Yeast Bloodstream Infections in the COVID-19 Patient: A Multicenter Italian Study (FiCoV Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Isolates Identification and Susceptibility Testing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russell, C.D.; Fairfield, C.J.; Drake, T.M.; Turtle, L.; Seaton, R.A.; Wootton, D.G.; Sigfrid, L.; Harrison, E.M.; Docherty, A.B.; de Silva, T.I.; et al. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: A multicentre, prospective cohort study. Lancet Microbe 2021, 2, e354–e365. [Google Scholar] [CrossRef]
- Cevik, M.; Kuppalli, K.; Kindrachuk, J.; Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020, 371, m3862. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and functional exhaustion of T Cells in patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.K.; Golan, Y.; Ruthazer, R.; Karchmer, A.W.; Carmeli, Y.; Lichtenberg, D.A.; Chawla, V.; Young, J.A.; Hadley, S. Risk factors for albicans and non-albicans candidaemia in the intensive care unit. Crit. Care Med. 2008, 36, 1993–1998. [Google Scholar] [CrossRef]
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The landscape of candidaemia during the COVID-19 pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Eser, F.; Kaya Kalem, A.; Bilgic, Z.; Asilturk, D.; Hasanoglu, I.; Ayhan, M.; Tezer Tekce, Y.; Erdem, D.; Turan, S.; et al. Characteristics of candidaemia in COVID-19 patients; Increased incidence, earlier occurrence, and higher mortality rates compared to non-COVID-19 patients. Mycoses 2021, 64, 1083–1091. [Google Scholar] [CrossRef]
- Suetens, C.; Morales, I.; Savey, A.; Palomar, M.; Hiesmayr, M.; Lepape, A.; Gastmeier, P.; Schmit, J.; Valinteliene, R.; Fabry, J. European surveillance of ICU-acquired infections (HELICS-ICU): Methods and main results. J. Hosp. Infect. 2007, 65, 171–173. [Google Scholar] [CrossRef]
- Tortorano, A.M.; Prigitano, A.; Morroni, G.; Brescini, L.; Barchiesi, F. Candidemia: Evolution of drug resistance and novel therapeutic approaches. Infect. Drug Resist. 2021, 14, 5543–5553. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017, 13, e1006290. [Google Scholar] [CrossRef]
- Mesini, A.; Mikulska, M.; Giacobbe, D.R.; Del Puente, F.; Gandolfo, N.; Codda, G.; Orsi, A.; Tassinari, F.; Beltramini, S.; Marchese, A.; et al. Changing epidemiology of candidaemia: Increase in fluconazole-resistant Candida parapsilosis. Mycoses 2020, 63, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed., Wayne, PA: CLSI document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Espinel-Ingroff, A.; Turnidge, J.; Alastruey-Izquierdo, A.; Botterel, F.; Canton, E.; Castro, C.; Chen, Y.-C.; Chryssanthou, E.; Dannaoui, E.; Garcia-Effron, G.; et al. Method-dependent epidemiological cutoff values for detection of triazole resistance in Candida and Aspergillus species for the Sensititre Yeastone colorimetric broth and Etest agar diffusion methods. Antimicrob. Agents Chemother. 2018, 63, e01651-18. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.3, E.Def 9.4 and E.Def 11.0 Procedures. Version 3. 2022. Available online: http://www.eucast.org (accessed on 5 January 2023).
- Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive fungal infections complicating COVID-19: A narrative review. J. Fungi 2021, 7, 921. [Google Scholar] [CrossRef]
- Machado, M.; Estévez, A.; Sánchez-Carrillo, C.; Guinea, J.; Escribano, P.; Alonso, R.; Valerio, M.; Padilla, B.; Bouza, E.; Muñoz, P. Incidence of Candidemia is higher in COVID-19 versus non-COVID-19 patients, but not driven by intrahospital transmission. J. Fungi 2022, 8, 305. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Germinario, B.N.; Ferrante, M.; Frangi, C.; Voti, R.L.; Muccini, C.; Ripa, M.; COVID-BioB Study Group. Candidaemia in coronavirus disease 2019 (COVID-19) Patients: Incidence and characteristics in a prospective cohort compared with historical non–COVID-19 controls. Clin. Infect. Dis. 2020, 73, e2838–e2839. [Google Scholar] [CrossRef]
- Cataldo, M.A.; Tetaj, N.; Selleri, M.; Marchioni, L.; Capone, A.; Caraffa, E.; Caro, A.D.; Petrosillo, N.; INMICOVID-19 Co-infection Group. Incidence of bacterial and fungal bloodstream infections in COVID-19 patients in intensive care: An alarming “collateral effect”. J. Glob. Antimicrob. Resist. 2020, 23, 290–291. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, Z.; Barocci, I.; Brescini, L.; Candelaresi, B.; Castelletti, S.; Iencinella, V.; Mazzanti, S.; Procaccini, G.; Orsetti, E.; Pallotta, F.; et al. Bloodstream infections in the COVID-19 era: Results from an Italian multi-centre study. Int. J. Infect. Dis. 2021, 111, 31–36. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; Khor, J.S.; Gorzewski, A.; Tamakloe, M.A.; Powers, V.; Kakkis, J.J.; Repasky, M.; Taylor, A.; Beschloss, A.; Hernandez-Miyares, L.; et al. Treatments administered to the first 9152 reported cases of COVID-19: A systematic review. Infect. Dis. Ther. 2020, 9, 435–449. [Google Scholar] [CrossRef]
- McCarty, T. Candidemia and Severe Coronavirus Disease 2019: Which Risk Factors Are Modifiable? Clin. Infect. Dis. 2022, 74, 812–813. [Google Scholar] [CrossRef]
- Omrani, A.S.; Koleri, J.; Ben Abid, F.; Daghfel, J.; Odaippurath, T.; Peediyakkal, M.Z.; Baiou, A.; Sarsak, E.; Elayana, M.; Kaleeckal, A.; et al. Clinical characteristics and risk factors for COVID-19-associated Candidemia. Med. Mycol. 2021, 59, 1262–1266. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Kaya Kalem, A.; Asilturk, D.; Kaplan, B.; Dönertas, G.; Hasanoglu, I.; Eser, F.; Korkmazer, R.; Oktay, Z.; Ozkocak Turan, I.; et al. Incidence and risk factors for COVID-19 associated candidemia (CAC) in ICU patients. Mycoses 2022, 65, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Kundu, R.; Singla, N. COVID-19 and Plethora of fungal infections. Curr. Fungal Infect. Rep. 2022, 16, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Rüddel, D.; Schlattmann, P.; Pletz, M.; Kurzai, O.; Bloos, F. Risk factors for invasive candida infection in critically Ill patients: A systematic review and meta-analysis. Chest 2021, 161, 345–355. [Google Scholar] [CrossRef]
