Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related
Abstract
1. Introduction
Mycotoxins
2. Metabolism of Aflatoxins
3. Mycoviruses and Cancer
4. Conclusions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Akiyama, K.; Takizawa, H.; Suzuki, M.; Miyachi, S.; Ichinohe, M.; Yanagihara, Y. Allergic Bronchopulmonary Aspergillosis due to Aspergillus oryzae. Chest 1987, 91, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Sethi, S.; Raman, D.S.V.; Behera, D. Eight-year study of allergic bronchopulmonary aspergillosis in an Indian teaching hospital. Mycoses 2002, 45, 295–299. [Google Scholar] [CrossRef]
- Sehgal, I.S.; Choudhary, H.; Dhooria, S.; Aggarwal, A.N.; Bansal, S.; Garg, M.; Behera, D.; Chakrabarti, A.; Agarwal, R. Prevalence of sensitization to Aspergillus flavus in patients with allergic bronchopulmonary aspergillosis. Med. Mycol. 2018, 57, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C. Etiology of Acute Leukemia: A Review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef]
- Taj-Aldeen, S.J.; Hilal, A.A.; Chong-Lopez, A. Allergic Aspergillus flavus rhinosinusitis: A case report from Qatar. Eur. Arch. Oto-Rhino-Laryngol. 2003, 260, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.A.; Dutta, S.; Narang, A.; Vaiphei, K. Cutaneous Aspergillus flavus infection in a neonate. Indian J. Pediatr. 2004, 71, 351–352. [Google Scholar] [CrossRef]
- Grossman, M.E.; Fithian, E.C.; Behrens, C.; Bissinger, J.; Fracaro, M.; Neu, H.C. Primary cutaneous aspergillosis in six leukemic children. J. Am. Acad. Dermatol. 1985, 12, 313–318. [Google Scholar] [CrossRef]
- Estes, S.A.; Hendricks, A.A.; Merz, W.G.; Prystowsky, S.D. Primary cutaneous aspergillosis. J. Am. Acad. Dermatol. 1980, 3, 397–400. [Google Scholar] [CrossRef]
- Montone, K.T. Pathology of Fungal Rhinosinusitis: A Review. Head Neck Pathol. 2016, 10, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, P.G.; Whittaker, J.; Prasad, S. Invasive and Non-Invasive Fungal Rhinosinusitis—A Review and Update of the Evidence. Medicina 2019, 55, 319. [Google Scholar] [CrossRef]
- Rai, G.; Ansari, M.A.; Dar, S.A.; Datt, S.; Gupta, N.; Sharma, S.; Haque, S.; Ramachandran, V.G.; Mazumdar, A.; Rudramurthy, S.; et al. Serum Cytokine Profile in Patients with Chronic Rhinosinusitis with Nasal Polyposis Infected by Aspergillus flavus. Ann. Lab. Med. 2018, 38, 125–131. [Google Scholar] [CrossRef]
- Pasqualotto, A.; Denning, D. Post-operative aspergillosis. Clin. Microbiol. Infect. 2006, 12, 1060–1076. [Google Scholar] [CrossRef]
- Kandhavelu, J.; Demonte, N.L.; Namperumalsamy, V.P.; Prajna, L.; Thangavel, C.; Jayapal, J.M.; Kuppamuthu, D. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection. J. Proteom. 2017, 152, 13–21. [Google Scholar] [CrossRef]
- Rudwan, M.; Sheikh, H. Aspergilloma of paranasal sinuses—A common cause of unilateral proptosis in Sudan. Clin. Radiol. 1976, 27, 497–502. [Google Scholar] [CrossRef]
- Miceli, M.H. Central Nervous System Infections Due to Aspergillus and Other Hyaline Molds. J. Fungi 2019, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Barrios, N.; Tebbi, C.K.; Rotstein, C.; Siddiqui, S.; Humbert, J.R. Brainstem invasion by Aspergillus fumigatus in a child with leukemia. N. Y. State J. Med. 1988, 88, 656–658. [Google Scholar] [PubMed]
- Zhu, W.-S.; Wojdyla, K.; Donlon, K.; Thomas, P.; Eberle, H. Extracellular proteases of Aspergillus flavus: Fungal keratitis, proteases, and pathogenesis. Diagn. Microbiol. Infect. Dis. 1990, 13, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Rosa Jr, R.H.; Miller, D.; Alfonso, E.C. The changing spectrum of fungal keratitis in south Florida. Ophthalmology 1994, 101, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Gugnani, H.C.; Gupta, S.; Talwar, R.S. Role of opportunistic fungi in ocular infections in Nigeria. Mycopathologia 1978, 65, 155–166. [Google Scholar] [CrossRef]
- Erdem, E.; Yagmur, M.; Boral, H.; Ilkit, M.; Ersoz, R.; Seyedmousavi, S. Aspergillus flavus Keratitis: Experience of a Tertiary Eye Clinic in Turkey. Mycopathologia 2016, 182, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Leema, G.; Jayaraman Kaliamurthy, P.G.; Thomas, P.A. Keratitis due to Aspergillus flavus: Clinical profile, molecular identifi-cation of fungal strains and detection of aflatoxin production. Mol. Vis. 2010, 16, 843. [Google Scholar] [PubMed]
- Gupta, A.K.; Gupta, A.K. Postgraduate institute management protocol for invasive Aspergillus flavus sinusitis: Is it effective? Int. J. Infect. Dis. 2009, 13, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Jariwal, R.; Heidari, A.; Sandhu, A.; Patel, J.; Shoaepour, K.; Natarajan, P.; Cobos, E. Granulomatous Invasive Aspergillus flavus Infection Involving the Nasal Sinuses and Brain. J. Investig. Med. High Impact Case Rep. 2018, 6. [Google Scholar] [CrossRef]
- Alarifi, I.; Alsaleh, S.; Alqaryan, S.; Assiri, H.; Alsukayt, M.; Alswayyed, M.; Alromaih, S.; Aloulah, M.; Alroqi, A.S.; AlQahtani, A.; et al. Chronic Granulomatous Invasive Fungal Sinusitis: A Case Series and Literature Review. Ear Nose Throat J. 2020, 100, 720S–727S. [Google Scholar] [CrossRef]
- Raz, E.; Win, W.; Hagiwara, M.; Lui, Y.W.; Cohen, B.; Fatterpekar, G.M. Fungal sinusitis. Neuroimaging Clin. 2015, 25, 569–576. [Google Scholar] [CrossRef]
