Virulence Factors of Sporothrix schenckii
Abstract
1. Introduction
2. Cell Wall Proteins
3. Kinases and Heat Shock Proteins
4. Extracellular and Intracellular Proteinases
5. Melanins
6. Extracellular Vesicles
7. Lipids and Biofilm
S. schenckii Virulence Factors | Function | References | |
---|---|---|---|
Cell wall proteins | Gp70 | Adhesin that binds to fibronectin, laminin, and type II collagen Immunodominant antigen | [27,30,31,33,88] |
Hsp60 | Adhesin that binds to laminin, elastin, fibrinogen, and fibronectin | [40] | |
Pap1 | Adhesin that binds to laminin, elastin, fibrinogen, fibronectin, and type I and II collagen | [40] | |
Kinases and heat shock proteins in dimorphism and thermotolerance | SSCMK1 | Morphological switching and thermotolerance | [49,51] |
Hsp90 | Response to heat shock and proteotoxic stress Thermotolerance | [49] | |
DRK1 | Morphological switching and thermotolerance | [57,59] | |
Extracellular and intracellular proteinases | Degradation of skin constituents and cleaving of antibodies | [60,61,62] | |
Melanin | Protection against environmental stresses and phagocytosis Neutralization of reactive oxygen species and nitric oxide Resistance to antifungals | [67,69,70,72,73] | |
Extracellular vesicles | Transportation of molecules involved in pathogenesis | [77,78] | |
Lipids | Protection against the immune response and phagocytosis | [30] | |
Biofilm | Resistance to antifungals | [79,85,87,89] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Carnero, L.C.; Pérez-García, L.A.; Martínez-Álvarez, J.A.; Reyes-Martínez, J.E.; Mora-Montes, H.M. Current Trends to Control Fungal Pathogens: Exploiting Our Knowledge in the Host-Pathogen Interaction. Infect. Drug Resist. 2018, 11, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Bezerra, L.M.; Walker, L.A.; Niño-Vega, G.; Mora-aMontes, H.M.; Neves, G.W.P.; Villalobos-Duno, H.; Barreto, L.; Garcia, K.; Franco, B.; Martínez-Álvarez, J.A.; et al. Cell Walls of the Dimorphic Fungal Pathogens Sporothrix schenckii and Sporothrix brasiliensis Exhibit Bilaminate Structures and Sloughing of Extensive and Intact Layers. PLoS Negl. Trop. Dis. 2018, 12, e0006169. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.A.; Beale, M.A.; Hagen, F.; Fisher, M.C.; Kano, R.; Bonifaz, A.; Toriello, C.; Negroni, R.; Rego, R.S.d.M.; Gremião, I.D.F.; et al. Trends in the Molecular Epidemiology and Population Genetics of Emerging Sporothrix Species. Stud. Mycol. 2021, 100, 100129. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Bezerra, L.M.; Schubach, A.; Costa, R.O. Sporothrix schenckii and Sporotrichosis. An. Acad. Bras. Cienc. 2006, 78, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.B.D.L.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [PubMed]
- López-Romero, E.; Reyes-Montes, M.; Pérez-Torres, A.; Ruiz-Baca, E.; Villagómez-Castro, J.C.; Mora-Montes, H.M.; Flores-Carreón, A.; Toriello, C. Sporothrix schenckii Complex and Sporotrichosis, an Emerging Health Problem. Future Microbiol. 2011, 6, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Hektoen, L.; Perkins, C.F. Refractory Subcutaneous Abscesses Caused by Sporothrix schenckii. A New Pathogenic Fungus. J. Exp. Med. 1900, 5, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.M.M.; de Almeida, L.G.; Kubitschek-Barreira, P.; Alves, F.L.; Kioshima, É.S.; Abadio, A.K.; Fernandes, L.; Derengowski, L.S.; Ferreira, K.S.; Souza, R.C.; et al. Comparative Genomics of the Major Fungal Agents of Human and Animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genom. 2014, 15, 943. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Gao, W.; Giosa, D.; Criseo, G.; Zhang, J.; He, T.; Huang, X.; Sun, J.; Sun, Y.; Huang, J.; et al. Whole-Genome Sequencing and In Silico Analysis of Two Strains of Sporothrix globosa. Genome Biol. Evol. 2016, 8, 3292–3296. [Google Scholar] [CrossRef] [PubMed]
