Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Condition
2.2. Preparation of Yogurt
2.3. Antioxidant Activities of Yogurt Samples
2.3.1. DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Free Radical Scavenging Assay
2.3.2. Total Phenol Content Determination
2.4. Volatile Analysis
2.4.1. Extraction of Volatile Flavor Compounds
2.4.2. GC–MS Analysis
2.4.3. Identification and Quantitation of Volatile Flavor Compounds
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activities of Yogurt Samples
3.1.1. Radical Scavenging Assay during Storage
3.1.2. Total Phenol Content of Yogurt Samples during Storage
3.2. Volatile Compounds of Synbiotic Yogurt
3.3. Principal Component Analysis of Volatile Compounds
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villaño, D.; Gironés-Vilapana, A.; García-Viguera, C.; Moreno, D.A. Development of Functional Foods. In Innovation Strategies in the Food Industry; Academic Press: Cambridge, MA, USA, 2016; pp. 191–210. [Google Scholar]
- Keshavarzi, M.; Sharifan, A.; Yasini Ardakani, S.A. Effect of the ethanolic extract and essential oil of Ferulago angulata (Schlecht.) Boiss. on protein, physicochemical, sensory, and microbial characteristics of probiotic yogurt during storage time. Food Sci. Nutr. 2021, 9, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.; Zou, M.H. Roles of reactive oxygen species in physiology and pathology. In Atherosclerosis: Risks, Mechanisms, and Therapies; Wang, H., Patterson, C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 379–392. [Google Scholar]
- Rafieian-Kopaei, M.; Baradaran, A.; Rafieian, M. Plants antioxidants: From laboratory to clinic. J. Nephropathol. 2013, 2, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, O.; Meydani, S.N.; Russell, R.M. Yogurt and gut function. Am. J. Clin. Nutr. 2004, 80, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.S.; Kholif, A.M.; Sayad, A.F. Evaluation of the Nutritional Value of Functional Yogurt Resulting from Combination of Date Palm Syrup and Skin Milk. Am. J. Food Technol. 2010, 5, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Ghiassi. Moulded Fruit-Flavored Yogurt Formulation Using Natural Pigments and Evaluating Its Features; Gorgan University of Agricultural Sciences and Natural Resources: Gorgan, Iran, 2011. [Google Scholar]
- Guerra, N.P.; Rua, M.; Pastrana, L. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 2001, 70, 267–281. [Google Scholar] [CrossRef]
- Sarwar, A.; Aziz, T.; Din, J.; Khalid, A.; Rahman, T.; Daudzai, Z. Pros of Lactic Acid Bacteria in Microbiology: A Review. Biomed. Lett. 2018, 4, 59–66. [Google Scholar]
- Tomasik, P.J.; Tomasik, P. Probiotics and prebiotics. Cereal. Chem. 2003, 80, 113–117. [Google Scholar] [CrossRef]
- Allgeyer, L.; Miller, M.; Lee, S.-Y. Drivers of Liking for Yogurt Drinks with Prebiotics and Probiotics. J. Food Sci. 2010, 75, S212–S219. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Liu, X.L.; Jiang, H.H.; Dong, M.S. Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 2009, 26, 770–775. [Google Scholar] [CrossRef]