- ElSawy, A.; Faidah, H.; Ahmed, A.; Mostafa, A.; Mohamed, F. Aspergillus terreus Meningitis in Immunocompetent Patient: A Case Report. Front. Microbiol. 2015, 6, 1353. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Brinkman, K.; Kremer, H.P.H.; Kullberg, B.-J.; Meis, J.F.G.M. Aspergillus Meningitis: Diagnosis by Non-Culture-Based Microbiological Methods and Management. J. Clin. Microbiol. 1999, 37, 1186–1189. [Google Scholar] [CrossRef]
- Antinori, S.; Corbellino, M.; Meroni, L.; Resta, F.; Sollima, S.; Tonolini, M.; Tortorano, A.M.; Milazzo, L.; Bello, L.; Furfaro, E.; et al. Aspergillus meningitis: A rare clinical manifestation of central nervous system aspergillosis. Case report and review of 92 cases. J. Infect. 2012, 66, 218–238. [Google Scholar] [CrossRef]
- Fincher, T.; Fulcher, S.F. Diagnostic and therapeutic challenge of Aspergillus flavus scleritis. Cornea 2007, 26, 618–620. [Google Scholar] [CrossRef]
- Carlson, A.N.; Foulks, G.N.; Perfect, J.R.; Kim, J.H. Fungal Scleritis After Cataract Surgery. Successful outcome using itraconazole. Cornea 1992, 11, 151–154. [Google Scholar] [CrossRef]
- Baharani, A.; Reddy, A.K.; Reddy, R.R.P. Aspergillus Flavus Necrotising Scleritis following Pars Plana Vitrectomy. Ocul. Immunol. Inflamm. 2019, 28, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ertugrul, B.; Gultekin, B.; Uyar, G.; Kir, E. Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy. BMC Infect. Dis. 2007, 7, 87. [Google Scholar] [CrossRef]
- Lance, S.E.; Friberg, T.R.; Kowalski, R.P. Aspergillus flavus Endophthalmitis and Retinitis in an Intravenous Drug Abuser a Therapeutic Success. Ophthalmology 1988, 95, 947–949. [Google Scholar] [CrossRef]
- Bodoia, R.D.; Kinyoun, J.L.; Qingli, L.; Bunt-Milam, A.H. Aspergillus necrotizing retinitis a clinico-pathologic study and review. Retina 1989, 9, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, M.; Ozcan, M.K.; Karaarslan, A.; Karaarslan, F. Concomitant otomycosis and dermatomycoses: A clinical and microbiological study. Eur. Arch. Oto-Rhino-Laryngol. 2003, 260, 24–27. [Google Scholar] [CrossRef]
- Aneja, K.; Sharma, C.; Joshi, R. Fungal infection of the ear: A common problem in the north eastern part of Haryana. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Moslem, M.; Mahmoudabadi, A.Z. The high efficacy of luliconazole against environmental and otomycosis Aspergillus flavus strains. Iran. J. Microbiol. 2020, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Gokahmetoglu, S.; Koc, A.N.; Patiroglu, T. Case Report. Fatal Aspergillus flavus pericarditis in a patient with acute myeloblastic leukaemia. Mycoses 2000, 43, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Bulkley, B.H. Aspergillus pericarditis: Clinical and pathologic features in the immunocompromised patient. Cancer 1982, 49, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Sergi, C.; Hofmann, W.; Sinn, P.; Schnabel, P.; Otto, H.; Weitz, J.; Otto, G.; Eckart, A. Aspergillus endocarditis, myocarditis and pericarditis complicating necrotizing fasciitis. Virchows Arch. 1996, 429, 177–180. [Google Scholar] [CrossRef]
- Kalokhe, A.S.; Rouphael, N.; El Chami, M.F.; Workowski, K.A.; Ganesh, G.; Jacob, J.T. Aspergillus endocarditis: A review of the literature. Int. J. Infect. Dis. 2010, 14, e1040–e1047. [Google Scholar] [CrossRef] [PubMed]
- Gumbo, T.; Taege, A.J.; Mawhorter, S.; McHenry, M.C.; Lytle, B.H.; Cosgrove, D.M.; Gordon, S.M. Aspergillus Valve Endocarditis in Patients without Prior Cardiac Surgery. Medicine 2000, 79, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Sanyal, S.C.; Mokaddas, E.; Vislocky, I.; Anim, J.T.; Salama, A.L.; Shuhaiber, H. Endocarditis due to Aspergillus flavus. Mycoses 1997, 40, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Weinstein, A.J.; Hughes, J.A.; Cosgrove, D.E. Granulomatous mediastinitis due to Aspergillus flavus in a nonimmunosuppressed patient. Am. J. Med. 1981, 70, 887–890. [Google Scholar] [CrossRef]
- Chatterjee, D.; Bal, A.; Singhal, M.; Vijayvergiya, R.; Das, A. Fibrosing mediastinitis due to Aspergillus with dominant cardiac involvement: Report of two autopsy cases with review of literature. Cardiovasc. Pathol. 2014, 23, 354–357. [Google Scholar] [CrossRef]
- Vaideeswar, P.; Chaudhari, J.; Goel, N. Fungal fibrosing mediastinitis in pregnancy—Case report with review of literature. J. Postgrad. Med. 2019, 65, 52–55. [Google Scholar] [CrossRef]
- Kumashi, P.; Safdar, A.; Chamilos, G.; Chemaly, R.; Raad, I.; Kontoyiannis, D. Fungal osteoarticular infections in patients treated at a comprehensive cancer centre: A 10-year retrospective review. Clin. Microbiol. Infect. 2006, 12, 621–626. [Google Scholar] [CrossRef]
- Papachristou, S.G.; Iosifidis, E.; Sipsas, N.V.; Gamaletsou, M.N.; Walsh, T.J.; Roilides, E. Management of osteoarticular fungal infections in the setting of immunodeficiency. Expert Rev. Anti-Infect. Ther. 2020, 18, 461–474. [Google Scholar] [CrossRef]
- Roilides, E.; Dotis, J. Osteoarticular and Epidural Infections. In Aspergillosis: From Diagnosis to Prevention; Springer: Berlin/Heidelberg, Germany, 2009; pp. 853–862. [Google Scholar]
