Next-Generation Sequencing of Ancient and Recent Fungarium Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxa Selection
2.2. DNA Extraction, Quantification, and Fragmentation Analysis
2.3. PCR Amplification and Sanger Sequencing
2.4. PCR Amplification and Next-Generation Sequencing
2.5. Next-Generation Sequencing Data Processing, OTU Identification, and Taxonomic Assignment
2.6. Phylogenetic Analyses
3. Results and Discussion
3.1. Taxa Sampled
3.2. DNA Extraction, Quantification, and Fragmentation
3.3. Sanger Sequencing
3.4. Next-Generation Sequencing
3.5. Contamination
3.6. Phylogenetic Analyses
- Gyromitra arctica
- Gyromitra korshinskii
- Gyromitra leucoxantha
- Gyromitra ussuriensis
3.7. Costs
3.8. Comparisons with Other Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, C.; Diez, J.; James, T.Y.; Kauserud, H. Fungarium specimens: A largely untapped source in global change biology and beyond. Phil. Trans. R. Soc. B 2018, 374, 20170392. [Google Scholar] [CrossRef] [PubMed]
- Dentinger, B.T.; Margaritescu, S.; Moncalvo, J.M. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol. Ecol. Resour. 2010, 10, 628–633. [Google Scholar] [CrossRef]
- Taylor, J.W.; Swann, E.C. DNA from herbarium specimens. In Ancient DNA; Herrmann, B., Hummel, S., Eds.; Springer: New York, NY, USA, 1994; pp. 166–181. [Google Scholar] [CrossRef]
- Pääbo, S.; Poinar, H.; Serre, D.; Jaenicke-Després, V.; Hebler, J.; Rohland, N.; Kuch, M.; Krause, J.; Vigilant, L.; Hofreiter, M. Genetic analyses from ancient DNA. Annu. Rev. Genet. 2004, 38, 645–679. [Google Scholar] [CrossRef] [PubMed]
- Dabney, J.; Meyer, M.; Paabo, S. Ancient DNA damage. CSH Perspect. Biol. 2013, 5, a012567. [Google Scholar] [CrossRef] [PubMed]
- Mueller, G. A New Challenge for Mycological Herbaria: Destructive Sampling of Specimens for Molecular Data. In Managing the Modern Herbarium; Metsger, D.A., Byers, S.C., Eds.; Elton-Wolfe Publishing: Vancouver, BC, Canada, 1999; pp. 287–300. [Google Scholar]
- Kigawa, R.; Nochide, H.; Kimura, H.; Miura, S. Effects of various fumigants, thermal methods and carbon dioxide treatment on DNA extraction and amplification: A case study on freeze-dried mushroom and freeze-dried muscle specimens. Collect. Forum 2003, 18, 74–85. [Google Scholar]
- Forin, N.; Nigris, S.; Voyron, S.; Girlanda, M.; Vizzini, A.; Casadoro, G.; Baldan, B. Next Generation Sequencing of Ancient Fungal Specimens: The Case of the Saccardo Mycological Herbarium. Front. Ecol. Evol. 2018, 6, 1–19. [Google Scholar] [CrossRef]
- Bradshaw, M.; Tobin, P. Sequencing herbarium specimens of a common detrimental plant pathogen (powdery mildew). Phytopathology 2020, 110, 1248–1254. [Google Scholar] [CrossRef]
- Osmundson, T.W.; Robert, V.A.; Schoch, C.L.; Baker, L.J.; Smith, A.; Robich, G.; Mizzan, L.; Garbelotto, M.M. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project. PLoS ONE 2013, 8, e62419; [Google Scholar] [CrossRef]
