Clinical Implementation of β-Tubulin Gene-Based Aspergillus Polymerase Chain Reaction for Enhanced Aspergillus Diagnosis in Patients with Hematologic Diseases: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Definitions
2.3. Evaluating the Analytic Performance of the BenA Probe Multiplex Aspergillus PCR Assay
2.4. Fungal DNA Extraction from Bronchoalveolar Lavage Fluid
2.5. In-House β-Tubulin Gene-Based Aspergillus PCR and Melting Temperature Analysis Method
2.6. PCR Inhibitor Test
2.7. Study Outcomes of Interest
2.8. Statistical Analysis
3. Results
3.1. Characteristics of Study Patients
3.2. Analytic Performance of the BenA Probe Multiplex Aspergillus PCR Assay
3.3. Fungal DNA Extraction in Bronchoalveolar Lavage Fluid
3.4. Diagnostic Performance of β-Tubulin Gene-Based PCR in Bronchoalveolar Lavage Fluid
3.5. Sensitivity Analysis
3.6. Detection of Azole Resistance with the Melting Temperature Analysis Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kontoyiannis, D.P.; Bodey, G.P. Invasive aspergillosis in 2002: An update. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 161–172. [Google Scholar] [CrossRef]
- Lee, R.; Cho, S.Y.; Lee, D.G.; Ahn, H.; Choi, H.; Choi, S.M.; Choi, J.K.; Choi, J.H.; Kim, S.Y.; Kim, Y.J.; et al. Risk factors and clinical impact of COVID-19-associated pulmonary aspergillosis: Multicenter retrospective cohort study. Korean J. Intern. Med. 2022, 37, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lee, H.J.; Lee, D.G. Infectious complications after hematopoietic stem cell transplantation: Current status and future perspectives in Korea. Korean J. Intern. Med. 2018, 33, 256–276. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.; Hoenigl, M. Treatment of Aspergillosis. J. Fungi 2018, 4, 98. [Google Scholar] [CrossRef]
- Hardak, E.; Fuchs, E.; Leskes, H.; Geffen, Y.; Zuckerman, T.; Oren, I. Diagnostic role of polymerase chain reaction in bronchoalveolar lavage fluid for invasive pulmonary aspergillosis in immunocompromised patients—A retrospective cohort study. Int. J. Infect. Dis. 2019, 83, 20–25. [Google Scholar] [CrossRef]
- Duarte, R.F.; Sánchez-Ortega, I.; Cuesta, I.; Arnan, M.; Patiño, B.; Fernández de Sevilla, A.; Gudiol, C.; Ayats, J.; Cuenca-Estrella, M. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin. Infect. Dis. 2014, 59, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Wickes, B.L.; Ilkit, M.; Pincus, D.H.; Daneshnia, F.; Pan, W.; Fang, W.; Boekhout, T. Identification of Mycoses in Developing Countries. J. Fungi 2019, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Salzer, H.J.F.; Hoenigl, M. Improving the rates of Aspergillus detection: An update on current diagnostic strategies. Expert. Rev. Anti Infect. Ther. 2019, 17, 39–50. [Google Scholar] [CrossRef]
- Lee, S.-O. Diagnosis and Treatment of Invasive Mold Diseases. Infect. Chemother. 2022, 54, 10. [Google Scholar] [CrossRef]
- White, P.L.; Wingard, J.R.; Bretagne, S.; Löffler, J.; Patterson, T.F.; Slavin, M.A.; Barnes, R.A.; Pappas, P.G.; Donnelly, J.P. Aspergillus Polymerase Chain Reaction: Systematic Review of Evidence for Clinical Use in Comparison With Antigen Testing. Clin. Infect. Dis. 2015, 61, 1293–1303. [Google Scholar] [CrossRef]
- Cruciani, M.; White, P.L.; Mengoli, C.; Löffler, J.; Morton, C.O.; Klingspor, L.; Buchheidt, D.; Maertens, J.; Heinz, W.J.; Rogers, T.R.; et al. The impact of anti-mould prophylaxis on Aspergillus PCR blood testing for the diagnosis of invasive aspergillosis. J. Antimicrob. Chemother. 2021, 76, 635–638. [Google Scholar] [CrossRef]