- Tamez-Castrellón, A.K.; Romeo, O.; García-Carnero, L.C.; Lozoya-Pérez, N.E.; Mora-Montes, H.M. Virulence Factors in Sporothrix schenckii, One of the Causative Agents of Sporotrichosis. Curr. Protein Pept. Sci. 2019, 21, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Rementeria, A.; López-Molina, N.; Ludwig, A.; Vivanco, A.B.; Bikandi, J.; Pontón, J.; Garaizar, J. Genes and Molecules Involved in Aspergillus fumigatus Virulence. Rev. Iberoam. Micol. 2005, 22, 1–23. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Pérez-Torres, A.; Romo-Lozano, Y.; Cervantes-García, D.; Alba-Fierro, C.A.; Ventura-Juárez, J.; Torriello, C. The Role of Macrophages in the Host’s Defense against Sporothrix schenckii. Pathogens 2021, 10, 905. [Google Scholar] [CrossRef] [PubMed]
- Mora-Montes, H.M.; Ponce-Noyola, P.; Villagómez-Castro, J.C.; Gow, N.A.R.; Flores-Carreón, A.; López-Romero, E. Protein Glycosylation in Candida. Future Microbiol. 2009, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Qing, X.; Liao, J.; Zhuo, K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020, 9, 1022. [Google Scholar] [CrossRef]
- Retanal, C.; Ball, B.; Geddes-Mcalister, J. Post-Translational Modifications Drive Success and Failure of Fungal–Host Interactions. J. Fungi 2021, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Tronchin, G.; Pihet, M.; Lopes-Bezerra, L.; Bouchara, J.P. Adherence Mechanisms in Human Pathogenic Fungi. Med. Mycol. 2008, 46, 749–772. [Google Scholar] [CrossRef]
- Delic, M.; Valli, M.; Graf, A.B.; Pfeffer, M.; Mattanovich, D.; Gasser, B. The Secretory Pathway: Exploring Yeast Diversity. FEMS Microbiol. Rev. 2013, 37, 872–914. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Chávez, M.J.; González-Hernández, R.J.; Trujillo-Esquivel, J.E.; Hernández-Cervantes, A.; Mora-Montes, H.M. The Secretory Pathway in the Filamentous Fungus Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Satala, D.; Karkowska-Kuleta, J.; Zelazna, A.; Rapala-Kozik, M.; Kozik, A. Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020, 8, 1046. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J.-P. Tasting the Fungal Cell Wall. Cell. Microbiol. 2010, 12, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Ielasi, F.S.; Decanniere, K.; Willaert, R.G. The Epithelial Adhesin 1 (Epa1p) from the Human-Pathogenic Yeast Candida glabrata: Structural and Functional Study of the Carbohydrate-Binding Domain. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 210–217. [Google Scholar] [CrossRef]
- de Groot, P.W.J.; Bader, O.; de Boer, A.D.; Weig, M.; Chauhan, N. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick. Eukaryot. Cell 2013, 12, 470–481. [Google Scholar] [CrossRef]
- Jeffery, C.J. Why Study Moonlighting Proteins? Front. Genet. 2015, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Lima, O.C.; Figueiredo, C.C.; Pereira, B.A.S.; Coelho, M.C.P.; Morandi, V.; Lopes-Bezerra, L.M. Adhesion of the Human Pathogen Sporothrix schenckii to Several Extracellular Matrix Proteins. Braz. J. Med. Biol. Res. 1999, 32, 651–657. [Google Scholar] [CrossRef]
