopf R, Lass-Flörl C. COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility. Journal of Fungi. 2022; 8(2):93. https://doi.org/10.3390/jof8020093
Chicago/Turabian StyleLackner, Nina, Claudius Thomé, Dietmar Öfner, Michael Joannidis, Timo Mayerhöfer, Rohit Arora, Eldina Samardzic, Wilfried Posch, Robert Breitkopf, and Cornelia Lass-Flörl. 2022. "COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility" Journal of Fungi 8, no. 2: 93. https://doi.org/10.3390/jof8020093
APA StyleLackner, N., Thomé, C., Öfner, D., Joannidis, M., Mayerhöfer, T., Arora, R., Samardzic, E., Posch, W., Breitkopf, R., & Lass-Flörl, C. (2022). COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility. Journal of Fungi, 8(2), 93. https://doi.org/10.3390/jof8020093