- Siopi, M.; Karakatsanis, S.; Roumpakis, C.; Korantanis, K.; Eldeik, E.; Sambatakou, H.; Sipsas, N.V.; Tsirigotis, P.; Pagoni, M.; Meletiadis, J. Performance, Correlation and Kinetic Profile of Circulating Serum Fungal Biomarkers of Invasive Aspergillosis in High-Risk Patients with Hematologic Malignancies. J. Fungi 2021, 7, 211. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J.; Hamprecht, A.; Vehreschild, M.J.; Cornely, O.A.; Buchheidt, D.; Spiess, B.; Koldehoff, M.; Buer, J.; Meis, J.F.; Rath, P.M. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J. Antimicrob. Chemother. 2015, 70, 1522–1526. [Google Scholar] [CrossRef] [PubMed]
- Imbert, S.; Gauthier, L.; Joly, I.; Brossas, J.Y.; Uzunov, M.; Touafek, F.; Brun, S.; Mazier, D.; Datry, A.; Gay, F.; et al. Aspergillus PCR in serum for the diagnosis, follow-up and prognosis of invasive aspergillosis in neutropenic and nonneutropenic patients. Clin. Microbiol. Infect. 2016, 22, 562.e561–562.e568. [Google Scholar] [CrossRef] [PubMed]
- Lewis White, P.; Barnes, R.A. Aspergillus PCR—Platforms, strengths and weaknesses. Med. Mycol. 2006, 44, S191–S198. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.; White, P. PCR Technology for Detection of Invasive Aspergillosis. J. Fungi 2016, 2, 23. [Google Scholar] [CrossRef]
- Egger, M.; Jenks, J.D.; Hoenigl, M.; Prattes, J. Blood Aspergillus PCR: The Good, the Bad, and the Ugly. J. Fungi 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.M.; Steinmann, J. Overview of Commercially Available PCR Assays for the Detection of Aspergillus spp. DNA in Patient Samples. Front. Microbiol. 2018, 9, 740. [Google Scholar] [CrossRef]
- Kim, W.B.; Park, C.; Cho, S.Y.; Chun, H.S.; Lee, D.G. Development of multiplex real-time PCR for rapid identification and quantitative analysis of Aspergillus species. PLoS ONE 2020, 15, e0229561. [Google Scholar] [CrossRef]
- Buil, J.B.; Zoll, J.; Verweij, P.E.; Melchers, W.J.G. Molecular Detection of Azole-Resistant Aspergillus fumigatus in Clinical Samples. Front. Microbiol. 2018, 9, 515. [Google Scholar] [CrossRef]
- Sabino, R.; Simões, H.; Veríssimo, C. Molecular Detection of Aspergillus: Application of a Real-Time PCR Multiplex Assay in Tissue Samples. J. Fungi 2020, 6, 11. [Google Scholar] [CrossRef]
- Van Der Linden, J.W.M.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.A.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.G.; Verweij, P.E. Clinical Implications of Azole Resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- Chong, G.M.; van der Beek, M.T.; von dem Borne, P.A.; Boelens, J.; Steel, E.; Kampinga, G.A.; Span, L.F.; Lagrou, K.; Maertens, J.A.; Dingemans, G.J.; et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: A multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 2016, 71, 3528–3535. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Martínez, L.; Gil, H.; Rivero-Menéndez, O.; Gago, S.; Cuenca-Estrella, M.; Mellado, E.; Alastruey-Izquierdo, A. Development and Validation of a High-Resolution Melting Assay to Detect Azole Resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2017, 61, e01083-17. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An official American Thoracic Society clinical practice guideline: The clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Borlenghi, E.; Cattaneo, C.; Capucci, M.A.; Pan, A.; Quaresmini, G.; Franco, F.; Grazioli, L.; Carosi, G.P.; Rossi, G. Usefulness of the MSG/IFICG/EORTC diagnostic criteria of invasive pulmonary aspergillosis in the clinical management of patients with acute leukaemia developing pulmonary infiltrates. Ann. Hematol. 2007, 86, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.; White, P.L.; Kessel, J.; Wieters, I.; Teschner, D.; Korczynski, D.; Liebregts, T.; Cornely, O.A.; Schwartz, S.; Elgeti, T.; et al. A Comparison of Aspergillus and Mucorales PCR Testing of Different Bronchoalveolar Lavage Fluid Fractions from Patients with Suspected Invasive Pulmonary Fungal Disease. J. Clin. Microbiol. 2018, 56, e01655-17. [Google Scholar] [CrossRef]
- Nolan, T.; Hands, R.E.; Ogunkolade, W.; Bustin, S.A. SPUD: A quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal. Biochem. 2006, 351, 308–310. [Google Scholar] [CrossRef]