- Previato, O.; Mendonc, L.; Lima, O.C.; Figueiredo, C.C.; De Biologia, D. Involvement of Fungal Cell Wall Components in Adhesion of Sporothrix schenckii to Human Fibronectin. Infect Immun. 2001, 69, 6874–6880. [Google Scholar] [CrossRef]
- Lima, O.C.; Bouchara, J.P.; Renier, G.; Marot-Leblond, A.; Chabasse, D.; Lopes-Bezerra, L.M. Immunofluorescence and Flow Cytometry Analysis of Fibronectin and Laminin Binding to Sporothrix schenckii Yeast Cells and Conidia. Microb. Pathog. 2004, 37, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.A.C.; de Castro, R.A.; Nascimento, R.C.; Tronchin, G.; Torres, A.P.; Lazéra, M.; de Almeida, S.R.; Bouchara, J.-P.; Loureiro y Penha, C.V.; Lopes-Bezerra, L.M. Cell Surface Expression of Adhesins for Fibronectin Correlates with Virulence in Sporothrix schenckii. Microbiology 2009, 155, 3730–3738. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Fernandes, G.F.; de Almeida, S.R.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Immunoproteomic Analysis Reveals a Convergent Humoral Response Signature in the Sporothrix schenckii Complex. J. Proteom. 2015, 115, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Álvarez, J.A.; García-Carnero, L.C.; Kubitschek-Barreira, P.H.; Lozoya-Pérez, N.E.; Belmonte-Vázquez, J.L.; De Almeida, J.R.F.; De Gómez-Infante, A.J.; Curty, N.; Villagómez-Castro, J.C.; Peña-Cabrera, E.; et al. Analysis of Some Immunogenic Properties of the Recombinant Sporothrix schenckii Gp70 Expressed in Escherichia coli. Future Microbiol. 2019, 14, 397–410. [Google Scholar] [CrossRef]
- Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.C.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Almeida, S.R.; Costa, R.O.; Camargo, Z.P.; Felipe, M.S.S.; et al. Differences in Cell Morphometry, Cell Wall Topography and Gp70 Expression Correlate with the Virulence of Sporothrix brasiliensis Clinical Isolates. PLoS ONE 2013, 8, e75656. [Google Scholar] [CrossRef]
- Nascimento, R.C.; Espíndola, N.M.; Castro, R.A.; Teixeira, P.A.C.; Penha, C.V.L.; Lopes-Bezerra, L.M.; Almeida, S.R. Passive Immunization with Monoclonal Antibody against a 70-KDa Putative Adhesin of Sporothrix schenckii Induces Protection in Murine Sporotrichosis. Eur. J. Immunol. 2008, 38, 3080–3089. [Google Scholar] [CrossRef]
- Nascimento, R.C.; Almeida, S.R. Humoral Immune Response against Soluble and Fractionate Antigens in Experimental Sporotrichosis. FEMS Immunol. Med. Microbiol. 2005, 43, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Baca, E.; Mora-Montes, H.M.; López-Romero, E.; Toriello, C.; Mojica-Marín, V.; Urtiz-Estrada, N. 2D-Immunoblotting Analysis of Sporothrix schenckii Cell Wall. Mem. Inst. Oswaldo Cruz 2011, 106, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Baca, E.; Toriello, C.; Pérez-Torres, A.; Sabanero-Lopez, M.; Villagómez-Castro, J.C.; López-Romero, E. Isolation and Some Properties of a Glycoprotein of 70 KDa (Gp70) from the Cell Wall of Sporothrix schenckii Involved in Fungal Adherence to Dermal Extracellular Matrix. Med. Mycol. 2009, 47, 185–196. [Google Scholar] [CrossRef]
- Lloyd, K.O.; Bitoon, M.A. Isolation and Purification of a Peptido-Rhamnomannan from the Yeast Form of Sporothrix schenckii. Structural and Immunochemical Studies. J. Immunol. 1971, 107, 663–671. [Google Scholar] [PubMed]