- Gamaletsou, M.N.; Rammaert, B.; Bueno, M.A.; Sipsas, N.V.; Moriyama, B.; Kontoyiannis, D.P.; Roilides, E.; Zeller, V.; Taj-Aldeen, S.J.; Henry, M. Aspergillus arthritis: Analysis of clinical manifestations, diagnosis, and treatment of 31 reported cases. Med. Mycol. 2017, 55, 246–254. [Google Scholar]
- Gabrielli, E.; Fothergill, A.W.; Brescini, L.; Sutton, D.A.; Marchionni, E.; Orsetti, E.; Staffolani, S.; Castelli, P.; Gesuita, R.; Barchiesi, F. Osteomyelitis caused by Aspergillus species: A review of 310 reported cases. Clin. Microbiol. Infect. 2014, 20, 559–565. [Google Scholar] [CrossRef]
- Chi, C.-Y.; Fung, C.-P.; Liu, C.-Y. Aspergillus flavus epidural abscess and osteomyelitis in a diabetic patient. J. Microbiol. Immunol. Infect. 2003, 36, 177–180. [Google Scholar]
- Beluffi, G.; Bernardo, M.E.; Meloni, G.; Spinazzola, A.; Locatelli, F. Spinal osteomyelitis due to Aspergillus flavus in a child: A rare complication after haematopoietic stem cell transplantation. Pediatr. Radiol. 2008, 38, 709–712. [Google Scholar] [CrossRef]
- Khan, Z.U.; Gopalakrishnan, G.; Al-Awadi, K.; Gupta, R.K.; Moussa, S.A.; Chugh, T.D.; Krajci, D. Renal Aspergilloma Due to Aspergillus flavus. Clin. Infect. Dis. 1995, 21, 210–212. [Google Scholar] [CrossRef]
- Pérez-Arellano, J.; Angel-Moreno, A.; Belón, E.; Francès, A.; Santana, O.; Martín-Snchez, A. Isolated Renoureteric Aspergilloma Due to Aspergillus flavus: Case Report and Review of the Literature. J. Infect. 2001, 42, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Kueter, J.C.; MacDiarmid, S.A.; Redman, J.F. Anuria due to bilateral ureteral obstruction by Aspergillus flavus in an adult male. Urology 2002, 59, 601. [Google Scholar] [CrossRef]
- Harada, K.; Oguma, T.; Saito, A.; Fukutomi, Y.; Tanaka, J.; Tomomatsu, K.; Taniguchi, M.; Asano, K. Concordance between Aspergillus-specific precipitating antibody and IgG in allergic bronchopulmonary aspergillosis. Allergol. Int. 2018, 67, S12–S17. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Kamei, K.; Hebisawa, A. Allergic bronchopulmonary mycosis-pathophysiology, histology, diagnosis, and treatment. Asia Pac. Allergy 2018, 8, e24. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.; Gugnani, H.C.; Sarma, P.U.; Madan, T.; Shah, A. Sensitization to Aspergillus antigens and occurrence of allergic bronchopulmonary aspergillosis in patients with asthma. Chest 2005, 127, 1252–1259. [Google Scholar]
- Hadrich, I.; Makni, F.; Neji, S.; Cheikhrouhou, F.; Bellaaj, H.; Elloumi, M.; Ayadi, A.; Ranque, S. Amphotericin B in vitro resistance is associated with fatal Aspergillus flavus infection. Med. Mycol. 2012, 50, 829–834. [Google Scholar] [CrossRef]
- Sabino, R.; Veríssimo, C.; Viegas, C.; Viegas, S.; Brandão, J.; Alves-Correia, M.; Borrego, L.-M.; Clemons, K.V.; Stevens, D.A.; Richardson, M. The role of occupational Aspergillus exposure in the development of diseases. Med. Mycol. 2019, 57, S196–S205. [Google Scholar] [CrossRef]
- Tizek, L.; Schielein, M.; Berger, U.; Ege, M.; Schneider, S.; Zink, A. Skin cancer risk and shade: Comparing the risk of foresters with other outdoor workers. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- Kawachi, I.; Pearce, N.; Fraser, J. A New Zealand cancer registry-based study of cancer in wood workers. Cancer 1989, 64, 2609–2613. [Google Scholar] [CrossRef] [PubMed]
- Brito-Marcelino, A.; Duarte-Tavares, R.J.; Marcelino, K.B.; Silva-Neto, J.A. Cervical cancer related to occupational risk factors: Review. Rev. Bras. Med. Trab. 2020, 18, 103–108. [Google Scholar] [CrossRef] [PubMed]
- McWhorter, W.P. Allergy and risk of cancer. A prospective study using nhanesi followup data. Cancer 1988, 62, 451–455. [Google Scholar] [CrossRef]
- Shadman, M.; White, E.; De Roos, A.J.; Walter, R.B. Associations between allergies and risk of hematologic malignancies: Results from the VITamins and lifestyle cohort study. Am. J. Hematol. 2013, 88, 1050–1054. [Google Scholar] [CrossRef]
- Liu, X.; Hemminki, K.; Forsti, A.; Sundquist, J.; Sundquist, K.; Ji, J. Cancer risk and mortality in asthma patients: A Swedish national cohort study. Acta Oncol. 2015, 54, 1120–1127. [Google Scholar] [CrossRef]
- Eriksson, N.E.; Mikoczy, Z.; Hagmar, L. Cancer incidence in 13,811 patients skin tested for allergy. J. Investig. Allergol. Clin. Immunol. 2005, 15, 161–166. [Google Scholar] [PubMed]
- Talbot-Smith, A.; Fritschi, L.; Divitini, M.L.; Mallon, D.F.J.; Knuiman, M.W. Allergy, Atopy, and Cancer: A Prospective Study of the 1981 Busselton Cohort. Am. J. Epidemiol. 2003, 157, 606–612. [Google Scholar] [CrossRef]
- Zhu, J.; Song, J.; Liu, Z.; Han, J.; Luo, H.; Liu, Y.; Jia, Z.; Dong, Y.; Zhang, W.; Jiang, F.; et al. Association between allergic conditions and risk of prostate cancer: A Prisma-Compliant Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 35682. [Google Scholar] [CrossRef]
- Kozłowska, R.; Bożek, A.; Jarząb, J. Association between cancer and allergies. Allergy Asthma Clin. Immunol. 2016, 12, 39. [Google Scholar] [CrossRef]
- Kantor, E.D.; Hsu, M.; Du, M.; Signorello, L.B. Allergies and Asthma in Relation to Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1395–1403. [Google Scholar] [CrossRef]