- Arvanitis, M.; Anagnostou, T.; Mylonakis, E. Galactomannan and Polymerase Chain Reaction-Based Screening for Invasive Aspergillosis Among High-Risk Hematology Patients: A Diagnostic Meta-analysis. Clin. Infect. Dis. 2015, 61, 1263–1272. [Google Scholar] [CrossRef]
- Arvanitis, M.; Ziakas, P.D.; Zacharioudakis, I.M.; Zervou, F.N.; Caliendo, A.M.; Mylonakis, E. PCR in diagnosis of invasive aspergillosis: A meta-analysis of diagnostic performance. J. Clin. Microbiol. 2014, 52, 3731–3742. [Google Scholar] [CrossRef]
- Pelzer, B.W.; Seufert, R.; Koldehoff, M.; Liebregts, T.; Schmidt, D.; Buer, J.; Rath, P.M.; Steinmann, J. Performance of the AsperGenius® PCR assay for detecting azole resistant Aspergillus fumigatus in BAL fluids from allogeneic HSCT recipients: A prospective cohort study from Essen, West Germany. Med. Mycol. 2020, 58, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lee, D.G.; Kim, W.B.; Chun, H.S.; Park, C.; Myong, J.P.; Park, Y.J.; Choi, J.K.; Lee, H.J.; Kim, S.H.; et al. Epidemiology and Antifungal Susceptibility Profile of Aspergillus Species: Comparison between Environmental and Clinical Isolates from Patients with Hematologic Malignancies. J. Clin. Microbiol. 2019, 57, e02023-18. [Google Scholar] [CrossRef]
- Chowdhary, A.; Meis, J.F. Emergence of azole resistant Aspergillus fumigatus and One Health: Time to implement environmental stewardship. Environ. Microbiol. 2018, 20, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Lee, R.; Cho, S.Y.; Lee, D.G. Advances in prophylaxis and treatment of invasive fungal infections: Perspectives on hematologic diseases. Blood Res. 2022, 57, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Lestrade, P.P.; Bentvelsen, R.G.; Schauwvlieghe, A.; Schalekamp, S.; van der Velden, W.; Kuiper, E.J.; van Paassen, J.; van der Hoven, B.; van der Lee, H.A.; Melchers, W.J.G.; et al. Voriconazole Resistance and Mortality in Invasive Aspergillosis: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2019, 68, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Bader, O.; Weig, M.; Reichard, U.; Lugert, R.; Kuhns, M.; Christner, M.; Held, J.; Peter, S.; Schumacher, U.; Buchheidt, D.; et al. cyp51A-Based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany. Antimicrob. Agents Chemother. 2013, 57, 3513–3517. [Google Scholar] [CrossRef]
- Buil, J.B.; Snelders, E.; Denardi, L.B.; Melchers, W.J.G.; Verweij, P.E. Trends in Azole Resistance in Aspergillus fumigatus, The Netherlands, 1994–2016. Emerg. Infect. Dis. 2019, 25, 176–178. [Google Scholar] [CrossRef]
- Boch, T.; Spiess, B.; Heinz, W.; Cornely, O.A.; Schwerdtfeger, R.; Hahn, J.; Krause, S.W.; Duerken, M.; Bertz, H.; Reuter, S.; et al. Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis. Mycoses 2019, 62, 1035–1042. [Google Scholar] [CrossRef]
- Mikulska, M.; Furfaro, E.; Dettori, S.; Giacobbe, D.R.; Magnasco, L.; Dentone, C.; Ball, L.; Russo, C.; Taramasso, L.; Vena, A.; et al. Aspergillus-PCR in bronchoalveolar lavage-diagnostic accuracy for invasive pulmonary aspergillosis in critically ill patients. Mycoses 2022, 65, 411–418. [Google Scholar] [CrossRef]
Variables | Number (%) Total = 75 |
---|---|
Age, median | 58 (48–66) |
Sex, male | 46 (61.3) |
Hematologic diseases | |
AML | 27 (36.0) |
ALL | 21 (28.0) |
MDS | 17 (22.7) |
Others * | 10 (13.3) |
Treatment status | |
Induction/Re-induction | 27 (36.0) |
Consolidation | 11 (14.7) |
Undergoing HSCT | 0 (0.0) |
Post-HSCT state | 13 (17.3) |
Other chemotherapy | 15 (20.0) |
BSC | 9 (12.0) |
Variables | Number (%) Total = 76 |
---|---|
IPA criteria (Before PCR applied) | |
Proven | 2 (2.6) |
Probable | 23 (30.3) |
Possible | 30 (39.5) |
None | 21 (27.6) |
IPA criteria (After PCR applied) | |
Proven | 2 (2.6) |
Probable | 35 (46.1) |
Possible | 18 (23.7) |
None | 21 (27.6) |