- Diniz, R.; Garla, L.; Schneedorf, J.; Carvalho, J. Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacol. Res. 2003, 47, 49–52. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, F.; Wang, X.; Sui, Y.; Yang, L.; Wang, J. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. J. Dairy Sci. 2013, 96, 2816–2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhao, X.; Jiang, Y.; Zhao, W.; Guo, T.; Cao, Y.; Teng, J.; Hao, X.; Zhao, J.; Yang, Z. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci. 2017, 100, 6025–6041. [Google Scholar] [CrossRef]
- Viljoen, B.C. The interaction between yeasts and bacteria in dairyenvironments. Int. J. Food Microbiol. 2001, 69, 37–44. [Google Scholar] [CrossRef]
- Farnworth, E.R.; Mainville, I. Kefir: A fermented milk product. In Handbook of Fermented Functional Foods; Farnworth, R., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 77–103. [Google Scholar]
- Waitzberg, D.L.; Pereira, C.C.A.; Logullo, L.; Jacintho, T.M.; Almeida, D.; Da Silva, M.L.T.; de Miranda Torrinhas, R.S.M. Microbiota benefits after inulin and partially hydrolized guar gum supplementation: A randomized clinical trial in constipated women. Nutr. Hosp. 2012, 27, 123–129. [Google Scholar] [CrossRef]
- Mazloumi, S.M.; Shekarforoush, S.S.; Ebrahimnejad, H.; Sajedianfard, J. Effect of adding inulin on microbial and physico-chemical properties of low fat probiotic yogurt. Iran. J. Vet. Res. 2011, 12, 93–98. [Google Scholar]
- Messer, J.S.; Chang, E.B. Physiology of the Gastrointestinal Tract, 6th ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 795–810. [Google Scholar]
- Tuohy, K.M.; Probert, H.M.; Smejkal, C.W.; Gibson, G.R. Using probiotics and prebiotics to improve gut health. Drug Discov. 2003, 8, 692–700. [Google Scholar] [CrossRef]
- Zbar, N.S.; Nashi, L.F.; Saleh, S.M. Saccharomyces boulardii as effective probiotic against Shigella flexneri in mice. Int. J. Mater. Methods Technol. 2013, 1, 17–21. [Google Scholar]
- Lynne, V. Evidence-based review of probiotic for antibiotic-associated diarrhea and Clostridium difficile infections. Anaerobe 2009, 15, 274–280. [Google Scholar]
- Zamora-Vega, R.; Montañez-Soto, J.L.; Martínez-Flores, H.E.; Flores-Magallón, R.; Muñoz-Ruiz, C.V.; Venegas-González, J.; Ariza, O.T.D.J. Effect of incorporating prebiotics in coating materials for the microencapsulation of Saccharomyces boulardii. Int. J. Food Sci. Nutr. 2012, 63, 930–935. [Google Scholar] [CrossRef]
- Gary, W. Probiotics: Living drugs. Am. J. Health Syst. Pharm. 2002, 58, 111–1109. [Google Scholar]
- Chowdhury, R.; Samanta, S.; Banerjee, D.; Bhattacharya, P. Studies on prebiotic food additive (Inulin) in Indian dietary fiber sources Garlic (Allium Sativum), Wheat (Triticum spp.), Oat (Avena Sativa), and Dalia (Bulgur). Int. J. Pharm. Pharm. Sci. 2014, 6, 278–282. [Google Scholar]