- Olds, G.C.; Berta-Thompson, J.W.; Loucks, J.J.; Levy, R.A.; Wilson, A.W. Applying a Modified Metabarcoding Approach for the Sequencing of Macrofungal Specimens from Fungarium Collections. Master’s Thesis, University of Colorado, Denver, CO, USA, 2021. [Google Scholar] [CrossRef]
- Dentinger, B.T.M.; Gaya, E.; O’Brien, H.; Suz, L.M.; Lachlan, R.; Diaz-Valderrama, J.R.; Koch, R.A.; Aime, C.M. Tales from the crypt: Genome mining from fungarium specimens improves resolution of the mushroom tree of life. Biol. J. Linn. Soc. 2016, 117, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Forin, N.; Vizzini, A.; Fainelli, F.; Ercole, E.; Baldan, B. Taxonomic re-examination of nine Rosellinia types (Ascomycota, Xylariales) stored in the Saccardo mycological collection. Microorganisms 2021, 9, 666. [Google Scholar] [CrossRef]
- Runnel, K.; Abarenkov, K.; Copot, O.; Mikryukov, V.; Kõljalg, U.; Saar, I.; Tedersoo, L. DNA barcoding of fungal specimens using long-read high-throughput sequencing. bioRxiv 2022. [Google Scholar] [CrossRef]
- Van Vorren, N. Typification of Gyromitra perlata, type-species of the subgenus Discina (Discinaceae). Ascomycete.org 2017, 9, 19–22. [Google Scholar] [CrossRef]
- Osmundson, T.W.; Eyre, C.A.; Hayden, K.; Dhillon, K.; Garbelotto, M. Back to basics: An evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, geno-typing, and disease diagnostics from fungal and oomycete samples. Mol. Ecol. Resour. 2012, 13, 66–74; [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118; [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; San Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Bazzicalupo, A.L.; Bálint, M.; Schmitt, I. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecol. 2013, 6, 102–109. [Google Scholar] [CrossRef]
- Blaalid, R.; Kumar, S.; Nilsson, R.H.; Abarenkov, K.; Kirk, P.; Kauserud, H. ITS 1 versus ITS2 as DNA metabarcodes for fungi. Mol. Ecol. Resour. 2013, 13, 218–224. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Kristiansson, E.; Ryberg, M.; Hallenberg, N.; Larsson, K.-H. Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinfor. 2008, 4, 193–201. [Google Scholar] [CrossRef]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous Identification of Fungi: Where Do We Stand and How Accurate and Precise is Fungal DNA Barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.N.; Yoon, A.; Gulden, G.; Stensholt, Ø.; Van Vooren, N.; Ohenoja, E.; Methven, A.S. Studies in Gyromitra I: The Gyromitra gigas species complex. Mycol. Prog. 2020, 19, 1459–1473. [Google Scholar] [CrossRef]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Micro. Ecol. 2012, 82, 666–677; [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available online: https://www.r-project.org/ (accessed on 2 December 2021).
- Galtier, N.; Guouy, M.; Goutier, C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny CABIOS. Comput. Appl. Biosci. 1996, 12, 543–548. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Ream, D.; Kiss, A.J. NCBI/GenBank BLAST Output XML Parser Tool. 2013. Available online: https://s3-us-west-2.amazonaws.com/oww-files-public/4/43/NCBI_XML_Parser.pdf (accessed on 2 January 2018).