- Lopes-Alves, L.M.; Mendonça-Previato, L.; Fournet, B.; Degand, P.; Previato, J.O. O-Glycosidically Linked Oligosaccharides from Peptidorhamnomannans of Sporothrix schenckii. Glycoconj. J. 1992, 9, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.L.; Travassos, L.R.; Previato, J.O.; Mendonça-previato, L. Novel Antigenic Determinants from Peptidorhamnomannans of Sporothrix schenckii. Glycobiology 1994, 4, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Lima, O.C.; Lopes Bezerra, L.M. Identification of a Concanavalin A-Binding Antigen of the Cell Surface of Sporothrix schenckii. J. Med. Vet. Mycol. 1997, 35, 167–172. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lopes-Bezerra, L.M. Sporothrix schenckii Cell Wall Peptidorhamnomannans. Front. Microbiol. 2011, 2, 243. [Google Scholar] [CrossRef] [PubMed]
- García-Carnero, L.C.; Salinas-Marín, R.; Lozoya-Pérez, N.E.; Wrobel, K.; Wrobel, K.; Martínez-Duncker, I.; Niño-Vega, G.A.; Mora-Montes, H.M. The Heat Shock Protein 60 and Pap1 Participate in the Sporothrix schenckii-Host Interaction. J. Fungi 2021, 7, 960. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.J.; Chirico, W.J.; Lipke, P.N. Through the Back Door: Unconventional Protein Secretion. Cell Surf. 2020, 6, 100045. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Thakur, R.; Shankar, J. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. Biotechnol. Res. Int. 2015, 2015, 132635. [Google Scholar] [CrossRef]
- Gomez, F.J.; Allendoerfer, R.; Deepe, G.S. Vaccination with Recombinant Heat Shock Protein 60 from Histoplasma Capsulatum Protects Mice against Pulmonary Histoplasmosis. Infect. Immun. 1995, 63, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Izacc, S.M.S.; Gomez, F.J.; Jesuino, R.S.A.; Fonseca, C.A.; Felipe, M.S.S.; Deepe, G.S.; Soares, C.M.A. Molecular Cloning, Characterization and Expression of the Heat Shock Protein 60 Gene from the Human Pathogenic Fungus Paracoccidioides brasiliensis. Med. Mycol. 2001, 39, 445–455. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thomaz, L.; Nosanchuk, J.D.; Rossi, D.C.P.; Travassos, L.R.; Taborda, C.P. Monoclonal Antibodies to Heat Shock Protein 60 Induce a Protective Immune Response against Experimental Paracoccidioides lutzii. Microbes Infect. 2014, 16, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Long, K.H.; Gomez, F.J.; Morris, R.E.; Newman, S.L. Identification of Heat Shock Protein 60 as the Ligand on Histoplasma Capsulatum That Mediates Binding to CD18 Receptors on Human Macrophages. J. Immunol. 2003, 170, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Silva-Bailão, M.G.; de SousaLima, P.; Oliveira, M.M.E.; Oliveira, L.C.; Almeida-Paes, R.; Borges, C.L.; Bailão, A.M.; Coelho, A.S.G.; de AlmeidaSoares, C.M.; Zancopé-Oliveira, R.M. Comparative Proteomics in the Three Major Human Pathogenic Species of the Genus Sporothrix. Microbes Infect. 2021, 23, 4762. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.; Del Valle, N.R. Calcium Uptake and Efflux during the Yeast to Mycelium Transition in Sporothrix schenckii. Mycopathologia 1990, 112, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Caban, J.; Gonzalez-Velazquez, W.; Perez-Sanchez, L.; Gonzalez-Mendez, R.; Del Valle, N.R. Calcium/Calmodulin Kinase1 and Its Relation to Thermotolerance and HSP90 in Sporothrix schenckii: An RNAi and Yeast Two-Hybrid Study. BMC Microbiol. 2011, 11, 162. [Google Scholar] [CrossRef]
- Braun, A.P.; Schulman, H. KINASE: From Form to Function. Annu. Rev. Physiol. 1995, 4, 417–445. [Google Scholar] [CrossRef] [PubMed]