- Paseephol, T.; Small, D.M.; Sharkat, F. Rheological and texture of set yogurt as affected by inulin addition. J. Texture Study 2008, 39, 617–634. [Google Scholar] [CrossRef]
- Periera, E.; Barros, L.; Ferreira, I. Relevance of the mention of Antioxidant Properties in yoghurt labels: In vitro Evaluation and Chromatographic Analysis. Antioxidants 2013, 2, 62–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardarelli, H.R.; Buriti, F.C.A.; Castro, I.A.; Saad, I.S.M. Inulin and oligofructose improve sensory quality and increase the probiotic viable count in potentially symbiotic petit-suisse cheese. LWT—Food Sci. Technol. 2008, 41, 1037–1046. [Google Scholar] [CrossRef]
- Rezaei, R.; Khomeiri, M.; Aalami, M.; Kashaninejad, M. Effect of inulin on the physicochemical properties, flow behavior and probiotic survival of frozen yogurt. J. Food Sci. Technol. 2014, 51, 2809–2814. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhao, X.; Zhang, J.; Din, J.U.; Chen, C.; Cao, Y.; Yang, Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.T.; Flores, H.E.M.; Lopez, J.O.R.; Vega, R.Z.; Garciglia, R.S.; Sanchez, R.E.P. Survival rate of Saccharomyces boulardii adapted to a functional freeze-dried yogurt: Experimental study related to processing, storage and digestion by Wistar rats. Funct. Foods Health Dis. 2017, 7, 98–114. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. Antioxidant activity and inhibition of key enzymes linked to type-2 diabetes and hypertension by Azadirachta indica-yogurt. J. Saudi Chem. Soc. 2013, 17, 295–301. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Xu, X.; Sulieman, A.A.; Mahdi, A.A.; Na, Y. Effect of extraction conditions on phenolic compounds and antioxidant properties of koreeb (Dactyloctenium aegyptium) seeds flour. J. Food Meas. Charact. 2019, 14, 799–808. [Google Scholar] [CrossRef]
- Pasqualetti, V.; Altomare, A.; Guarino, M.P.L.; Locato, V.; Cocca, S.; Cimini, S.; Palma, R.; Alloni, R.; De Gara, L.; Cicala, M. Antioxidant Activity of Inulin and Its Role in the Prevention of Human Colonic Muscle Cell Impairment Induced by Lipopolysaccharide Mucosal Exposure. PLoS ONE 2014, 9, e98031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silalahi, J.; Nadarason, D.; E Silalahi, Y.C. The effect of storage condition on antioxidant activity of probiotics in yogurt drinks. Asian J. Pharm. Clin. Res. 2018, 11, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Caleja, C.; Barros, L.; Antonio, A.L.; Carocho, M.; Oliveira, M.B.P.; Ferreira, I.C. Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives. Food Chem. 2016, 210, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, W.-Y.; Kim, D.-H.; Lee, H.-J.; Yeon, S.-J.; Lee, C.-H. Quality characteristic and antioxidant activity of yogurt containing olive leaf hot water extract. CyTA-J. Food 2020, 18, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Dabija, A.; Codină, G.G.; Ropciuc, S.; Gâtlan, A.M.; Rusu, L. Assessment of the antioxidant activity and quality attributes of yogurt enhanced with wild herbs extracts. J. Food Qual. 2018, 4, 5329386. [Google Scholar] [CrossRef]