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Methven, A.S.; Zelski, S.E.; Miller, A.N. A molecular phylogenetic assessment of the genus Gyromitra in North America. Mycologia 2013, 105, 1306–1314. [Google Scholar] [CrossRef]
- Wang, X.-C.; Zhuang, W.-Y. A three-locus phylogeny of Gyromitra (Discinaceae, Pezizales) and discovery of two cryptic species. Mycologia 2018, 111, 69–77. [Google Scholar] [CrossRef]
- Rodríguez, F.; Oliver, J.L.; Marin, A.; Medina, J.R. The general stochastic model of nucleotide substitutions. J. Theor. Biol. 1990, 142, 485–501. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772; [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704; [Google Scholar] [CrossRef]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike Information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224; [Google Scholar] [CrossRef] [PubMed]
- Hillis, D.M.; Bull, J.J. An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis. Syst. Biol. 1993, 42, 182–192. [Google Scholar] [CrossRef]
- Zajc, J.; Gunde-Cimerman, N. The Genus Wallemia-From Contamination of Food to Health Threat. Microorganisms 2018, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Benedix, E.H. Art- und Gattungsgrenzen bei höheren Discomyceten. III. Die Kult. 1969, 17, 253–284. [Google Scholar] [CrossRef]
- Kotlaba, F.; Pouzar, Z. Additionnal localities of Gyromitra fastigiata with notes on the generic classification of Gyromitra. Česká Mykol. 1974, 28, 84–95. [Google Scholar]
- Van Vooren, N.; Moreau, P.-A. Essai taxinomique sur le genre Gyromitra Fr. sensu lato (Pezizales). 2. Le genre Gyromitra Fr., sous-genre Gyromitra. Ascomycete.org 2009, 1, 7–14. [Google Scholar] [CrossRef]
- Popov, E.; Svetasheva, T. Gyromitra korshinskii. The IUCN Red List of Threatened Species 2019: E.T75118940A75118943. Available online: http://dx.doLorg/l0.2305/IUCN.UK.2019-2.RlTS,VSll8940A75118943.en (accessed on 25 October 2021).
- Raitviir, A. Once more on Neogyromitra caroliniana. Botaanika-Alased Tõõd 1970, 9, 364–373. [Google Scholar]
- Van Vooren, N.; Moreau, P.-A. Essai taxinomique sur le genre Gyromitra Fr. sensu lato (Pezizales). 3. Le genre Gyromitra Fr., sous-genre Discina. Ascomycete.org 2009, 1, 3–13. [Google Scholar] [CrossRef]
- Carbone, M.; Van Vooren, N.; Klener, V.; Alvarado, P. Preliminary phylogenetic and morphological studies in the Gyromitra gigas lineage (Pezizales): Epitypification of Gyromitra gigas and G. ticiniana. Ascomycete.org 2018, 10, 187–199. [Google Scholar] [CrossRef]
- Miller, A.N.; Dirks, A.C.; Filippova, N.; Popov, E.; Methven, A.S. Studies in Gyromitra II: Cryptic speciation in the Gyromitra gigas species complex; rediscovery of G. ussuriensis and G. americanigigas sp. nov. Mycol. Prog. 2022, 21, 81. [Google Scholar] [CrossRef]
Taxonomic Name | Fungarium Number | Year |
---|---|---|
Discina repanda (Wahlenb.) Sacc. | CUP-A-030055 | 1898 |
Gyromitra arctica Vassilkov (HOLOTYPE) | LE 179562 | 1960 |
Gyromitra korshinskii Jacz. (HOLOTYPE) | LE 179630 | 1886 |
Gyromitra leucoxantha (Bres.) Harmaja (HOLOTYPE) | S-F-11771 | 1880s? |
Gyromitra perlata (Fr.) Harmaja (NEOTYPE) | UPS-F-144599 | 1863? |
Gyromitra ussuriensis Lj.N. Vassiljeva (NEOTYPE) | TAAM 060483 | 1961 |
Gyromitra ussuriensis | LE 179636 | 1960s? |
Lasiosphaeria lanuginosa (P. Crouan and H. Crouan) A.N. Mill. and Huhndorf (+control) | ILLS 00176154 | 2021 |
Propolis sp. | HUH 00941116 | 1974 |
Stictis cylindrocarpa Peck | ILLS 00169337 | 1935 |