- Valle-Aviles, L.; Valentin-Berrios, S.; Gonzalez-Mendez, R.R.; Rodriguez-Del Valle, N. Functional, Genetic and Bioinformatic Characterization of a Calcium/Calmodulin Kinase Gene in Sporothrix schenckii. BMC Microbiol. 2007, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Hanks, S.K.; Hunter, T. The Eukaryotic Protein Kinase Superfamily: Kinase (Catalytic) Domain Structure and Classification 1. FASEB J. 1995, 9, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Périanin, A.; Pedruzzi, E.; Hakim, J. W-7, a Calmodulin Antagonist, Primes the Stimulation of Human Neutrophil Respiratory Burst by Formyl Peptides and Platelet-Activating Factor. FEBS Lett. 1994, 342, 135–138. [Google Scholar] [CrossRef]
- Hidaka, H.; Yokokura, H. Molecular and Cellular Pharmacology of a Calcium/Calmodulin-Dependent Protein Kinase II (CaM Kinase II) Inhibitor, KN-62, and Proposal of CaM Kinase Phosphorylation Cascades. Adv. Pharmacol. 1996, 36, 193–219. [Google Scholar] [CrossRef]
- Schneider, J.C.; El Kebir, D.; Chéreau, C.; Lanone, S.; Huang, X.L.; De Buys Roessingh, A.S.; Mercier, J.C.; Dall’Ava-Santucci, J.; Dinh-Xuan, A.T. Involvement of Ca2+/Calmodulin-Dependent Protein Kinase II in Endothelial NO Production and Endothelium-Dependent Relaxation. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Leach, M.D.; Klipp, E.; Cowen, L.E.; Brown, A.J.P. Fungal Hsp90: A Biological Transistor That Tunes Cellular Outputs to Thermal Inputs. Nat. Rev. Microbiol. 2012, 10, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Zhang, Z.; Zheng, F.; Liu, X. Molecular Cloning, Characterization and Differential Expression of DRK1 in Sporothrix schenckii. Int. J. Mol. Med. 2013, 31, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, J.C.; Wüthrich, M.; Klein, B.S. Global Control of Dimorphism and Virulence in Fungi. Science 2006, 312, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hou, B.; Wu, Y.Z.; Wang, Y.; Liu, X.; Han, S. Two-Component Histidine Kinase DRK1 Is Required for Pathogenesis in Sporothrix schenckii. Mol. Med. Rep. 2018, 17, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Sanada, T. Isolation and Characterization of Extracellular Proteinases from Sporothrix schenckii. Nippon Hifuka Gakkai Zasshi. Jpn. J. Dermatol. 1987, 97, 1223–1230. [Google Scholar] [CrossRef]
- Yoshiike, T.; Lei, P.C.; Komatsuzaki, H.; Ogawa, H. Antibody Raised against Extracellular Proteinases of Sporothrix schenckii in S. schenkii Inoculated Hairless Mice. Mycopathologia 1993, 123, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.C.; Yoshiike, T.; Ogawa, H. Effects of Proteinase Inhibitors on the Cutaneous Lesion of Sporothrix schenckii Inoculated Hairless Mice. Mycopathologia 1993, 123, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.D.A.; Gezuele, E.; Calegari, L.; Goñi, F. Excretion-Secretion Products and Proteases from Live Sporothrix schenckii Yeast Phase. Immunological Detection and Cleavage of Human IgG. Rev. Inst. Med. Trop. Sao Paulo 2009, 51, 1–7. [Google Scholar] [CrossRef][Green Version]
- Sabanero López, M.; Flores Villavicencio, L.L.; Soto Arredondo, K.; Barbosa Sabanero, G.; Villagómez-Castro, J.C.; Cruz Jiménez, G.; Sandoval Bernal, G.; Torres Guerrero, H. Proteases of Sporothrix schenckii: Cytopathological Effects on a Host-Cell Model. Rev. Iberoam. Micol. 2018, 35, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Nosanchuk, J.D.; Casadevall, A. The Contribution of Melanin to Microbial Pathogenesis. Cell. Microbiol. 2003, 5, 203–223. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Cordero, R.J.B.; Bryan, R.; Nosanchuk, J.; Dadachova, E. Melanin, Radiation, and Energy Transduction in Fungi. In The Fungal Kingdom; ASM Press: Washington, DC, USA, 2017; pp. 509–514. [Google Scholar] [CrossRef]