- Senadeera, S.; Prasanna, P.H.P.; Jayawardana, N.W.I.A.; Gunasekara, D.C.S.; Senadeera, P.; Chandrasekara, A. Antioxidant, physicochemical, microbiological, and sensory properties of probiotic yoghurt incorporated with various Annona species pulp. Heliyon 2018, 4, e00955. [Google Scholar] [CrossRef] [Green Version]
- Chouchouli, V.; Kalogeropoulos, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT—Food Sci. Technol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Oliveira, A.; Alexandre, E.M.C.; Coelho, M.; Lopes, C.; Almeida, D.P.F.; Pintado, M. Incorporation of strawberries preparation in yoghurt: Impact on phytochemicals and milk proteins. Food Chem. 2015, 171, 370–378. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Sigdel, A.; Ojha, P.; Karki, T.B. Phytochemicals and syneresis of osmo-dried mulberry incorporated yoghurt. Food Sci. Nutr. 2018, 6, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, A.G.; Cadena, R.S.; Walter, E.H.; Mortazavian, A.M.; Granato, D.; Faria, J.A.; Bolini, H. Sensory analysis: Relevance for prebiotic, probiotic, and synbiotic product development. Compr. Rev. Food Sci. Food Saf. 2010, 9, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, C.; Castro, C.; Jublot, L.; Costell, E.; Bayarri, S. Colour, rheology, flavour release and sensory perception of dairy desserts. Influence of thickener and fat content. LWT—Food Sci. Technol. 2015, 62, 408–416. [Google Scholar] [CrossRef]
- Graebin, C.S.; Madeira, M.D.F.; Yokoyama-Yasunaka, J.K.; Miguel, D.C.; Uliana, S.R.; Benitez, D.; Cerecetto, H.; González, M.; da Rosa, R.G.; Eifler-Lima, V.L. Synthesis and in vitro activity of limonene derivatives against Leishmania and Trypanosoma. Eur. J. Med. Chem. 2010, 45, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Tzavaras, D.; Papadelli, M.; Ntaikou, I. From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. Fermentation 2022, 8, 135. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T.; Ye, T.; Yang, X.; Xue, Y.; Shen, Y.; Zhang, Q.; Zheng, X. Effect of lactic acid bacteria and yeasts on the structure and fermentation properties of Tibetan kefir grains. Int. Dairy J. 2020, 114, 104943. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, X.; Guo, X.; He, X. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2017, 44, 129–139. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Guler, Z.; Gursoy-Balcı, A.C. Evaluation of Volatile Compounds and Free Fatty Acids in Set Types Yogurts Made of Ewes’, Goats’ Milk and Their Mixture Using Two Different Commercial Starter Cultures during Refrigerated Storage. Food Chem. 2011, 127, 1065–1071. [Google Scholar] [CrossRef]