- Källén, B.; Gunnarskog, J.; Conradson, T.B. Cancer risk in asthmatic subjects selected from hospital discharge registry. Eur. Respir. J. 1993, 6, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.G.M.C.; Petroianu, A.; Machado, J.A.N.; Dos Anjos, P.M.F.; Da Silva, F.R.; Alberti, L.R.; Resende, V.; Barrientos, S.C. Clinical and immunological allergy assessment in cancer patients. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Rava, M.; Czachorowski, M.J.; Silverman, D.; Márquez, M.; Kishore, S.; Tardón, A.; Serra, C.; García-Closas, M.; Garcia-Closas, R.; Carrato, A.; et al. Asthma status is associated with decreased risk of aggressive urothelial bladder cancer. Int. J. Cancer 2017, 142, 470–476. [Google Scholar] [CrossRef]
- Gandini, S.; Lowenfels, A.B.; Jaffee, E.M.; Armstrong, T.D.; Maisonneuve, P. Allergies and the Risk of Pancreatic Cancer: A Meta-analysis with Review of Epidemiology and Biological Mechanisms. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Cotterchio, M.; Lowcock, E.; Hudson, T.J.; Greenwood, C.; Gallinger, S. Association between Allergies and Risk of Pancreatic Cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Lowcock, E.C.; Cotterchio, M.; Ahmad, N. Association between allergies, asthma, and breast cancer risk among women in Ontario, Canada. Cancer Causes Control. 2013, 24, 1053–1056. [Google Scholar] [CrossRef]
- Jacobs, E.J.; Gapstur, S.M.; Newton, C.C.; Turner, M.C.; Campbell, P.T. Hay Fever and Asthma as Markers of Atopic Immune Response and Risk of Colorectal Cancer in Three Large Cohort Studies. Cancer Epidemiol. Biomark. Prev. 2013, 22, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Olson, S.H.; Hsu, M.; Satagopan, J.M.; Maisonneuve, P.; Silverman, D.T.; Lucenteforte, E.; Anderson, K.E.; Borgida, A.; Bracci, P.M.; Bueno-De-Mesquita, H.B.; et al. Allergies and Risk of Pancreatic Cancer: A Pooled Analysis from the Pancreatic Cancer Case-Control Consortium. Am. J. Epidemiol. 2013, 178, 691–700. [Google Scholar] [CrossRef]
- Merrill, R.M.; Isakson, R.T.; Beck, R.E. The association between allergies and cancer: What is currently known? Ann. Allergy Asthma Immunol. 2007, 99, 102–117. [Google Scholar] [CrossRef]
- Karim, A.F.; Westenberg, L.E.H.; Eurelings, L.E.M.; Otten, R.; Van Wijk, R.G. The association between allergic diseases and cancer: A systematic review of the literature. Neth. J. Med. 2019, 77, 42–66. [Google Scholar] [PubMed]
- Wang, H. Diepgen TL. Is atopy a protective or a risk factor for cancer? A review of epidemiological studies. Allergy 2005, 60, 1098–1111. [Google Scholar] [CrossRef]
- Cui, Y.; Hill, A.W. Atopy and Specific Cancer Sites: A Review of Epidemiological Studies. Clin. Rev. Allergy Immunol. 2016, 51, 338–352. [Google Scholar] [CrossRef]
- Linos, E.; Raine, T.; Alonso, A.; Michaud, D. Atopy and Risk of Brain Tumors: A Meta-analysis. Gynecol. Oncol. 2007, 99, 1544–1550. [Google Scholar] [CrossRef]
- Ferastraoaru, D.; Jordakieva, G.; Jensen-Jarolim, E. The other side of the coin: IgE deficiency, a susceptibility factor for malig-nancy occurrence. World Allergy Organ. J. 2021, 14, 100505. [Google Scholar] [CrossRef] [PubMed]
- McCraw, A.J.; Chauhan, J.; Bax, H.J.; Stavraka, C.; Osborn, G.; Grandits, M.; López-Abente, J.; Josephs, D.H.; Spicer, J.; Wagner, G.K.; et al. Insights from IgE Immune Surveillance in Allergy and Cancer for Anti-Tumour IgE Treatments. Cancers 2021, 13, 4460. [Google Scholar] [CrossRef]
- Amirian, E.S.; Zhou, R.; Wrensch, M.R.; Olson, S.H.; Scheurer, M.E.; Il’yasova, D.; Lachance, D.; Armstrong, A.G.; McCoy, L.C.; Lau, C.C.; et al. Approaching a scientific consensus on the asso-ciation between allergies and glioma risk: A report from the Glioma International Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2016, 25, 282–290. [Google Scholar] [CrossRef]
- Schwartzbaum, J.; Ding, B.; Johannesen, T.B.; Osnes, L.T.N.; Karavodin, L.; Ahlbom, A.; Feychting, M.; Grimsrud, T.K. Association between Prediagnostic IgE Levels and Risk of Glioma. Gynecol. Oncol. 2012, 104, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K.; Badiga, A.; Sahakian, E.; Powers, J.J.; Achille, A.N.; Patel, S.; Migone, F. Exposure to a mycovirus containing Aspergillus flavus reproduces acute lymphoblastic leukemia cell surface and genetic markers in cells from patients in remission and not controls. Cancer Treat. Res. Commun. 2021, 26, 100279. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K.; Badiga, A.; Sahakian, E.; Arora, A.I.; Nair, S.; Powers, J.J.; Achille, A.N.; Jaglal, M.V.; Patel, S.; Migone, F. Plasma of Acute Lymphoblastic Leukemia Patients React to the Culture of a Mycovirus Containing Aspergillus flavus. J. Pediatr. Hematol. 2020, 42, 350–358. [Google Scholar] [CrossRef]
- Tebbi, C.K.; Kotta-Loizou, I.; Coutts, R.H. Mycovirus Containing Aspergillus flavus and Acute Lymphoblastic Leukemia: Carcinogenesis beyond Mycotoxin Production. In The Genus Aspergillus—Pathogenicity, Mycotoxin Production and Industrial Applications; IntechOpen: London, UK, 2021. [Google Scholar]
- Huët, M.A.L.; Lee, C.Z.; Rahman, S. A review on association of fungi with the development and progression of carcinogenesis in the human body. Curr. Res. Microb. Sci. 2021, 3, 100090. [Google Scholar] [CrossRef]
