In Vitro Assessment of Azole and Amphotericin B Susceptibilities of Malassezia spp. Isolated from Healthy and Lesioned Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Malassezia Strains
2.2. In Vitro Susceptibility Testing
2.3. Data Interpretation
2.4. Statistical Analysis
3. Results
3.1. In Vitro Antifungal Susceptibility Assessment According to the Clinical Origin
3.2. In Vitro Antifungal Susceptibility Assessment According to the Species
3.3. Interpretive Antifungal Susceptibility
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theelen, B.; Cafarchia, C.; Gaitanis, G.; Bassukas, I.D.; Boekhout, T.; Dawson, T.L.J. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018, 56 (Suppl. S1), S10–S25. [Google Scholar] [CrossRef] [PubMed]
- Jagielski, T.; Rup, E.; Ziółkowska, A.; Roeske, K.; Macura, A.B.; Bielecki, J. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 2014, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Erchiga, V.; Florencio, V.D. Malassezia yeasts and pityriasis versicolor. Curr. Opin. Infect. Dis. 2006, 19, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Prohić, A.; Jovović Sadiković, T.; Kuskunović-Vlahovljak, S.; Baljić, R. Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals. Acta Dermatovenerol. Croat. 2016, 24, 274–281. [Google Scholar]
- Chebil, W.; Haouas, N.; Chaâbane-Banaoues, R.; remadi, L.; Chargui, N.; M’rad, S.; Belgacem, S.; Salah, A.B.; Ali, H.B.; Chemli, Z.; et al. Epidemiology of Pityriasis versicolor in Tunisia: Clinical features and characterization of Malassezia species. J. Mycol. Med. 2022, 32, 101246. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, W.; Theelen, B.; Boekhout, T.; Aneke, C.I.; Otranto, D.; Cafarchia, C. Conventional therapy and new antifungal drugs against Malassezia infections. Med. Mycol. 2021, 59, 215–234. [Google Scholar] [CrossRef]
- Abdillah, A.; Ranque, S. Chronic diseases assciated with Malassezia yeast. J. Fungi 2021, 7, 855. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, X.; Xu, R.; Adeel, K.; Lu, X.; Chen, M.; Shen, H.; Li, Z.; Xu, Z. Fungal microbiota dysbiosis and ecological alterations in gastric cancer. Front. Microbiol. 2022, 13, 889694. [Google Scholar] [CrossRef]
- Underhill, D.M.; Braun, J. Fungal microbiome in inflammatory bowel disease: A critical assessment. J. Clin. Invest. 2022, 132, e155786. [Google Scholar] [CrossRef]
- Jesus, F.P.; Lautert, C.; Zanette, R.A.; Mahl, D.L.; Azevedo, M.I.; Machado, M.L.S.; Botton, S.A.; Alves, S.H.; Santurio, J.M. In vitro susceptibility of fluconazole-susceptible and -resistant isolates of Malassezia pachydermatis against azoles. Vet. Microbiol. 2011, 152, 161–164. [Google Scholar] [CrossRef]
- Cafarchia, C.; Figueredo, L.A.; Favuzzi, V.; Surico, M.R.; Colao, V.; Iatta, R.; Montagna, M.T.; Otranto, D. Assessment of the antifungal susceptibility of Malassezia pachydermatis in various media using a CLSI protocol. Vet. Microbiol. 2012, 159, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Pandya, A.G. Pigmentary diseases. Med. Clin. N. Am. 1998, 82, 1185–1207. [Google Scholar] [CrossRef]
- Kim, M.; Cho, Y.J.; Park, M.; Choi, Y.; Hwang, S.Y.; Jung, W.H. Genomic tandem quadruplication is associated with ketoconazole resistance in Malassezia pachydermatis. J. Microbiol. Biotechnol. 2018, 28, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Chakrabarti, A.; Singhi, S.; Kumar, P.; Honnavar, P.; Rudramurthy, S.M. Skin colonization by Malassezia spp. in hospitalized neonates and infants in a tertiary care centre in North India. Mycopathologia 2014, 178, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Marte, R.L. Malassezia pachydermatis fungaemia in an adult on posaconazole prophylaxis for acute myeloid leukaemia. Pathology 2014, 46, 466–467. [Google Scholar] [CrossRef]