- Buts, J.P.; Stilmant, C.; Bernasconi, P.; Neirinck, C.; De Keyser, N. Characterization of alpha, alpha-trehalase released in the intestinal lumen by the probiotic Saccharomyces boulardii. Scand. J. Gastroenterol. 2008, 43, 1489–1496. [Google Scholar] [CrossRef]
- Moré, M.I.; Vandenplas, Y. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review. Clin. Med. Insights Gastroenterol. 2018, 11, 1179552217752679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemayehu, D.; Hannon, J.A.; McAuliffe, O.; Ross, R.P. Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk. Int. J. Food Microbiol. 2014, 172, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, M.; Yu, J.; Zhang, Y.; Wang, H.; Bai, N.; Qin, Y.; Liangliang, D.; Liu, W.; Zhang, H.; Bilige, M. Study on Streptococcus thermophilus isolated from Qula and associated characteristic of acetaldehyde and diacetyl in their fermented milk. J. Gen. Appl. Microbiol. 2015, 61, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, T.; Wang, D.; Jin, R.L.; Zhang, H.P.; Zhou, T.T.; Sun, T.S. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. J. Dairy Sci. 2017, 100, 2488–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Name | Concentration of S. boulardii and Inulin |
---|---|
S1-C | Control plain yogurt |
S2-P | Yogurt with 0.5% S. boulardii |
S3-Syn1 | Yogurt with 0.5% S. boulardii + 1% inulin |
S4-Syn1.5 | Yogurt with 0.5% S. boulardii + 1.5% inulin |
S5-Syn2 | Yogurt with 0.5% S. boulardii + 2% inulin |
Name of Sample | Storage Day | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
S1-C | 11.65 ± 0.7 E | 20.38 ± 0.36 E | 26.44 ± 0.8 E | 38.74 ± 0.25 E | 45.48 ± 0.57 E |
S2-P | 11.94 ± 0.54 D | 22.44 ± 0.5 D | 54.65 ± 0.85 D | 64.57 ± 0.43 D | 72.32 ± 0.76 A |
S3-Syn1 | 12.07 ± 0.32 C | 27.74 ± 0.86 C | 61.01 ± 0.28 C | 70.75 ± 0.36 c | 70.23 ± 0.65 D |
S4-Syn1.5 | 14.09 ± 0.87 B | 29.50 ± 0.4 B | 62.73 ± 0.92 B | 71.26 ± 0.84 B | 72.03 ± 0.54 BC |
S5-Syn2 | 15.84 ± 0.48 A | 32.80 ± 0.74 A | 65.51 ± 0.74 A | 72.75 ± 0.27 A | 72.14 ± 0.84 BC |
Name of Sample | Storage Day | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
S1-C | 0.57 ± 0.07 e | 0.62 ± 0.05 e | 0.67 ± 0.1 e | 0.74 ± 0.09 e | 0.78 ± 0.04 e |
S2-P | 1.04 ± 0.03 d | 1.42 ± 0.07 d | 1.65 ± 0.05 d | 1.57 ± 0.04 d | 1.52 ± 0.06 d |
S3-Syn1 | 1.74 ± 0.06 c | 2.34 ± 0.1 c | 2.86 ± 0.08 c | 3.21 ± 0.06 c | 3.54 ± 0.65 c |
S4-Syn1.5 | 2.09 ± 0.07 b | 2.82 ± 0.04 b | 3.13 ± 0.02 b | 3.57 ± 0.07 b | 3.75 ± 0.09 b |
S5-Syn2 | 2.76 ± 0.08 a | 3.25 ± 0.05 a | 3.49 ± 0.09 a | 3.75 ± 0.10 a | 4.02 ± 0.04 a |
Concentration (mg/100 g) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | CAS | RI a | Identification | Week 0 | Week 1 | ||||||||
S1-C | S2-P | S3-Syn1 | S4-Syn1.5 | S5-Syn2 | S1-C | S2-P | S3-Syn1 | S4-Syn1.5 | S5-Syn2 | ||||
Ethanol | 64-17-5 | 932 | RI, MS | n.d | 10.56 ± 0.61 | 54.91 ± 11.43 | 83.97 ± 9.04 | 64.19 ± 4.54 | 0.83 ± 0.15 | 28.13 ± 2.76 | 93.32 ± 7.34 | 68.07 ± 3.55 | 145.24 ± 13.43 |
3-Hydroxy butanal | 107-89-1 | 1009 | MS | n.d | 0.63 ± 0.11 | 13.95 ± 3.31 | n.d | n.d | n.d | n.d | 4.71 | n.d | n.d |