- Kaźmierczak-Siedlecka, K.; Dvořák, A.; Folwarski, M.; Daca, A.; Przewłócka, K.; Makarewicz, W. Fungal Gut Microbiota Dysbiosis and Its Role in Colorectal, Oral, and Pancreatic Carcinogenesis. Cancers 2020, 12, 1326. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.-M.; Liang, J.-A.; Lin, C.-L.; Sun, L.-M.; Kao, C.-H. Cancer risk in patients with candidiasis: A nationwide population-based cohort study. Oncotarget 2017, 8, 63562–63573. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Shen, S.; Hou, Y.; Chen, Y.; Wang, T. The mycobiota of the human body: A spark can start a prairie fire. Gut Microbes 2020, 11, 655–679. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M. Do fungi play a role in the aetiology of cancer? Rev. Med. Microbiol. 2002, 13, 37–42. [Google Scholar] [CrossRef]
- Tebbi, C.K. Carcinogenesis and Leukemogenesis of Microorganisms: A Review. 21st Century Pathol. 2022, 2, 109–120. [Google Scholar]
- Greaves, M. Author Correction: A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 2018, 18, 526. [Google Scholar] [CrossRef]
- Blair, A.; Zahm, S.H. Agricultural Exposures and Cancer. Environ. Health Perspect. 1995, 103 (Suppl. 8), 205–208. [Google Scholar] [PubMed]
- Ljubojevic, S.; Skerlev, M. HPV-associated diseases. Clin. Dermatol. 2014, 32, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Yugawa, T.; Kiyono, T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: Novel functions of E6 and E7 oncoproteins. Rev. Med. Virol. 2009, 19, 97–113. [Google Scholar] [CrossRef]
- Scheidegger, K.; Payne, G. Unlocking the secrets behind secondary metabolism: A review of Aspergillus flavus from pathogenicity to functional genomics. J. Toxicol. Toxin Rev. 2003, 22, 423–459. [Google Scholar] [CrossRef]
- Gonçalves, A.B.; Paterson, R.R.M.; Lima, N. Survey and significance of filamentous fungi from tap water. Int. J. Hyg. Environ. Health 2006, 209, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.M.; Baranyi, J.; Pitt, J.I.; Eyles, M.J.; Roberts, T.A. Predicting fungal growth: The effect of water activity on Aspergillus flavus and related species. Int. J. Food Microbiol. 1994, 23, 419–431. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Pickersgill, D.A.; Després, V.R.; Pöschl, U. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. USA 2009, 106, 12814–12819. [Google Scholar] [CrossRef]
- Sautour, M.; Sixt, N.; Dalle, F.; L’Ollivier, C.; Fourquenet, V.; Calinon, C.; Paul, K.; Valvin, S.; Maurel, A.; Aho, S.; et al. Profiles and seasonal distribution of airborne fungi in indoor and outdoor environments at a French hospital. Sci. Total. Environ. 2009, 407, 3766–3771. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, M.T.; Pasqualotto, A.C.; Warn, P.A.; Bowyer, P.; Denning, D.W. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology 2007, 153, 1677–1692. [Google Scholar] [CrossRef] [PubMed]
- VandenBergh, M.F.; Verweij, P.E.; Voss, A. Epidemiology of nosocomial fungal infections: Invasive aspergillosis and the environment. Diagn. Microbiol. Infect. Dis. 1999, 34, 221–227. [Google Scholar] [CrossRef]
- Mousavi, B.; Hedayati, M.T.; Hedayati, N.; Ilkit, M.; Syedmousavi, S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr. Med. Mycol. 2016, 2, 36–42. [Google Scholar] [CrossRef]
- Schoental, R. Moses and mycotoxins. Prev. Med. 1980, 1, 159–161. [Google Scholar] [CrossRef]
- Marr, J.S.; Malloy, C.D. An epidemiologic analysis of the ten plagues of Egypt. Caduceus 1996, 12, 7–24. [Google Scholar] [PubMed]
- Varga, J.; Due, M.; Frisvad, J.C.; Samson, R.A. taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud. Mycol. 2007, 59, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2005, 53, 1–27. [Google Scholar]
- Frisvad, J. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J. 2018, 11, 73–100. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- James, M.J.; Lasker, B.A.; McNeil, M.M.; Shelton, M.; Warnock, D.W.; Reiss, E. Use of a Repetitive DNA Probe to Type Clinical and Environmental Isolates of Aspergillus flavus from a Cluster of Cutaneous Infections in a Neonatal Intensive Care Unit. J. Clin. Microbiol. 2000, 38, 3612–3618. [Google Scholar] [CrossRef] [PubMed]
- Borgohain, P.; Barua, P.; Dutta, P.J.; Shaw, D.; Rudramurthy, S.M. Onychomycosis Associated with Superficial Skin Infection Due to Aspergillus sydowii in an Immunocompromised Patient. Mycopathologia 2019, 184, 683–689. [Google Scholar] [CrossRef]
- Vandecasteele, S.J.; Boelaert, J.R.; Verrelst, P.; Graulus, E.; Gordts, B.Z. Diagnosis and Treatment of Aspergillus flavus Sternal Wound Infections after Cardiac Surgery. Clin. Infect. Dis. 2002, 35, 887–890. [Google Scholar] [CrossRef]
- Myoken, Y.; Sugata, T.; Fujita, Y.; Kyo, T.-I.; Fujihara, M.; Kohara, T.; Katsu, M.; Mikami, Y. Molecular epidemiology of invasive stomatitis due to Aspergillus flavus in patients with acute leukemia. J. Oral Pathol. Med. 2003, 32, 215–218. [Google Scholar] [CrossRef]
- Lutz, B.D.; Jin, J.; Rinaldi, M.G.; Wickes, B.L.; Huycke, M.M. Outbreak of Invasive Aspergillus Infection in Surgical Patients, Associated with a Contaminated Air-Handling System. Clin. Infect. Dis. 2003, 37, 786–793. [Google Scholar] [CrossRef]
- Kradin, R.L.; Mark, E.J. The pathology of pulmonary disorders due to Aspergillus spp. Arch. Pathol. Lab. Med. 2008, 132, 606–614. [Google Scholar] [CrossRef]
- Bangash, M. Aspergillus flavus Brain Abscess in Immunocompetent Teenagers: A Case Series with Review of Literature. J. Case Rep. 2017, 7, 8–12. [Google Scholar] [CrossRef]