Stictis fulva Peck (ISOTYPE) | HUH 00941122 | 1879 |
Stictis fulva | HUH 00941117 | 1897 |
Xerotrema megalospora Sherwood and Coppins | TRH L-13532 | 2009 |
Xerotrema megalospora | UBC L-63079 | 2005 |
Xerotrema megalospora | ASU L572580 | 1993 |
Xerotrema megalospora | E 00948846 | 1999 |
Xerotrema megalospora | E 00278634 | 2000 |
Xerotrema quercicola Coppins and Aptroot | E 00817833 | 2002 |
Xerotrema quercicola | E 00817832 | 2002 |
Xerotrema quercicola (HOLOTYPE) | E 00278636 | 2006 |
Taxonomic Name | Top BLASTn Hit | DNA Extraction | Qubit (ng/µL) | Length | Sequences per Sample | Sequences of Target (%) | Sanger Sequences | GenBank Number |
---|---|---|---|---|---|---|---|---|
Discina repandaX | inconclusive | NaOH + EZNA | 1.65 | 329–355 | 9050 | 0 | no | N/A |
Gyromitra arcticaX (HOLOTYPE) | G. infula | EZNA | 3.08 | 329 | 21406 | 20821 (97%) | yes (ITS2) | OP265173 |
Gyromitra korshinskiiX (HOLOTYPE) | G. sphaerospora | EZNA | too low | 362–363 | 16467 | 14400 (87%) | yes (ITS) | OP265174 |
Gyromitra leucoxantha (HOLOTYPE) | G. leucoxantha | NaOH * | too low | 339 | 12780 | 5934 (46%) | no | OP265175 |
Gyromitra perlata (NEOTYPE) | no PCR amplification | NaOH * | 6.56 | N/A | N/A | N/A | no | N/A |
Gyromitra ussuriensisX (NEOTYPE) | G. gigas | EZNA | 2.02 | 349 | 11830 | 2769 (23%) | no | ON527922 |
Gyromitra ussuriensisX | G. perlata | EZNA | too low | 337 | 12784 | 6699 (52%) | no | OP265176 |
Lasiosphaeria lanuginosa (+control) | L. lanuginosa | EZNA | too low | 288 | 11826 | 11814 (99%) | yes (ITS) | OP265177 |
Propolis sp. | inconclusive | EZNA * | too low | N/A | 13513 | 0 | no | N/A |
Stictis cylindrocarpaX | inconclusive | EZNA * | too low | N/A | 12985 | 0 | no | N/A |
Stictis fulvaX (ISOTYPE) | inconclusive | EZNA * | too low | N/A | 17124 | 0 | no | N/A |
Stictis fulvaX | inconclusive | EZNA * | too low | N/A | 16022 | 0 | no | N/A |
Xerotrema megalosporaX | inconclusive | EZNA * | too low | N/A | 6716 | 0 | no | N/A |
Xerotrema megalosporaX | inconclusive | EZNA * | too low | N/A | 14458 | 0 | no | N/A |
Xerotrema megalosporaX | inconclusive | EZNA * | too low | N/A | 17815 | 0 | no | N/A |
Xerotrema megalosporaX | inconclusive | EZNA * | too low | N/A | 20123 | 0 | no | N/A |
Xerotrema megalosporaX | inconclusive | EZNA * | too low | N/A | 32862 | 0 | no | N/A |
Xerotrema quercicolaX | inconclusive | EZNA * | too low | N/A | 13786 | 0 | no | N/A |
Xerotrema quercicolaX | inconclusive | EZNA * | too low | N/A | 35694 | 0 | no | N/A |
Xerotrema quercicolaX (HOLOTYPE) | inconclusive | EZNA * | too low | N/A | 15442 | 0 | no | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, A.N.; Karakehian, J.; Raudabaugh, D.B. Next-Generation Sequencing of Ancient and Recent Fungarium Specimens. J. Fungi 2022, 8, 932. https://doi.org/10.3390/jof8090932
Miller AN, Karakehian J, Raudabaugh DB. Next-Generation Sequencing of Ancient and Recent Fungarium Specimens. Journal of Fungi. 2022; 8(9):932. https://doi.org/10.3390/jof8090932
Chicago/Turabian StyleMiller, Andrew N., Jason Karakehian, and Daniel B. Raudabaugh. 2022. "Next-Generation Sequencing of Ancient and Recent Fungarium Specimens" Journal of Fungi 8, no. 9: 932. https://doi.org/10.3390/jof8090932
APA StyleMiller, A. N., Karakehian, J., & Raudabaugh, D. B. (2022). Next-Generation Sequencing of Ancient and Recent Fungarium Specimens. Journal of Fungi, 8(9), 932. https://doi.org/10.3390/jof8090932