2-Methyl-1-propanol | 78-83-1 | 1092 | RI, MS | n.d | 2.45 ± 0.21 | 13.25 ± 1.74 | 11.56 ± 1.43 | 7.42 ± 1.32 | n.d | 4.98 ± 0.79 | 22.80 ± 1.33 | 9.75 ± 2.23 | 21.45 ± 2.77 |
1-Butanol-3-methyl-acetate | 123-92-2 | 1122 | RI, MS | n.d | 2.84 ± 0.19 | 8.11 ± 1.13 | 7.44 ± 0.86 | 4.90 ± 0.65 | n.d | 4.14 ± 1.13 | 6.18 ± 1.21 | 1.96 ± 0.54 | 4.79 ± 1.14 |
Limonene | 138-86-3 | 1200 | RI, MS | n.d | 23.03 ± 1.45 | 148.99 ± 17.56 | 136.99 ± 12.13 | 46.78 ± 5.16 | n.d | 54.36 ± 6.32 | 56.05 ± 4.32 | 20.95 ± 2.44 | 20.82 ± 2.12 |
L-Limonene | 5989-54-8 | 1204 | RI, MS | n.d | 24.83 ± 3.27 | 2.42 ± 0.69 | 12.22 ± 2.14 | 16.69 ± 2.32 | n.d | 22.78 ± 2.77 | 47.64 ± 4.13 | 31.65 ± 2.69 | 86.64 ± 4.65 |
3-Methyl-1-butanol, | 123-51-3 | 1209 | RI, MS | n.d | 31.85 ± 4.12 | 195.81 ± 12.32 | 252.81 ± 20.21 | 173.12 ± 11.35 | n.d | 108.18 ± 8.19 | 308.57 ± 20.26 | 172.47 ± 9.66 | 370.68 ± 17.48 |
Butanoic acid-3-methyl butyl ester | 106-27-4 | 1259 | RI, MS | n.d | 2.13 ± 0.76 | 6.78 ± 1.55 | 6.12 ± 1.13 | 4.59 ± 0.84 | n.d | 6.41 ± 1.54 | 5.73 ± 0.91 | 3.02 ± 0.68 | 5.24 ± 0.89 |
Acetoin | 513-86-0 | 1284 | RI, MS | 9.46 ± 1.47 | 62.82 ± 8.37 | 179.17 ± 9.87 | 161.69 ± 5.87 | 108.11 ± 10.21 | 25.96 ± 3.56 | 125.46 ± 6.12 | 117.05 ± 11.43 | 48.20 ± 3.41 | 100.22 ± 7.88 |
Octanoic acid ethyl ester | 106-32-1 | 1435 | RI, MS | n.d | n.d | n.d | 8.81 ± 0.78 | 6.08 ± 0.93 | n.d | n.d | n.d | 4.88 ± 0.89 | 9.70 ± 1.47 |
Acetic acid | 64-19-7 | 1449 | RI, MS | 1.18 ± 0.35 | 10.38 ± 1.35 | 33.45 ± 2.68 | 65.91 ± 8.32 | 34.56 ± 6.32 | 2.71 ± 0.57 | 30.76 ± 2.28 | 44.83 ± 2.76 | 18.78 ± 3.32 | 42.68 ± 3.68 |
2-Methyl-propanoic acid | 79-31-2 | 1570 | RI, MS | n.d | 5.51 ± 0.93 | 25.43 ± 2.88 | 45.36 ± 3.68 | 33.46 ± 4.35 | n.d | 17.97 ± 1.61 | 27.68 ± 3.23 | 13.04 ± 1.77 | 24.30 ± 1.94 |
Butanoic acid | 107-92-6 | 1625 | RI, MS | 0.54 ± 0.12 | 6.42 ± 0.84 | 24.63 ± 4.12 | 35.15 ± 2.54 | 23.94 ± 3.45 | 3.88 ± 0.84 | 19.06 ± 2.44 | 18.07 ± 0.89 | 7.02 ± 0.86 | 15.32 ± 2.28 |
2-Methyl-butanoic acid | 116-53-0 | 1662 | RI, MS | n.d | n.d | n.d | 18.36 ± 2.55 | 12.83 ± 1.57 | n.d | n.d | n.d | 4.37 ± 0.68 | n.d |
Hexanoic acid | 142-62-1 | 1846 | RI, MS | 1.35 ± 0.21 | 21.31 ± 2.75 | 73.86 ± 7.28 | 107.78 ± 10.43 | 61.86 ± 5.61 | 12.54 ± 1.73 | 52.35 ± 3.69 | 44.02 ± 2.43 | 16.38 ± 2.44 | 45.00 ± 7.12 |
Phenylethyl alcohol | 60-12-8 | 1906 | RI, MS | n.d | n.d | n.d | 15.16 ± 1.48 | 10.06 ± 1.48 | n.d | n.d | n.d | 5.33 ± 0.88 | 12.54 ± 1.43 |
Octanoic acid | 124-07-2 | 2060 | RI, MS | 1.01 ± 0.11 | 13.93 ± 1.87 | 44.11 ± 3.69 | 79.93 ± 4.78 | 75.08 ± 4.12 | 20.70 ± 3.27 | 47.25 ± 5.12 | 32.51 ± 2.55 | 17.39 ± 2.41 | 34.45 ± 3.22 |
Concentration (mg/100 g) | |||||||||||||
Compounds | CAS | RI a | Identification | 2 Weeks | 3 Weeks | ||||||||
S1-C | S2-P | S3-Syn1 | S4-Syn1.5 | S5-Syn2 | S1-C | S2-P | S3-Syn1 | S4-Syn1.5 | S5-Syn2 | ||||