- Romero-Martinez, R.; Wheeler, M.; Guerrero-Plata, A.; Rico, G.; Torres-Guerrero, H. Biosynthesis and Functions of Melanin in Sporothrix schenckii. Infect. Immun. 2000, 68, 3696–3703. [Google Scholar] [CrossRef]
- Morris-Jones, R.; Youngchim, S.; Gomez, B.L.; Aisen, P.; Hay, R.J.; Nosanchuk, J.D.; Casadevall, A.; Hamilton, A.J. Synthesis of Melanin-like Pigments by Sporothrix schenckii in Vitro and during Mammalian Infection. Infect. Immun. 2003, 71, 4026–4033. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Almeida-Paes, R.; Figueiredo-Carvalho, M.H.G.; Brito-Santos, F.; Almeida-Silva, F.; Oliveira, M.M.E.; Zancopé-Oliveira, R.M. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine. PLoS ONE 2016, 11, e0152796. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Paes, R.; Frases, S.; Araújo, G.D.S.; de Oliveira, M.M.E.; Gerfen, G.J.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Biosynthesis and Functions of a Melanoid Pigment Produced by Species of the Sporothrix Complex in the Presence of L-Tyrosine. Appl. Environ. Microbiol. 2012, 78, 8623–8630. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; De Oliveira, L.C.; Oliveira, M.M.E.; Gutierrez-Galhardo, M.C.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Phenotypic Characteristics Associated with Virulence of Clinical Isolates from the Sporothrix Complex. BioMed Res. Int. 2015, 2015, 212308. [Google Scholar] [CrossRef]
- Madrid, I.M.; Xavier, M.O.; Mattei, A.S.; Fernandes, C.G.; Guim, T.N.; Santin, R.; Schuch, L.F.D.; Nobre, M.D.O.; Araújo Meireles, M.C. Role of Melanin in the Pathogenesis of Cutaneous Sporotrichosis. Microbes Infect. 2010, 12, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Taborda, C.P.; Da Silva, M.B.; Nosanchuk, J.D.; Travassos, L.R. Melanin as a Virulence Factor of Paracoccidioides brasiliensis and Other Dimorphic Pathogenic Fungi: A Minireview. Mycopathologia 2008, 165, 331–339. [Google Scholar] [CrossRef]
- Guan, M.-Q.; Yao, L.; Zhen, Y.; Song, Y.; Cui, Y.; Li, S. shan. Melanin of Sporothrix globosa Affects the Function of THP-1 Macrophages and Modulates the Expression of TLR2 and TLR4. Microb. Pathog. 2021, 159, 105158. [Google Scholar] [CrossRef] [PubMed]
- Negrini, T.D.C.; Ferreira, L.S.; Arthur, R.A.; Alegranci, P.; Placeres, M.C.P.; Spolidorio, L.C.; Carlos, I.Z. Influence of TLR-2 in the Immune Response in the Infection Induced by Fungus Sporothrix schenckii. Immunol. Investig. 2014, 43, 370–390. [Google Scholar] [CrossRef] [PubMed]
- Sassá, M.F.; Ferreira, L.S.; de Abreu Ribeiro, L.C.; Carlos, I.Z. Immune Response against Sporothrix schenckii in TLR-4-Deficient Mice. Mycopathologia 2012, 174, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.C.; Nakayasu, E.S.; Rodrigues, M.L.; Frases, S.; Casadevall, A.; Zancope-Oliveira, R.M.; Almeida, I.C.; Nosanchuk, J.D. Vesicular Transport in Histoplasma Capsulatum: An Effective Mechanism for Trans-Cell Wall Transfer of Proteins and Lipids in Ascomycetes. Cell. Microbiol. 2008, 10, 1695–1710. [Google Scholar] [CrossRef]
- Ikeda, M.A.K.; De Almeida, J.R.F.; Jannuzzi, G.P.; Cronemberger-Andrade, A.; Torrecilhas, A.C.T.; Moretti, N.S.; Da Cunha, J.P.C.; De Almeida, S.R.; Ferreira, K.S. Extracellular Vesicles from Sporothrix brasiliensis are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Front. Microbiol. 2018, 9, 2286. [Google Scholar] [CrossRef] [PubMed]
