Enhancing Monascus Pellet Formation for Improved Secondary Metabolite Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Shaker Pelletizing: Screening Factors
2.3. Analytical Methods
2.4. Morphological Observation of M. purpureus Pellet
2.5. Measurement of Monascus Citrinin Production
2.6. Statistical Analysis
3. Results
3.1. Effect of Initial pH on Pellet Formation
3.2. Effect of Different Carbon and Nitrogen Sources on Pellet Formation
3.3. Effect of Inoculum Volume on Pellet Formation
3.4. Relationship between Pellet Size and Citrinin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, L.; Yan, L.; Frear, C.; Shulin, C. A new approach of pellet formation of a filamentous fungus—Rhizopus oryzae. Bioresour. Technol. 2007, 98, 3415–3423. [Google Scholar]
- Pirt, S.J. A theory of the mode of growth of fungi in the form of pellets in submerged culture. Proc. R. Soc. London Ser. B Biol. Sci. 1966, 166, 369–373. [Google Scholar]
- Veiter, L.; Rajamanickam, V.; Herwig, C. The filamentous fungal pellet-relationship between morphology and productivity. Appl. Microbiol. Biotechnol. 2018, 102, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Hille, A.; Neu, T.R.; Hempel, D.C.; Horn, H. Effective diffusivities and mass fluxes in fungal biopellets. Biotechnol. Bioeng. 2009, 103, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Iram, A.; Ozcan, A.; Yatmaz, E.; Turhan, I.; Demirci, A. Effect of Microparticles on Fungal Fermentation for Fermentation-Based Product Productions. Processes 2022, 10, 2681. [Google Scholar] [CrossRef]
- Karahalil, E.; Coban, H.B.; Turhan, I. A current approach to the control of filamentous fungal growth in media: Microparticle enhanced cultivation technique. Crit. Rev. Biotechnol. 2019, 39, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.; Jalili, H.; Nikfarjam, A.; Koohsorkhi, J.; Jarmoshti, J.; Bizukojc, M. Monitoring of Aspergillus terreus morphology for the lovastatin production in submerge culture by impedimetry. Biochem. Eng. J. 2020, 159, 107615. [Google Scholar] [CrossRef]
- Moore, J.; Bushell, M.E. The effect of morphology and oxygen uptake on penicillin production by Aspergillus nidulans in submerged culture. Mycol. Res. 1997, 101, 1237–1241. [Google Scholar] [CrossRef]
- Jin, S.; Sun, F.; Hu, Z.; Liu, L.; Li, J.; Du, G.; Li, Y.; Shi, G.; Chen, J. Improving Aspergillus niger seed preparation and citric acid production by morphology controlling-based semicontinuous cultivation. Biochem. Eng. J. 2021, 174, 108102. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, W.; Chen, S. Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnol. Bioeng. 2008, 99, 117–128. [Google Scholar] [CrossRef]
- Metz, B.; Kossen, N.W.F. The growth of molds in the form of pellets–a literature review. Biotechnol. Bioeng. 1977, 19, 781–799. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, X.; Cao, X. Effects of carbon sources on fungal morphology and lovastatin biosynthesis by submerged cultivation of Aspergillus terreus. Asia-Pac. J. Chem. Eng. 2009, 4, 672–677. [Google Scholar] [CrossRef]
- Saraswathy, A.; Hallberg, R. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol. Res. 2005, 160, 375–383. [Google Scholar] [CrossRef]
- Zheng, X.M.; Cairns, T.C.; Ni, X.M.; Zhang, L.H.; Zhai, H.H.; Meyer, V.; Zheng, P.; Sun, J.B. Comprehensively dissecting the hub regulation of PkaC on high-productivity and pellet macromorphology in citric acid producing Aspergillus niger. Microb. Biotechnol. 2022, 15, 1867–1882. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Du, J.X.; Tsao, G.T. Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl. Biochem. Biotechnol. 2000, 84–86, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; He, Y.; Zhou, Y.; Shao, Y.; Feng, Y.; Li, M.; Chen, F. Edible Filamentous Fungi from the Species Monascus: Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Compr. Rev. Food Sci. F. 2015, 14, 555–567. [Google Scholar] [CrossRef]
- Liu, W.W.; An, C.Y.; Shu, X.; Meng, X.X.; Yao, Y.P.; Zhang, J.; Chen, F.S.; Xiang, H.; Yang, S.Y.; Gao, X.; et al. A Dual-Plasmid CRISPR/Cas System for Mycotoxin Elimination in Polykaryotic Industrial Fungi. ACS Synth. Biol. 2020, 9, 2087–2095. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Oh, H.J.; Shin, C.S. Morphology control of Monascus cells and scale-up of pigment fermentation. Process Biochem. 2002, 38, 649–655. [Google Scholar] [CrossRef]
- Yang, X.; Dong, Y.; Liu, G.; Zhang, C.; Cao, Y.; Wang, C. Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1. J. Sci. Food Agric. 2019, 99, 1233–1239. [Google Scholar] [CrossRef]
- Shi, R.; Gong, P.; Liu, Y.; Luo, Q.; Chen, W.; Wang, C. Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus-Saccharomyces cerevisiae co-culture. Yeast 2023, 40, 42–52. [Google Scholar] [CrossRef]
- Douglas, H.W.; Collins, A.E.; Parkinson, D. Electric charge and other surface properties of some fungal spores. Biochim. Biophys. Acta 1959, 33, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, M.; Moo-Young, M. Protease secretion in glucoamylase producer Aspergillus niger cultures: Fungal morphology and inoculum effects. Process Biochem. 2002, 37, 1271–1278. [Google Scholar] [CrossRef]