Ethanol | 64-17-5 | 932 | RI, MS | 0.65 ± 0.11 | 37.97 ± 3.43 | 159.72 ± 20.22 | 120.71 ± 17.11 | 201.49 ± 21.44 | 1.79 ± 0.57 | 44.52 ± 3.09 | 151.46 ± 9.67 | 237.85 ± 18.22 | 289.47 ± 10.55 |
3-Hydroxy butanal | 107-89-1 | 1009 | MS | n.d | n.d | 25.43 ± 2.14 | n.d | n.d | n.d | n.d | 24.66 ± 1.77 | n.d | n.d |
2-Methyl-1-propanol | 78-83-1 | 1092 | RI, MS | n.d | 7.00 ± 0.89 | n.d | 18.82 ± 1.88 | 33.54 ± 6.12 | n.d | 9.33 ± 0.89 | n.d | 59.82 ± 6.31 | 39.88 ± 3.65 |
1-Butanol-3-methyl-acetate | 123-92-2 | 1122 | RI, MS | n.d | 4.61 ± 0.78 | 10.76 ± 1.12 | 1.70 ± 0.23 | 2.06 ± 0.45 | n.d | 4.94 ± 0.66 | 8.63 ± 0.88 | 5.09 ± 0.87 | 6.79 ± 1.33 |
Limonene | 138-86-3 | 1200 | RI, MS | n.d | 64.01 ± 5.61 | 55.49 ± 3.58 | 13.04 ± 1.06 | n.d | n.d | 59.03 ± 4.22 | 45.57 ± 2.68 | 59.65 ± 4.22 | 43.95 ± 3.20 |
L-Limonene | 5989-54-8 | 1204 | RI, MS | n.d | 50.67 ± 5.88 | 68.25 ± 3.88 | 41.77 ± 2.43 | 102.29 ± 5.66 | n.d | 60.45 ± 3.77 | 51.89 ± 5.12 | 6.33 ± 1.11 | 54.18 ± 2.63 |
3-Methyl-1-butanol, | 123-51-3 | 1209 | RI, MS | n.d | 143.33 ± 8.38 | 475.24 ± 25.67 | 296.07 ± 14.06 | 468.13 ± 25.77 | n.d | 179.60 ± 10.37 | 446.59 ± 28.67 | 435.72 ± 22.06 | 526.29 ± 25.12 |
Butanoic acid-3-methyl butyl ester | 106-27-4 | 1259 | RI, MS | n.d | 3.29 ± 0.65 | 8.40 ± 0.96 | 4.33 ± 0.79 | n.d | n.d | n.d | n.d | n.d | n.d |
Acetoin | 513-86-0 | 1284 | RI, MS | 24.30 ± 3.43 | 103.86 ± 12.11 | 118.22 ± 13.59 | 63.48 ± 3.52 | 85.09 ± 7.22 | 22.26 ± 2.12 | 79.31 ± 7.12 | 90.96 ± 7.38 | 100.52 ± 8.19 | 100.24 ± 6.22 |
Octanoic acid ethyl ester | 106-32-1 | 1435 | RI, MS | n.d | n.d | n.d | 9.94 ± 0.95 | 14.03 ± 2.33 | n.d | n.d | n.d | 18.00 ± 2.55 | 18.91 ± 1.05 |
Acetic acid | 64-19-7 | 1449 | RI, MS | n.d | 21.23 ± 4.11 | 45.19 ± 3.44 | 31.56 ± 2.66 | 35.31 ± 3.66 | n.d | 27.37 ± 2.12 | 47.26 ± 3.23 | 70.57 ± 4.22 | 63.58 ± 2.99 |
2-Methyl-propanoic acid | 79-31-2 | 1570 | RI, MS | n.d | 9.28 ± 1.23 | 22.77 ± 1.87 | 17.22 ± 1.42 | 15.38 ± 2.43 | n.d | n.d | 15.46 ± 1.61 | 17.26 ± 1.05 | 11.86 ± 0.83 |
Butanoic acid | 107-92-6 | 1625 | RI, MS | n.d | 11.77 ± 1.12 | 13.13 ± 1.56 | 7.29 ± 0.82 | 4.22 ± 0.88 | n.d | n.d | 13.02 ± 0.93 | 11.80 ± 1.11 | 9.48 ± 0.88 |
2-Methyl-butanoic acid | 116-53-0 | 1662 | RI, MS | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d |
Hexanoic acid | 142-62-1 | 1846 | RI, MS | 6.36 ± 1.12 | 32.74 ± 2.54 | 37.88 ± 4.55 | 18.28 ± 1.33 | 17.88 ± 1.79 | 18.22 ± 1.54 | 31.05 ± 1.42 | 33.84 ± 3.23 | 31.62 ± 2.44 | 34.13 ± 3.12 |
Phenylethyl alcohol | 60-12-8 | 1906 | RI, MS | n.d | n.d | n.d | 4.93 ± 0.58 | 10.65 ± 1.33 | n.d | n.d | n.d | 13.09 ± 0.98 | 16.51 ± 2.11 |
Octanoic acid | 124-07-2 | 2060 | RI, MS | 9.17 ± 1.67 | 17.99 ± 1.08 | 29.80 ± 3.12 | 16.87 ± 2.22 | 24.82 ± 3.54 | 15.53 ± 1.44 | 21.59 ± 1.68 | 27.29 ± 3.11 | 26.65 ± 0.79 | 29.06 ± 2.07 |
Concentration (mg/100 g) | |||||||||||||
Compounds | CAS | RI a | Identification | 4 Weeks | |||||||||
S1-C | S2-P | S3-Syn1 | S4-Syn1.5 | S5-Syn2 | |||||||||