- Jensen, J.; Guinea, J.; Torres-Narbona, M.; Muñoz, P.; Peláez, T.; Bouza, E. Post-surgical invasive aspergillosis: An uncommon and under-appreciated entity. J. Infect. 2010, 60, 162–167. [Google Scholar] [CrossRef]
- Gage, A.A. Aspergillus Infection after Cardiac Surgery. Arch. Surg. 1970, 101, 384–387. [Google Scholar] [CrossRef]
- Liu, Y.; Ou, Y.; Sun, L.; Li, W.; Yang, J.; Zhang, X.; Hu, Y. Alcohol dehydrogenase of Candida albicans triggers differentiation of THP-1 cells into macrophages. J. Adv. Res. 2019, 18, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Klotz, S.A.; Pendrak, M.L.; Hein, R.C. Antibodies to α5β1 and αvβ3 integrins react with Candida albicans alcohol dehydrogenase. Microbiology 2001, 147, 3159–3164. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, W.L. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 2008, 72, 495–544. [Google Scholar] [CrossRef] [PubMed]
- Setshedi, M.; Wands, J.R.; De la Monte, S.M. Acetaldehyde Adducts in Alcoholic Liver Disease. Oxidative Med. Cell. Longev. 2010, 3, 178–185. [Google Scholar] [CrossRef]
- Reyes-Gordillo, K.; Shah, R.; Arellanes-Robledo, J.; Hernández-Nazara, Z.; Rincón-Sánchez, A.R.; Inagaki, Y.; Rojkind, M.; Lakshman, M.R. Mechanisms of action of acetaldehyde in the up-regulation of the human α2 (I) collagen gene in hepatic stellate cells: Key roles of Ski, SMAD3, SMAD4, and SMAD7. Am. J. Pathol. 2014, 184, 1458–1467. [Google Scholar]
- Hernández, E.; Bucio, L.; Souza, V.; Escobar, M.C.; Gómez-Quiroz, L.E.; Farfán, B.; Kershenobich, D.; Gutiérrez-Ruiz, M.C. Pentoxifylline downregulates α (I) collagen expression by the inhibition of Iκbα degradation in liver stellate cells. Cell Biol. Toxicol. 2008, 24, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Simoni-Nieves, A.; Clavijo-Cornejo, D.; Gutiérrez-Ruiz, M.C.; Gomez-Quiroz, L.E. Acetaldehyde Effects on Cellular Redox State. In The Liver; Academic Press: Cambridge, MA, USA, 2018; pp. 63–70. [Google Scholar] [CrossRef]
- Homann, N.; Jousimies-Somer, H.; Jokelainen, K.; Heine, R.; Salaspuro, M. High acetaldehyde levels in saliva after ethanol consumption: Methodological aspects and pathogenetic implications. Carcinogenesis 1997, 18, 1739–1743. [Google Scholar] [CrossRef]
- Pöschl, G.; Seitz, H.K. Alcohol and cancer. Alcohol Alcohol. 2004, 39, 155–165. [Google Scholar] [CrossRef]
- Alnuaimi, A.D.; Ramdzan, A.N.; Wiesenfeld, D.; O’Brien-Simpson, N.M.; Kolev, S.D.; Reynolds, E.C.; McCullough, M.J. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis. 2016, 22, 805–814. [Google Scholar] [CrossRef]
- Ramirez-Garcia, A.; Rementeria, A.; Aguirre-Urizar, J.M.; Moragues, M.D.; Antoran, A.; Pellon, A.; Abad-Diaz-de-Cerio, A.; Hernando, F.L. Candida albicans and cancer: Can this yeast induce cancer development or progression. Microbiology 2016, 42, 181–193. [Google Scholar]
- Krogh, P.; Hald, B.; Holmstrup, P. Possible mycological etiology of oral mucosal cancer: Catalytic potential of infecting Candida aibicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogensis 1987, 8, 1543–1548. [Google Scholar] [CrossRef]
- Gayathri, K.; Balachander, N.; Malathi, L.; Sankari, S. Candida in potentially malignant oral disorders. J. Pharm. Bioallied Sci. 2015, 7, 164. [Google Scholar] [CrossRef]
- Di Cosola, M.; Cazzolla, A.P.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Santacroce, L. Candida albicans and Oral Carcinogenesis. A Brief Review. J. Fungi 2021, 7, 476. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Wang, S.C.; Chen, P.C.; Wang, S.T.; Liu, Y.W. Induction of cyclooxygenase-2 gene by Candida albicans through EGFR, ERK, and p38 pathways in human urinary epithelium. Med. Mycol. 2017, 55, 314–322. [Google Scholar]
- Netea, M.G.; Stuyt, R.J.L.; Kim, S.; Van der Meer, J.W.M.; Kullberg, B.J.; Dinarello, C.A. The Role of Endogenous Interleukin (IL)–18, IL-12, IL-1β, and Tumor Necrosis Factor–α in the Production of Interferon-γ Induced by Candida albicans in Human Whole-Blood Cultures. J. Infect. Dis. 2002, 185, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Bombeccaria, G.; Spadaria, F.; Rossia, M.; Porrinia, M.; Bosottia, M.; Giannì, A. Biology of Candida spp. in potentially malignant disorders and carcinoma of the oral cavity. Dent. Cadmos. 2016, 84, 624–634. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Ariyawardana, A. Malignant transformation of oral leukoplakia: A systematic review of observational studies. J. Oral Pathol. Med. 2015, 45, 155–166. [Google Scholar] [CrossRef]
- Engku Nasrullah Satiman, E.A.F.; Ahmad, H.; Ramzi, A.B.; Abdul Wahab, R.; Kaderi, M.A.; Wan Harun, W.H.A.; Dashper, S.; McCullough, M.; Arzmi, M.H. The role of Candida albicans candidalysin ECE1 gene in oral carcinogenesis. J. Oral Pathol. Med. 2020, 49, 835–841. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Doss, R.B.; Lall, R.; Srivastava, A.; Sinha, A. Aflatoxins, ochratoxins, and citrinin. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 983–1002. [Google Scholar]
- Vanhoutte, I.; Audenaert, K.; De Gelder, L. Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds. Front. Microbiol. 2016, 7, 561. [Google Scholar] [CrossRef]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Leuk. Res. 2007, 36, 1119–1125. [Google Scholar] [CrossRef]