- Iatta, R.; Cafarchia, C.; Cuna, T.; Montagna, O.; Laforgia, N.; Gentile, O.; Rizzo, A.; Boekhout, T.; Otranto, D.; Montagna, M.T. Bloodstream infections by Malassezia and Candida species in critical care. Med. Mycol. 2014, 52, 264–269. [Google Scholar] [CrossRef]
- Pedrosa, A.F.; Lisboa, C.; Rodrigues, A.G. Malassezia infections with systemic involvement: Figures and facts. J. Dermatol. 2018, 45, 1278–1282. [Google Scholar] [CrossRef]
- Chen, I.T.; Chen, C.C.; Huang, H.C.; Kuo, K.C. Malassezia furfur emergance and candidemia trends in a neonatal intensive care unit during 10 years: The experience of fluconazole prophylaxis in a single hospital. Adv. Neonatal. Care 2020, 20, E3–E8. [Google Scholar] [CrossRef]
- Rojas, F.D.; Sosa, M.d.A.; Fernández, M.S.; Cattana, M.E.; Córdoba, S.B.; Giusiano, G.E. Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphortericin B evaluated using a broth microdilution method. Med. Mycol. 2014, 52, 641–646. [Google Scholar] [CrossRef]
- Cafarchia, C.; Iatta, R.; Immediato, D.; Puttilli, M.R.; Otranto, D. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values. Med. Mycol. 2015, 53, 743–748. [Google Scholar] [CrossRef]
- Iatta, R.; Figueredo, L.A.; Montagna, M.T.; Otranto, D.; Cafarchia, C. In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. J. Med. Microbiol. 2014, 63 Pt 11, 1467–1473. [Google Scholar] [CrossRef] [Green Version]
- Guého, E.; Midgley, G.; Guillot, J. The genus Malassezia with description of four new species. Antonie Leeuwenhoek 1996, 69, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Vuran, E.; Karaarslan, A.; Karasartova, D.; Turegun, B.; Sahin, F. Identification of Malassezia species from pityriasis versicolor lesions with a new multiplex PCR method. Mycopathologia 2014, 177, 41–49. [Google Scholar] [CrossRef] [PubMed]
- CLSI document M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; Approved Standard-Third Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- CLSI document M27-S4; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Fourth Informational Supplement. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012.
- Diekema, D.J.; Messer, S.A.; Boyken, L.B.; Hollis, R.J.; Kroeger, J.; Tendolkar, S.; Pfaller, M.A. In vitro activity of seven systemically active antifungal agents against a large global collection of rare Candida species as determined by CLSI broth microdilution methods. J. Clin. Microbiol. 2009, 47, 3170–3177. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Muñoz, A.J.; Rojas, F.; Tur-Tur, C.; de Los Ángeles Sosa, M.; Diez, G.O.; Espada, C.M.; Payá, M.J.; Giusano, G. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species. Mycoses 2013, 56, 571–575. [Google Scholar] [CrossRef]
- Rhimi, W.; Inyang Aneke, C.; Mosca, A.; Otranto, D.; Cafarchia, C. In vitro azole and amphotericin B susceptibilities of Malasezia furfur from bloodstream infections using E-test and CLSI broth microdilution methods. Antibiotics 2020, 9, 361. [Google Scholar] [CrossRef]
- Leong, C.; Buttafuoco, A.; Glatz, M.; Bosshard, P.P. Antifungal susceptibility testing of Malassezia spp. with an optimized colorimetric broth microdilution method. J. Clin. Microbiol. 2017, 55, 1883–1893. [Google Scholar] [CrossRef]
- Rojas, F.D.; Córdoba, S.B.; de Los Ángeles Sosa, M.; Zalazar, L.C.; Fernández, M.S.; Cattana, M.E.; Alegre, L.R.; Carrillo-Muñoz, A.J.; Giusano, G. Antifungal susceptibility testing of Malassezia yeast: Comparison of two different methodologies. Mycoses 2017, 60, 104–111. [Google Scholar] [CrossRef]
- Figueredo, L.A.; Cafarchia, C.; Desantis, S.; Otranto, D. Biofilm formation of Malassezia pachydermatis from dogs. Vet. Microbiol. 2012, 160, 126–131. [Google Scholar] [CrossRef]
- Figueredo, L.A.; Cafarchia, C.; Otranto, D. Antifungal susceptibility of Malassezia pachydermatis biofilm. Med. Mycol. 2013, 51, 863–867. [Google Scholar] [CrossRef]