- Dixit, D.; Jen, P.; Maxwell, T.D.; Smoke, S.; McCracken, J.A.; Cardinale-King, M.; Haribhakti, A.; Patel, P.; Cani, E.; Choi, S.C.; et al. Risk factors and clinical outcomes of candidemia associated with severe COVID-19. Crit. Care Explor. 2022, 4, e0762. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Barreiros, G.; Guimarães, L.F.; Deriquehem, V.A.S.; Castiñeiras, A.C.; Nouér, S.A. Increased incidence of candidaemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses 2021, 64, 152–156. [Google Scholar] [CrossRef]
- Koehler, P.; Stecher, M.; Cornely, O.A.; Koehler, D.; Vehreschild, M.J.G.T.; Bohlius, J.; Wisplinghof, H.; Vehreschild, J.J. Morbidity and mortality of candidaemia in Europe: An epidemiologic meta-analysis. Clin. Microbiol. Infect. 2019, 25, 1200–1212. [Google Scholar] [CrossRef]
- Fekkar, A.; Blaize, M.; Bouglé, A.; Normand, A.C.; Raoelina, A.; Kornblum, D.; Kamus, L.; Piarroux, R.; Imbert, S. Hospital outbreak of fluconazole-resistant Candida parapsilosis: Arguments for clonal transmission and longterm persistence. Antimicrob. Agents Chemother. 2021, 65, e02036-20. [Google Scholar] [CrossRef]
- Castanheira, M.; Deshpande, L.M.; Messer, S.A.; Rhomberg, P.R.; Pfaller, M.A. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int. J. Antimicrob. Agents 2020, 55, 105799. [Google Scholar] [CrossRef]
- Prigitano, A.; Cavanna, C.; Passera, M.; Gelmi, M.; Sala, E.; Ossi, C.; Grancini, A.; Calabrò, M.; Bramati, S.; Tejada, M.; et al. Evolution of fungemia in an Italian region. J. Mycol. Med. 2020, 30, 100906. [Google Scholar] [CrossRef]
- Prigitano, A.; Cavanna, C.; Passera, M.; Ossi, C.; Sala, E.; Lombardi, G.; Grancini, A.; De Luca, C.; Bramati, S.; Gelmi, M.; et al. CAND-LO 2014-15 study: Changing epidemiology of candidemia in Lombardy (Italy). Infection 2016, 44, 765–780. [Google Scholar] [CrossRef] [PubMed]
Hospital | N. of COVID-19 Patients | |
---|---|---|
Total | with Yeast BSI (%) | |
H1 | 4644 | 30 (0.65) |
H2 | 3070 | 104 (3.39) |
H3 | 5288 | 41 (0.78) |
H4 | 3341 | 35 (1.05) |
H5 | 1478 | 14 (0.95) |
H6 | 2374 | 21 (0.88) |
H7 | 2798 | 19 (0.68) |
H8 | 1462 | 9 (0.62) |
H9 | 1433 | 20 (1.40) |
H10 | 2093 | 3 (0.14) |
Total | 27,981 | 296 (1.06) |
Characteristics | N. (%) |
---|---|
Gender (Male) | 230 (77.7%) |
Age group (years): | |
18–30 | 3 (1%) |
31–40 | 4 (1.4%) |
41–50 | 22 (7.4%) |
51–60 | 51 (17.2%) |
61–70 | 96 (32.4%) |
71–80 | 89 (30%) |
≥81 | 31 (10.5%) |
ICU patients | 182 (61.5%) |
Sub-ICU patients | 21 (7.1%) |
Presence of central venous catheter | 241 (81.4%) |
Risk factors for fungal infection: | |
Corticosteroid therapy | 183 (61.8%) |
Diabetes | 75 (25.3%) |
Respiratory chronic disorder | 34 (11.5%) |
Solid cancer | 28 (9.5%) |
Haematological malignancy | 18 (6%) |
Organ transplant | 4 (1.4%) |
Co-morbidities: | |
Hypertension | 85 (28.7) |
Cardiopathy | 40 (13.5) |
Obesity | 33 (11.1) |
Dyslipidemia | 17 (5.7) |
N. of patients treated with antifungal drugs | 192 (64.9%) |