- Eze, U.; Routledge, M.; Okonofua, F.; Huntriss, J.; Gong, Y. Mycotoxin exposure and adverse reproductive health outcomes in Africa: A review. World Mycotoxin J. 2018, 11, 321–339. [Google Scholar] [CrossRef]
- Erceg, S.; Mateo, E.M.; Zipancic, I.; Jiménez, F.J.R.; Aragó, M.A.P.; Jiménez, M.; Soria, J.M.; Garcia-Esparza, M. Assessment of Toxic Effects of Ochratoxin A in Human Embryonic Stem Cells. Toxins 2019, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.E.; Fayjaloun, S.; Nassar, M.; Sahakian, J.; Aad, P.Y. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins 2019, 11, 515. [Google Scholar] [CrossRef]
- Kanora, A.; Maes, D. The role of mycotoxins in pig reproduction: A review. Vet. Med. 2009, 54, 565–576. [Google Scholar] [CrossRef]
- Coppa, C.F.S.C.; Khaneghah, A.M.; Alvito, P.; Assunção, R.; Martins, C.; Es, I.; Goncalves, B.L.; De Neeff, D.V.; Sant’Ana, A.S.; Corassin, C.H.; et al. The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends Food Sci. Technol. 2019, 92, 81–93. [Google Scholar] [CrossRef]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Ortiz, J.; Jacxsens, L.; Astudillo, G.; Ballesteros, A.; Donoso, S.; Huybregts, L.; De Meulenaer, B. Multiple mycotoxin exposure of infants and young children via breastfeeding and complementary/weaning foods consumption in Ecuadorian highlands. Food Chem. Toxicol. 2018, 118, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Kiarie, G.M.; Dominguez-Salas, P.; Kang’ethe, S.K.; Grace, D.; Lindahl, J. Aflatoxin exposure among young children in urban low-income areas of Nairobi and association with child growth. Afr. J. Food Agric. Nutr. Dev 2016, 16, 10967–10990. [Google Scholar] [CrossRef]
- Smith, L.E.; Prendergast, A.J.; Turner, P.C.; Mbuya, M.N.N.; Mutasa, K.; Kembo, G.; Stoltzfus, R.J. The Potential Role of Mycotoxins as a Contributor to Stunting in the SHINE Trial. Clin. Infect. Dis. 2015, 61, S733–S737. [Google Scholar] [CrossRef]
- Watson, S.; Moore, S.E.; Darboe, M.K.; Chen, G.; Tu, Y.-K.; Huang, Y.-T.; Eriksen, K.G.; Bernstein, R.M.; Prentice, A.M.; Wild, C.P.; et al. Impaired growth in rural Gambian infants exposed to aflatoxin: A prospective cohort study. BMC Public Health 2018, 18, 1247. [Google Scholar] [CrossRef]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef]
- Patel, R.; Hossain, M.A.; German, N.; Al-Ahmad, A.J. Gliotoxin penetrates and impairs the integrity of the human blood-brain barrier in vitro. Mycotoxin Res. 2018, 34, 257–268. [Google Scholar] [CrossRef]
- Herrera, M.; Bervis, N.; Carramiñana, J.J.; Juan, T.; Herrera, A.; Ariño, A.; Lorán, S. Occurrence and Exposure Assessment of Aflatoxins and Deoxynivalenol in Cereal-Based Baby Foods for Infants. Toxins 2019, 11, 150. [Google Scholar] [CrossRef]
- Van Vleet, T.R.; Klein, P.J.; Coulombe, R.A.C., Jr. Metabolism and cytotoxicity of aflatoxin B 1 in cytochrome P-450-expressing human lung cells. J. Toxicol. Environ. Health Part A 2002, 65, 853–867. [Google Scholar] [CrossRef]
- Bren, U.; Fuchs, J.E.; Oostenbrink, C. Cooperative Binding of Aflatoxin B1 by Cytochrome P450 3A4: A Computational Study. Chem. Res. Toxicol. 2014, 27, 2136–2147. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.; Turner, P. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J.; Murcia, H.W.; Cepeda, S.M. Cytochrome P450 enzymes involved in the metabolism of aflatoxin B1 in chickens and quail. Poult. Sci. 2010, 89, 2461–2469. [Google Scholar] [CrossRef]
- Supriya, C.; Reddy, P.S. Prenatal exposure to aflatoxin B1: Developmental, behavioral, and reproductive alterations in male rats. Sci. Nat. 2015, 102, 1–13. [Google Scholar] [CrossRef]
- Fetaih, H.A.; Dessouki, A.A.; Hassanin, A.A.; Tahan, A.S. Toxopathological and cytogenetic effects of aflatoxin B1 (AFB1) on pregnant rats. Pathol. Res. Pract. 2014, 210, 1079–1089. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Chen, C.; Mitchell, N.J.; Gratz, J.; Houpt, E.R.; Gong, Y.; Egner, P.A.; Groopman, J.D.; Riley, R.T.; Showker, J.L.; Svensen, E.; et al. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. Environ. Int. 2018, 115, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Tola, M.; Kebede, B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric. 2016, 2, 1191103. [Google Scholar] [CrossRef]
- Lamplugh, S.; Hendrickse, R.; Apeagyei, F.; Mwanmut, D. Aflatoxins in breast milk, neonatal cord blood, and serum of pregnant women. Br. Med. J. Clin. Res. Ed. 1988, 296, 968. [Google Scholar] [CrossRef]
- Jonsyn, F.E.; Maxwell, S.M.; Hendrickse, R.G. Human fetal exposure to ochratoxin A and aflatoxins. Ann. Trop. Paediatr. 1995, 15, 3–9. [Google Scholar] [CrossRef]
- Maxwell, S.M.; Familusi, J.B.; Sodeinde, O.; Chan, M.C.K.; Hendrickse, R.G. Detection of naphthols and aflatoxins in Nigerian cord blood. Ann. Trop. Paediatr. 1994, 14, 3–5. [Google Scholar] [CrossRef]
- Groopman, J.D.; Egner, P.A.; Schulze, K.J.; Wu, L.S.-F.; Merrill, R.; Mehra, S.; Shamim, A.A.; Ali, H.; Shaikh, S.; Gernand, A.; et al. Aflatoxin exposure during the first 1000 days of life in rural South Asia assessed by aflatoxin B1-lysine albumin biomarkers. Food Chem. Toxicol. 2014, 74, 184–189. [Google Scholar] [CrossRef]
- Denning, D.; Allen, R.; Wilkinson, A.P.; Morgan, M.R. Transplacental transfer of aflatoxin in humans. Carcinogenesis 1990, 11, 1033–1035. [Google Scholar] [CrossRef]