- Chen, G.; Wang, M.; Tian, X.; Wu, Z. Analyses of Monascus pigment secretion and cellular morphology in non-ionic surfactant micelle aqueous solution. Microb. Biotechnol. 2018, 11, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.W.; Paul, G.C.; Thomas, C.R. Image analysis of the morphology of filamentous micro-organisms. Microbiol. (Read. Engl.) 1998, 144, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Posch, A.E.; Spadiut, O.; Herwig, C. A novel method for fast and statistically verified morphological characterization of filamentous fungi. Fungal Genet. Biol. 2012, 49, 499–510. [Google Scholar] [CrossRef]
- Nair, R.B.; Lennartsson, P.R.; Taherzadeh, M.J. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express 2016, 6, 31. [Google Scholar] [CrossRef]
- Fujita, M.; Iwahori, K.; Tatsuta, S.; Yamakawa, K. Analysis of pellet formation of Aspergillus niger based on shear stress. J. Ferment. Bioeng. 1994, 78, 368–373. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wu, J.Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 2012, 39, 623–628. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J. The filamentous fungal pellet and forces driving its formation. Crit. Rev. Biotechnol. 2016, 36, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Lytle, D.A.; Johnson, C.H.; Rice, E.W. A systematic comparison of the electrokinetic properties of environmentally important microorganisms in water. Colloids Surf. B. 2002, 24, 91–101. [Google Scholar] [CrossRef]
- Lee, I.; Chung, E.; Kweon, H.; Yiacoumi, S.; Tsouris, C. Scanning surface potential microscopy of spore adhesion on surfaces. Colloids Surf. B. 2012, 92, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Pascual, S.; De Cal, A.; Magan, N.; Melgarejo, P. Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J. Appl. Microbiol. 2000, 89, 847–853. [Google Scholar] [CrossRef]
- Prosser, J.I.; Tough, A.J. Growth mechanisms and growth kinetics of filamentous microorganisms. Crit. Rev. Biotechnol. 1991, 10, 253–274. [Google Scholar] [CrossRef] [PubMed]
- Posch, A.E.; Herwig, C. Physiological description of multivariate interdependencies between process parameters, morphology and physiology during fed-batch penicillin production. Biotechnol. Prog. 2014, 30, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Znidarsic, P.; Komel, R.; Pavko, A. Influence of some environmental factors on Rhizopus nigricans submerged growth in the form of pellets. World J. Microbiol. Biotechnol. 2000, 16, 589–593. [Google Scholar] [CrossRef]
- Papagianni, M.; Mattey, M. Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level: Application of neural network and cluster analysis for characterization of mycelial morphology. Microb. Cell Fact. 2006, 5, 3. [Google Scholar] [CrossRef]
- Braun, S.; Vecht-Lifshitz, S.E. Mycelial morphology and metabolite production. Trends Biotechnol. 1991, 9, 63–68. [Google Scholar] [CrossRef]
- Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004, 22, 189–259. [Google Scholar] [CrossRef]
- Kumar, P.; Dubey, K.K. Mycelium transformation of Streptomyces toxytricini into pellet: Role of culture conditions and kinetics. Bioresour. Technol. 2017, 228, 339–347. [Google Scholar] [CrossRef]
- Celler, K.; Picioreanu, C.; van Loosdrecht, M.C.M.; van Wezel, G.P. Structured morphological modeling as a framework for rational strain design of Streptomyces species. Anton. Leeuw. Int. J. G. 2012, 102, 409–423. [Google Scholar] [CrossRef]
- Jonsbu, E.; Ellingsen, T.E.; Nielsen, J. Effects of nitrogen sources on cell growth and production of nystatin by Streptomyces noursei. J. Antibiot. 2000, 53, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.-c.; Li, G.-r.; Kang, J.-c.; Kang, C.; Hyde, K.D. Optimization of Solid-state Fermentation for Fruiting Body Growth and Cordycepin Production by Cordyceps militaris. Chiang Mai J. Sci. 2014, 41, 858–872. [Google Scholar]
- Papagianni, M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007, 25, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Liu, Y.; Chen, S. Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl. Biochem. Biotechnol. 2007, 137, 689–701. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, H.; Zhang, M.; Chen, W.; Wang, C. Enhancing Monascus Pellet Formation for Improved Secondary Metabolite Production. J. Fungi 2023, 9, 1120. https://doi.org/10.3390/jof9111120
Zhang X, Liu H, Zhang M, Chen W, Wang C. Enhancing Monascus Pellet Formation for Improved Secondary Metabolite Production. Journal of Fungi. 2023; 9(11):1120. https://doi.org/10.3390/jof9111120
Chicago/Turabian StyleZhang, Xizi, Huiqian Liu, Mengyao Zhang, Wei Chen, and Chengtao Wang. 2023. "Enhancing Monascus Pellet Formation for Improved Secondary Metabolite Production" Journal of Fungi 9, no. 11: 1120. https://doi.org/10.3390/jof9111120
APA StyleZhang, X., Liu, H., Zhang, M., Chen, W., & Wang, C. (2023). Enhancing Monascus Pellet Formation for Improved Secondary Metabolite Production. Journal of Fungi, 9(11), 1120. https://doi.org/10.3390/jof9111120