- Cafarchia, C.; Figueredo, L.A.; Iatta, R.; Montagna, M.T.; Otranto, D. In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin lesions. Vet. Microbiol. 2012, 155, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Nijima, M.; Kano, R.; Nagata, M.; Hasegawa, A.; Kamata, H. An azole-resistant isolate of Malassezia pachydermatis. Vet. Microbiol. 2011, 149, 288–290. [Google Scholar] [CrossRef]
- Al-Sweih, N.; Ahmad, S.; Joseph, L.; Khan, S.; Khan, Z. Malasseizia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Med. Mycol. Case Rep. 2014, 5, 9–11. [Google Scholar] [CrossRef]
- Angileri, M.; Pasquetti, M.; De Lucia, M.; Peano, A. Azole resistance of Malassezia pachydermatis causing treatment failure in a dog. Med. Mycol. Case Rep. 2018, 23, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Kano, R.; Murayama, N. Rapid molecular detection of antifungal-resistant strains of Malassezia pachydermatis. Med. Mycol. J. 2022, 63, 53–56. [Google Scholar] [CrossRef]
- Park, M.; Cho, Y.J.; Lee, Y.W.; Jung, W.H. genomic mutiplication and drug efflux influence ketoconazole resistance in Malassezia restricta. Front. Cell. Infect. Microbiol. 2020, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.; Kit, J.C.W.; Lee, S.M.; Lam, Y.I.; Goh, J.P.Z.; Ianiri, G.; Dawson, T.L.J. Azole resistance mechanisms in pathogenic M. furfur. Antimicrob. Agents Chemother. 2021, 65, e01975-20. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. In vitro activities of ketoconazole, econazole, miconazole, and Melaleuca alternifolia (tea tree) oil against Malassezia species. Antimicrob. Agents Chemother. 2000, 44, 467–469. [Google Scholar] [CrossRef]
- Velegraki, A.; Alexopoulos, E.C.; Kritikou, S.; Gaitanis, G. Use of fatty acid RPMI 1640 media for testing susceptibilities of eight Malassezia species to the new triazole posaconazole and to six established antifungal agents by a modified NCCLS M27-A microdilution method and Etest. J. Clin. Microbiol. 2004, 42, 3589–3593. [Google Scholar] [CrossRef]
- Rincón, S.; Cepero de Garcia, M.C.; Espinel-Ingroff, A. A modified Christensen’s urea and CLSI broth microdilution method for testing susceptibilities of six Malassezia species to voriconazole, itraconazole, and ketoconazole. J. Clin. Microbiol. 2006, 44, 3429–3431. [Google Scholar] [CrossRef]
- Miranda, K.C.; de Araujo, C.R.; Costa, C.R.; Passos, X.S.; de Fátima Lisboa Fernandes, O.; do Rosário Rodrigues Silva, M. Antifungal activiities of azole agents against the Malassezia species. Int. J. Antimicrob. Agents 2007, 29, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Figueredo, L.A.; Iatta, R.; Colao, V.; Montagna, M.T.; Otranto, D. In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI micrdilution methods. Med. Mycol. 2012, 50, 795–801. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kano, R.; Murai, T.; Watanabe, S.; Hasegawa, A. Susceptibility testing of I species using the urea broth microdilution method. Antimicrob. Agents Chemother. 2000, 44, 2185–2186. [Google Scholar] [CrossRef] [PubMed]
- Rojas, F.D.; Sosa, M.d.A.; Latorre, W.; Mussin, J.; Alegre, L.; Giusano, G. Malassezia species: The need to establish epidemiological cutoff values. Med. Mycol. 2022, 60, myac048. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A. Commercial methods for antifungal susceptibility testing of yeasts: Strengths and limitations as predictors of resistance. J. Fungi 2022, 8, 309. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Castanheira, M.; Diekema, D.J.; Messer, S.A.; Jones, R.N. Triazole and echinocandin MIC distributions with epidemiological cutoff values for differentiation of wild-type strains from non-wild-type strains of six uncommon species of Candida. J. Clin. Microbiol. 2011, 49, 3800–3804. [Google Scholar] [CrossRef] [Green Version]