N. of patients with initial antifungal therapy with *: | |
Caspofungin | 68 (43.6%) |
Fluconazole | 38 (24.3%) |
Anidulafungin | 21 (13.5%) |
Voriconazole | 13 (8.3%) |
Isavuconazole | 1 (0.6%) |
Amphotericin B | 3 (1.9%) |
Itraconazole | 3 (1.9%) |
Echinocandin + azole | 6 (3.8%) |
Echinocandin + amphotericin B Case fatality rate | 3 (1.9%) 131 (45.5%) |
Death at (day after fungal isolation): | |
0–5 | 38 (31.1%) |
6–10 | 24 (18%) |
11–15 | 18 (13.7%) |
16–20 | 12 (9%) |
21–30 | 12 (9%) |
31–40 | 5 (3.2%) |
41–50 | 9 (6.5%) |
51–60 | 3 (2.5%) |
≥61 | 10 (7.4%) |
H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
N. patients with fungemia | 30 | 104 | 41 | 35 | 14 | 21 | 19 | 9 | 20 | 3 | 296 |
Species isolates $: | |||||||||||
C. albicans | 20 (64.5%) | 14 (11.7%) | 19 (44.2%) | 25 (58.1%) | 6 (42.9%) | 6 (28.6%) | 10 52.6%) | 2 (22.2%) | 10 (50%) | 1 (33.3%) | 113 (35.2%) |
C. glabrata | 5 (16.1%) | 11 (9.3%) | 2 (4.7%) | 1 (2.3%) | 2 (14.3%) | 1 (4.8%) | 4 (21%) | 1 (11.1%) | 3 (15%) | 2 (66.6%) | 32 (10%) |
C. parapsilosis | 4 (12.9%) | 89 (75.4%) | 20 (46.5%) | 14 (32.6%) | 5 (35.7%) | 14 (66.6%) | 5 (26.3%) | 3 (33.3%) | 6 (30%) | - | 160 (49.8%) |
C. tropicalis | 2 (6.5%) | 3 (2.5%) | 1 (2.3%) | 1 (2.3%) | 1 (7.1%) | - | - | - | 1 (5%) | - | 9 (2.8%) |
C. metapsilosis | - | 1 (0.8%) | 1 (2.3%) | - | - | - | - | - | - | - | 2 (0.6%) |
C. lusitanae | - | - | - | 2 (4.6%) | - | - | - | - | - | - | 2 (0.6%) |
S. cerevisiae | - | - | - | - | - | - | - | 3 (33.3%) | - | - | 3 (0.9%) |
Total | 31 | 118 | 43 | 43 | 14 | 21 | 19 | 9 | 20 | 3 | 321 |
Resistance to ≥1 antifungals | 4/31 (12.9%) | 87/118 (73.7%) | 14/43 (32.6%) | 8/43 (18.6%) | 2/14 (14.3%) | NA | 2/19 (10.5%) | 3/6 (50%) | 7/20 (35%) | 1/3 (33.3%) | 128 (43.1%) |
C. parapsilosis fluconazole resistant | 1 (25%) | 83 (93.2%) | 14 (70%) | 4 (28.6%) | 0 | NA | 0 | 2 (66.6%) | 2 (33.3%) | - | 106 (72.6%) |
C. albicans | C. glabrata | C. parapsilosis | C. tropicalis | C. lusitanae | C. metapsilosis | Saccharomyces | ||
---|---|---|---|---|---|---|---|---|
FLUCONAZOLE | N. tested | 104 | 28 | 146 | 9 | 2 | 2 | 3 |
MIC90 | 1 | 32 | 128 | 4 | 0.5 | 2 | 0.25 | |
MIC range | 0.12–256 | 0.5–128 | 0.12–256 | 0.5–128 | 0.25–0.5 | 1–2 | 0.125–0.25 | |
R CLSI | 4 (3.8%) | 3 (10.7%) | 106 (72.6%) | 1 (11.1%) | n.a. | n.a. | n.a. | |
ITRACONAZOLE | N. tested | 84 | 28 | 125 | 9 | 2 | 1 | 3 |
MIC90 | 0.12 | 1 | 0.25 | 1 | 0.12 | 0.06 | 16 | |
MIC range | 0.015–16 | 0.12–1 | 0.015–0.25 | 0.03–1 | 0.06–0.12 | 1–16 | ||
R CLSI | 2 (2.4%) | 12 (42.8%) | 0 | 1 (11.1%) | n.a. | n.a. | n.a. | |
POSACONAZOLE | N. tested | 74 | 26 | 120 | 7 | 2 | 1 | 3 |
MIC90 | 0.06 | 2 | 0.12 | 0.25 | 0.06 | 0.015 | 2 | |
MIC range | 0.015–8 | 0.25–4 | 0.008–0.25 | 0.03–0.25 | 0.03–0.06 | 1–2 | ||
R CLSI | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | |
Non-WT | 3 (4%) | 0 | 0 | 0 | ||||
VORICONAZOLE | N. tested | 105 | 27 | 145 | 9 | 2 | 2 | 3 |