Culture positivity | 3 (3.95) |
Serum GM | 76 (100) |
Positive rate | 22 (28.9) |
BAL GM | 73 (96.1) |
Positive rate | 18 (24.6) |
BAL PCR | 76 (100) |
Positive rate, duplicate | 31 (40.8) |
section Aspergillus | |
Fumigati | 10 (32.3) |
Nigri * | 12 (38.7) |
Terrei | 1 (3.2) |
Flavi | 5 (16.1) |
Multiple ** | 3 (9.7) |
Antifungal therapy | 55 (72.4) |
Type of antifungal agents | |
Mold-active azole | 10 (18.2) |
Polyene | 43 (78.2) |
Echinocandins | 2 (3.6) |
Antifungal agent applied before PCR | 45 (59.2) |
Target Kit | Probe | Positive | Negative | PPV | NPV | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
BenA | Ascomycetes | 120/120 | 114/120 | 100 | 95 | 95.24 | 100 |
A. fumigatus | 120/120 | 112/120 | 100 | 93.33 | 93.75 | 100 | |
A. niger | 118/120 | 117/120 | 98.33 | 97.5 | 97.52 | 98.32 | |
A. terreus | 120/120 | 115/120 | 100 | 95.83 | 96 | 100 | |
A. flavus | 116/120 | 115/120 | 96.67 | 95.83 | 95.87 | 96.64 | |
A. tubingensis | 120/120 | 120/120 | 100 | 100 | 100 | 100 | |
Aspergenius | A. species | 120/120 | 116/120 | 100 | 96.67 | 96.77 | 100 |
A. fumigatus | 120/120 | 116/120 | 100 | 96.67 | 96.77 | 100 | |
A. terreus | 120/120 | 120/120 | 100 | 100 | 100 | 100 |
A. Baseline analysis: Possible IPA were included in non-IPA cases | ||||
Variables | Estimate | Standard error | 95% CI | |
Sensitivity | 0.520 | 0.099 | 0.324 | 0.716 |
Specificity | 0.647 | 0.066 | 0.516 | 0.778 |
PPV | 0.419 | 0.089 | 0.246 | 0.593 |
NPV | 0.733 | 0.066 | 0.604 | 0.863 |
LR+ | 1.473 | 0.397 | 0.694 | 2.253 |
LR− | 0.741 | 0.172 | 0.403 | 1.079 |
DOR | 1.988 | |||
B. Sensitivity analysis 1: Possible IPA were included in IPA cases | ||||
Variables | Estimate | Standard error | 95% CI | |
Sensitivity | 0.454 | 0.067 | 0.323 | 0.586 |
Specificity | 0.714 | 0.099 | 0.521 | 0.908 |
PPV | 0.806 | 0.071 | 0.667 | 0.945 |
NPV | 0.333 | 0.070 | 0.195 | 0.471 |
LR+ | 1.591 | 0.597 | 0.421 | 2.761 |
LR− | 0.763 | 0.141 | 0.486 | 1.040 |
DOR | 2.085 | |||
C. Sensitivity analysis 2: Possible IPA were excluded altogether | ||||
Variables | Estimate | Standard error | 95% CI | |
Sensitivity | 0.520 | 0.099 | 0.324 | 0.716 |
Specificity | 0.714 | 0.098 | 0.521 | 0.907 |
PPV | 0.684 | 0.106 | 0.475 | 0.893 |
NPV | 0.556 | 0.095 | 0.368 | 0.743 |
LR+ | 1.820 | 0.718 | 0.411 | 3.228 |
LR− | 0.672 | 0.167 | 0.343 | 1.001 |
DOR | 2.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, R.; Kim, W.-B.; Cho, S.-Y.; Nho, D.; Park, C.; Yoo, I.Y.; Park, Y.-J.; Lee, D.-G. Clinical Implementation of β-Tubulin Gene-Based Aspergillus Polymerase Chain Reaction for Enhanced Aspergillus Diagnosis in Patients with Hematologic Diseases: A Prospective Observational Study. J. Fungi 2023, 9, 1192. https://doi.org/10.3390/jof9121192
Lee R, Kim W-B, Cho S-Y, Nho D, Park C, Yoo IY, Park Y-J, Lee D-G. Clinical Implementation of β-Tubulin Gene-Based Aspergillus Polymerase Chain Reaction for Enhanced Aspergillus Diagnosis in Patients with Hematologic Diseases: A Prospective Observational Study. Journal of Fungi. 2023; 9(12):1192. https://doi.org/10.3390/jof9121192
Chicago/Turabian StyleLee, Raeseok, Won-Bok Kim, Sung-Yeon Cho, Dukhee Nho, Chulmin Park, In Young Yoo, Yeon-Joon Park, and Dong-Gun Lee. 2023. "Clinical Implementation of β-Tubulin Gene-Based Aspergillus Polymerase Chain Reaction for Enhanced Aspergillus Diagnosis in Patients with Hematologic Diseases: A Prospective Observational Study" Journal of Fungi 9, no. 12: 1192. https://doi.org/10.3390/jof9121192
APA StyleLee, R., Kim, W. -B., Cho, S. -Y., Nho, D., Park, C., Yoo, I. Y., Park, Y. -J., & Lee, D. -G. (2023). Clinical Implementation of β-Tubulin Gene-Based Aspergillus Polymerase Chain Reaction for Enhanced Aspergillus Diagnosis in Patients with Hematologic Diseases: A Prospective Observational Study. Journal of Fungi, 9(12), 1192. https://doi.org/10.3390/jof9121192