Malassezia Species Origin | Fluconazole | Ketoconazole | Itraconazole | Posaconazole | Amphotericin B | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | |
Group 1 (40 isolates) | 32->64 | 40.1 (16.2) | 32 | 64 | 0.125–8 | 1.72 (2.4) | 0.5 | 4 | 0.06–8 | 0.95 * (2.16) | 0.125 | 1 | 0.06–2 | 0.22 * (0.34) | 0.125 | 0.25 | 0.25–8 | 1.79 * (2.08) | 1 | 4 |
Group 2 (18 isolates) | 4->64 | 35.6 (21.2) | 32 | 64 | 0.06–4 | 0.91 (0.89) | 0.5 | 1 | 0.06–2 | 0.61 * (0.37) | 0.5 | 1 | 0.125–1 | 0.35 * (0.26) | 0.25 | 0.5 | 0.5–4 | 2.42 * (1.39) | 2 | 4 |
Total | 4->64 | 38 (17.7) | 32 | 64 | 0.06–8 | 1.60 (2.3) | 0.5 | 4 | 0.06–8 | 0.90 (1.8) | 0.25 | 2 | 0.06–2 | 0.26 (0.3) | 0.125 | 0.5 | 0.25–8 | 2.02 (1.9) | 1 | 4 |
Malassezia Species | Fluconazole | Ketoconazole | Itraconazole | Posaconazole | Amphotericin B | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | Range | Mean MIC (SD) | MIC50 | MIC90 | |
M. furfur | 4->64 | 39.9 (18.1) | 32 | 64 | 0.125–8 | 1.91 (2.53) | 0.5 | 4 | 0.06–8 | 1.03 (2.19) | 0.125 | 2 | 0.06–1 | 0.22 (0.2) | 0.125 | 0.5 | 1–8 | 2.03 (1.93) | 2 | 4 |
M. sympodialis | 8–64 | 31.2 (14.34) | 32 | 32 | 0.06–1 | 0.43 (0.25) | 0.5 | 0.5 | 0.06–2 | 0.62 (0.75) | 0.25 | 2 | 0.06–1 | 0.32 (0.3) | 0.125 | 0.5 | 0.25–4 | 1.75 (1.35) | 1 | 4 |
M. globosa | 8->64 | 37. 7(19.9) | 32 | 64 | 0.5–8 | 1.63 (2.36) | 0.5 | 2 | 0.06–2 | 0.6 (0.7) | 0.25 | 1 | 0.06–2 | 0.4 (0.66) | 0.125 | 0.5 | 0.5–8 | 2.3 (2.6) | 1 | 4 |
Malassezia Species Origin | Fluconazole | Ketoconazole | Itraconazole | Posaconazole | Amphotericin B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | SDD | R | S | SDD | R | S | SDD | R | S | SDD | R | S | SDD | R | |
Group 1 (40 isolates) | 0 (0) | 28 (70) | 12 (30) | 40 (100) | - | 0 (0) | 26 (65) | 6 (15) | 8 (20) | 39 (97.5) | 1 (0.02) | 0 (0) | 28 (70) | - | 12 (30) |
Group 2 (18 isolates) | 5 (27.8) | 8 (44.4) | 5 (27.8) | 18 (100) | - | 0 (0) | 4 (22.2) | 6 (33.3) | 8 (44.5) * | 18 (100) | 0 (0) | 0 (0) | 6 (33.3) | - | 12 (66.6) * |
Total | 5 (8.6) | 36 (62.1) | 17 (29.3) | 58 (100) | - | 0 (0) | 30 (51.7) | 12 (20.7) | 16 (27.6) | 57 (98.3) | 1 (1.7) | 0 (0) | 34 (58.6) | - | 24 (41.4) |
Species | M. furfur (n = 38) | M. sympodialis (n = 11) | M. globosa (n = 9) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Antifungal Agent | S | SDD | R | S | SDD | R | S | SDD | R | |
Fluconazole | 1 (2.6) | 24 (36.2) | 13 (34.2) | 2 (18.2) | 8 (72.7) | 1 (9.1) | 2 (22.2) | 4 (44.5) | 3 (33.3) | |
Ketoconazole | 38 (100) | 0 (0) | 0 (0) | 11 (100) | 0 (0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) | |
Itraconazole | 22 (57.9) | 5 (13.2) | 11 (28.9) | 4 (36.4) | 5 (45.4) | 2 (18.2) | 4 (44.5) | 2 (22.2) | 3 (33.3) | |
Posaconazole | 38 (100) | 0 (0) | 0 (0) | 11 (100) | 0 (0) | 0 (0) | 8 (88.9) | 1 (11.1) | 0 (0) | |
Amphotericin B | 22 (57.9) | 0 (0) | 16 (42.1) | 6 (54.6) | 0 (0) | 5 (45.4) | 5 (55.5) | 0 (0) | 4 (44.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebil, W.; Haouas, N.; Eskes, E.; Vandecruys, P.; Belgacem, S.; Belhadj Ali, H.; Babba, H.; Van Dijck, P. In Vitro Assessment of Azole and Amphotericin B Susceptibilities of Malassezia spp. Isolated from Healthy and Lesioned Skin. J. Fungi 2022, 8, 959. https://doi.org/10.3390/jof8090959
Chebil W, Haouas N, Eskes E, Vandecruys P, Belgacem S, Belhadj Ali H, Babba H, Van Dijck P. In Vitro Assessment of Azole and Amphotericin B Susceptibilities of Malassezia spp. Isolated from Healthy and Lesioned Skin. Journal of Fungi. 2022; 8(9):959. https://doi.org/10.3390/jof8090959
Chicago/Turabian StyleChebil, Wissal, Najoua Haouas, Elja Eskes, Paul Vandecruys, Sameh Belgacem, Hichem Belhadj Ali, Hamouda Babba, and Patrick Van Dijck. 2022. "In Vitro Assessment of Azole and Amphotericin B Susceptibilities of Malassezia spp. Isolated from Healthy and Lesioned Skin" Journal of Fungi 8, no. 9: 959. https://doi.org/10.3390/jof8090959