MIC90 | 0.12 | 1 | 1 | 0.25 | 0.008 | 0.12 | 0.5 | |
MIC range | 0.008–8 | 0.12–1 | 0.008–2 | 0.015–1 | 0.008–0.008 | 0.015–0.12 | 0.25–0.5 | |
R CLSI | 1 (0.9%) | n.a. | 46 (31.7%) | 1 (11.1%) | n.a. | n.a. | n.a. | |
Non-WT | - | 0 | - | - | - | - | - | |
ANIDULAFUNGIN | N. tested | 86 | 28 | 127 | 8 | 2 | 1 | 2 |
MIC90 | 0.12 | 0.06 | 2 | 0.12 | 0.25 | 0.25 | 0.06 | |
MIC range | 0.015–2 | 0.015–0.06 | 0.015–2 | 0.015–0.25 | 0.25–0.25 | 0.015–0.06 | ||
R CLSI | 3 (3.5%) | 0 | 0 | 0 | n.a. | n.a. | n.a. | |
CASPOFUNGIN | N. tested | 105 | 29 | 145 | 9 | 2 | 2 | 3 |
MIC90 | 0.12 | 0.25 | 1 | 0.12 | 0.5 | 0.5 | 0.06 | |
MIC range | 0.008–0.5 | 0.03–0.25 | 0.03–2 | 0.03–0.25 | 0.25–0.5 | 0.25–0.5 | 0.03–0.06 | |
R CLSI | 0 | 0 | 0 | 0 | n.a. | n.a. | n.a. | |
MICAFUNGIN | No. tested | 85 | 31 | 146 | 9 | 2 | 2 | 3 |
MIC90 | 0.015 | 0.03 | 2 | 0.06 | 0.06 | 0.5 | 0.125 | |
MIC range | 0.008–1 | 0.015–0.03 | 0.008–2 | 0.015–0.03 | 0.06–0.06 | 0.125–0.5 | 0.06–0.125 | |
R CLSI | 3 (3.5%) | 0 | 0 | 0 | n.a. | n.a. | n.a. | |
5-FLUOROCYTOSINE | No. tested | 72 | 22 | 69 | 5 | 2 | 1 | 3 |
MIC90 | 0.12 | 8 | 0.25 | 64 | 2 | 0.5 | 16 | |
MIC range | 0.06–1 | 0.06–8 | 0.06–0.5 | 0.5–64 | 0.06–2 | 0.06–16 | ||
R CLSI | 0 | 0 | 0 | 2 (40%) | n.a. | n.a. | n.a. | |
AMPHOTERICIN B | No. tested | 95 | 28 | 140 | 8 | 2 | 2 | 3 |
MIC90 | 1 | 1 | 1 | 1 | 0.5 | 1 | 0.25 | |
MIC range | 0.12–1 | 0.12–1 | 0.12–1 | 0.25–1 | 0.25–0.5 | 0.25–1 | 0.125–0.25 | |
R CLSI | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | |
Non-WT | 0 | 0 | 0 | 0 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prigitano, A.; Blasi, E.; Calabrò, M.; Cavanna, C.; Cornetta, M.; Farina, C.; Grancini, A.; Innocenti, P.; Lo Cascio, G.; Nicola, L.; et al. Yeast Bloodstream Infections in the COVID-19 Patient: A Multicenter Italian Study (FiCoV Study). J. Fungi 2023, 9, 277. https://doi.org/10.3390/jof9020277
Prigitano A, Blasi E, Calabrò M, Cavanna C, Cornetta M, Farina C, Grancini A, Innocenti P, Lo Cascio G, Nicola L, et al. Yeast Bloodstream Infections in the COVID-19 Patient: A Multicenter Italian Study (FiCoV Study). Journal of Fungi. 2023; 9(2):277. https://doi.org/10.3390/jof9020277
Chicago/Turabian StylePrigitano, Anna, Elisabetta Blasi, Maria Calabrò, Caterina Cavanna, Maria Cornetta, Claudio Farina, Anna Grancini, Patrizia Innocenti, Giuliana Lo Cascio, Lucia Nicola, and et al. 2023. "Yeast Bloodstream Infections in the COVID-19 Patient: A Multicenter Italian Study (FiCoV Study)" Journal of Fungi 9, no. 2: 277. https://doi.org/10.3390/jof9020277
APA StylePrigitano, A., Blasi, E., Calabrò, M., Cavanna, C., Cornetta, M., Farina, C., Grancini, A., Innocenti, P., Lo Cascio, G., Nicola, L., Trovato, L., Cogliati, M., Esposto, M. C., Tortorano, A. M., Romanò, L., & on behalf of the FiCoV Study Group. (2023). Yeast Bloodstream Infections in the COVID-19 Patient: A Multicenter Italian Study (FiCoV Study). Journal of Fungi, 9(2), 277. https://doi.org/10.3390/jof9020277