Ethanol | 64-17-5 | 932 | RI, MS | 1.72 ± 0.66 | 59.89 ± 4.33 | 306.81 ± 22.08 | 304.44 ± 18.20 | 207.97 ± 13.63 | |||||
3-Hydroxy butanal | 107-89-1 | 1009 | MS | n.d | n.d | 49.10 ± 2.22 | n.d | n.d | |||||
2-Methyl-1-propanol | 78-83-1 | 1092 | RI, MS | n.d | n.d | n.d | 52.58 ± 6.17 | 39.24 ± 2.66 | |||||
1-Butanol-3-methyl-acetate | 123-92-2 | 1122 | RI, MS | n.d | 9.21 ± 1.21 | 19.64 ± 1.67 | 5.98 ± 0.87 | n.d | |||||
Limonene | 138-86-3 | 1200 | RI, MS | n.d | 79.60 ± 5.08 | 162.28 ± 7.30 | 58.53 ± 3.22 | n.d | |||||
L-Limonene | 5989-54-8 | 1204 | RI, MS | n.d | n.d | n.d | 66.89 ± 4.28 | 100.85 ± 7.37 | |||||
3-Methyl-1-butanol, | 123-51-3 | 1209 | RI, MS | n.d | 247.39 ± 16.12 | 671.56 ± 27.03 | 736.08 ± 25.31 | 526.66 ± 16.03 | |||||
Butanoic acid-3-methyl butyl ester | 106-27-4 | 1259 | RI, MS | n.d | n.d | n.d | n.d | n.d | |||||
Acetoin | 513-86-0 | 1284 | RI, MS | 36.16 ± 3.09 | 145.50 ± 9.33 | 199.63 ± 6.22 | 117.73 ± 7.28 | 82.85 ± 4.66 | |||||
Octanoic acid ethyl ester | 106-32-1 | 1435 | RI, MS | n.d | n.d | n.d | 32.22 ± 4.11 | 23.15 ± 2.61 | |||||
Acetic acid | 64-19-7 | 1449 | RI, MS | n.d | 22.13 ± 3.12 | 100.12 ± 3.54 | 45.57 ± 3.48 | 40.73 ± 5.04 | |||||
2-Methyl-propanoic acid | 79-31-2 | 1570 | RI, MS | n.d | n.d | 35.11 ± 4.11 | 16.22 ± 1.78 | 14.84 ± 2.11 | |||||
Butanoic acid | 107-92-6 | 1625 | RI, MS | n.d | n.d | 21.78 ± 2.33 | n.d | 6.59 ± 1.03 | |||||
2-Methyl-butanoic acid | 116-53-0 | 1662 | RI, MS | n.d | n.d | n.d | n.d | n.d | |||||
Hexanoic acid | 142-62-1 | 1846 | RI, MS | 9.60 ± 0.91 | 28.01 ± 1.66 | 35.89 ± 5.14 | 49.81 ± 4.60 | 32.35 ± 2.55 | |||||
Phenylethyl alcohol | 60-12-8 | 1906 | RI, MS | n.d | n.d | n.d | 24.14 ± 2.47 | 18.90 ± 1.72 | |||||
Octanoic acid | 124-07-2 | 2060 | RI, MS | 14.37 ± 1.40 | 28.43 ± 2.32 | 37.63 ± 3.55 | 39.89 ± 3.04 | 33.56 ± 2.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, A.; Al-Dalali, S.; Aziz, T.; Yang, Z.; Ud Din, J.; Khan, A.A.; Daudzai, Z.; Syed, Q.; Nelofer, R.; Qazi, N.U.; et al. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. J. Fungi 2022, 8, 713. https://doi.org/10.3390/jof8070713
Sarwar A, Al-Dalali S, Aziz T, Yang Z, Ud Din J, Khan AA, Daudzai Z, Syed Q, Nelofer R, Qazi NU, et al. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. Journal of Fungi. 2022; 8(7):713. https://doi.org/10.3390/jof8070713
Chicago/Turabian StyleSarwar, Abid, Sam Al-Dalali, Tariq Aziz, Zhennai Yang, Jalal Ud Din, Ayaz Ali Khan, Zubaida Daudzai, Quratulain Syed, Rubina Nelofer, Nazif Ullah Qazi, and et al. 2022. "Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin" Journal of Fungi 8, no. 7: 713. https://doi.org/10.3390/jof8070713
APA StyleSarwar, A., Al-Dalali, S., Aziz, T., Yang, Z., Ud Din, J., Khan, A. A., Daudzai, Z., Syed, Q., Nelofer, R., Qazi, N. U., Jian, Z., & Dablool, A. S. (2022). Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. Journal of Fungi, 8(7), 713. https://doi.org/10.3390/jof8070713