- Carlos, I.Z.; Sgarbi, D.B.G.; Santos, G.C.; Placeres, M.C.P. Sporothrix schenckii Lipid Inhibits Macrophage Phagocytosis: Involvement of Nitric Oxide and Tumour Necrosis Factor-α. Scand. J. Immunol. 2003, 57, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Ajesh, K.; Sreejith, K. Cryptococcus Laurentii Biofilms: Structure, Development and Antifungal Drug Resistance. Mycopathologia 2012, 174, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Alim, D.; Sircaik, S.; Panwar, S.L. The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. J. Fungi 2018, 4, 140. [Google Scholar] [CrossRef] [PubMed]
- Shopova, I.; Bruns, S.; Thywissen, A.; Kniemeyer, O.; Brakhage, A.A.; Hillmann, F. Extrinsic Extracellular DNA Leads to Biofilm Formation and Colocalizes with Matrix Polysaccharides in the Human Pathogenic Fungus Aspergillus fumigatus. Front. Microbiol. 2013, 4, 141. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Herrera, R.; Flores-Villavicencio, L.L.; Pichardo-Molina, J.L.; Castruita-Domínguez, J.P.; Aparicio-Fernández, X.; López, M.S.; Villagómez-Castro, J.C. Analysis of Biofilm Formation by Sporothrix schenckii. Med. Mycol. 2021, 59, 31–40. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Da Silva, M.L.Q.; Pereira, V.S.; De Oliveira, J.S.; Maciel, J.M.; Da Silva, I.N.G.; Garcia, L.G.S.; Guedes, G.M.D.M.; Cordeiro, R.D.A.; Pereira-Neto, W.D.A.; et al. Potassium Iodide and Miltefosine Inhibit Biofilms of Sporothrix schenckii Species Complex in Yeast and Filamentous Forms. Med. Mycol. 2019, 57, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, R.S.N.; De Aguiar, F.R.M.; Da Silva, M.L.Q.; De Oliveira, J.S.; De Camargo, Z.P.; Rodrigues, A.M.; Pereira, V.S.; Serpa, R.; De Souza Collares Maia Castelo-Branco, D.; Correia, E.E.M.; et al. Antifungal Susceptibility of Sporothrix schenckii Complex Biofilms. Med. Mycol. 2018, 56, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; De Hoog, G.; Zhang, Y.; De Camargo, Z.P. Emerging Sporotrichosis Is Driven by Clonal and Recombinant Sporothrix Species. Emerg. Microbes Infect. 2014, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, H.; Feng, P.; Zhang, J.; Zhong, Y.; Xue, R.; Xie, Z.; Li, M.; Xi, L. In Vitro Activity of Itraconazole in Combination with Terbinafine against Clinical Strains of Itraconazole-Insensitive Sporothrix schenckii. Eur. J. Dermatol. 2011, 21, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Fernandes, G.F.; Araujo, L.M.; Della Terra, P.P.; dos Santos, P.O.; Pereira, S.A.; Schubach, T.M.P.; Burger, E.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens. PLoS Negl. Trop. Dis. 2015, 9, e0004016. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; de Hoog, G.S.; de Cássia Pires, D.; Brihante, R.S.N.; da Costa Sidrim, J.J.; Gadelha, M.F.; Colombo, A.L.; De Camargo, Z.P. Genetic Diversity and Antifungal Susceptibility Profiles in Causative Agents of Sporotrichosis. BMC Infect. Dis. 2014, 14, 219. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Carnero, L.C.; Martínez-Álvarez, J.A. Virulence Factors of Sporothrix schenckii. J. Fungi 2022, 8, 318. https://doi.org/10.3390/jof8030318
García-Carnero LC, Martínez-Álvarez JA. Virulence Factors of Sporothrix schenckii. Journal of Fungi. 2022; 8(3):318. https://doi.org/10.3390/jof8030318
Chicago/Turabian StyleGarcía-Carnero, Laura Cristina, and José Ascención Martínez-Álvarez. 2022. "Virulence Factors of Sporothrix schenckii" Journal of Fungi 8, no. 3: 318. https://doi.org/10.3390/jof8030318
APA StyleGarcía-Carnero, L. C., & Martínez-Álvarez, J. A. (2022). Virulence Factors of Sporothrix schenckii. Journal of Fungi, 8(3), 318. https://doi.org/10.3390/jof8030318