- Abulu, E.O.; Uriah, N.; Aigbefo, H.S.; Oboh, P.A.; Agbonlahor, D.E. Preliminary investigation on aflatoxin in cord blood of jaundiced neonates. West Afr. J. Med. 1998, 17, 184–187. [Google Scholar]
- Abdulrazzaq, Y.M.; Osman, N.; Yousif, Z.M.; Trad, O. Morbidity in neonates of mothers who have ingested aflatoxins. Ann. Trop. Paediatr. 2004, 24, 145–151. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Cardwell, K.; Hounsa, A.; Egal, S.; Turner, P.C.; Hall, A.J.; Wild, C.P. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: Cross sectional study. BMJ 2002, 325, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning Exposure to Aflatoxin Results in Impaired Child Growth: A Longitudinal Study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P. Immunotoxicity of Mycotoxins. J. Dairy Sci. 1993, 76, 892–897. [Google Scholar] [CrossRef]
- Mykkänen, H.; Zhu, H.; Salminen, E.; Juvonen, R.O.; Ling, W.; Ma, J.; Polychronaki, N.; Kemiläinen, H.; Mykkänen, O.; Salminen, S.; et al. Fecal and urinary excretion of aflatoxin B1 metabolites (AFQ1, AFM1 and AFB-N7-guanine) in young Chinese males. Int. J. Cancer 2005, 115, 879–884. [Google Scholar] [CrossRef]
- Jager, A.V.; Tonin, F.G.; Baptista, G.Z.; Souto, P.C.; Oliveira, C.A. Assessment of aflatoxin exposure using serum and urinary biomarkers in São Paulo, Brazil: A pilot study. Int. J. Hyg. Environ. Health 2016, 219, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Belío, R.; Ramos, J.J.; Sanz, M.C.; Sáez, T. Aflatoxins and their Metabolites in the Tissues, Faeces and Urine from Lambs Feeding on an Aflatoxin-Contaminated Diet. J. Sci. Food Agric. 1997, 74, 161–168. [Google Scholar] [CrossRef]
- Hajmohammadi, M.; Valizadeh, R.; Naserian, A.; Nourozi, M.E.; Rocha, R.S.; Oliveira, C.A. Composition and occurrence of aflatoxin M1 in cow’s milk samples from Razavi Khorasan Province, Iran. Int. J. Dairy Technol. 2020, 73, 40–45. [Google Scholar]
- Ahmadi, E. Potential public health risk due to consumption of contaminated bovine milk with aflatoxin M1 and Coxiella burnetii in the West of Iran. Int. J. Dairy Technol. 2020, 73, 479–485. [Google Scholar] [CrossRef]
- Diaz, G.J.; Sánchez, M.P. Determination of aflatoxin M1 in breast milk as a biomarker of maternal and infant exposure in Co-lombia. Food Addit. Contam. Part A 2015, 32, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Boysen, G.; Pachkowski, B.F.; Nakamura, J.; Swenberg, J.A. The formation and biological significance of N7-guanine adducts. Mutat. Res. Toxicol. Environ. Mutagen. 2009, 678, 76–94. [Google Scholar] [CrossRef]
- Voss, K.A.; Riley, R.T. Fumonisin Toxicity and Mechanism of Action: Overview and Current Perspectives. Food Saf. 2013, 1, 49–69. [Google Scholar] [CrossRef]
- Chen, C.; Riley, R.T.; Wu, F. Dietary Fumonisin and Growth Impairment in Children and Animals: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1448–1464. [Google Scholar] [CrossRef]
- Marasas, W.F.; Kellerman, T.S.; Gelderblom, W.C.; Coetzer, J.A.; Thiel, P.G.; Van Der Lugt, J.J. Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort J. Veter. Res. 1988, 55. [Google Scholar]
- Harrison, L.R.; Colvin, B.M.; Greene, J.T.; Newman, L.E.; Cole, J.R., Jr. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J. Vet. Diagn. Investig. 1990, 2, 217–221. [Google Scholar] [CrossRef]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Mol. Mech. Mutagen. 2015, 766, 32–41. [Google Scholar] [CrossRef]
- Speijers, G.; Speijers, M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Grenier, B.; Oswald, I. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Bensassi, F.; Gallerne, C.; Sharaf el Dein, O.; Hajlaoui, M.R.; Lemaire, C.; Bacha, H. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014, 84, 1–6. [Google Scholar] [CrossRef]
- Chhonker, S.; Rawat, D.; Naik, R.; Koiri, R. An overview of mycotoxins in human health with emphasis on development and progression of liver cancer. Clin. Oncol. 2018, 3, 1408. [Google Scholar]
- Steyn, P.S. Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 1995, 82, 843–851. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, I.A.; El-Maraghy, S.S.M.; Mostafa, M.E. Natural occurrence of mycotoxins in different spices in Egypt. Folia Microbiol. 1995, 40, 297–300. [Google Scholar] [CrossRef]
- Ueno, Y.; Hsieh, D.P.H. The Toxicology of Mycotoxins. CRC Crit. Rev. Toxicol. 1985, 14, 99–132. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Roshandel, G.; Roudbarmohammadi, S.; Roudbary, M.; Sohanaki, H.; Ghiasian, S.A.; Taherkhani, A.; Semnani, S.; Aghasi, M. Fumonisin B1 Contamination of Cereals and Risk of Esophageal Cancer in a High Risk Area in Northeastern Iran. Asian Pac. J. Cancer Prev. 2012, 13, 2625–2628. [Google Scholar] [CrossRef] [PubMed]
- Belhassen, H.; Jiménez-Díaz, I.; Arrebola, J.; Ghali, R.; Ghorbel, H.; Olea, N.; Hedili, A. Zearalenone and its metabolites in urine and breast cancer risk: A case-control study in Tunisia. Chemosphere 2015, 128, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pillay, D.; Chuturgoon, A.A.; Nevines, E.; Manickum, T.; Deppe, W.; Dutton, M.F. The Quantitative Analysis of Zearalenone and Its Derivatives in Plasma of Patients with Breast and Cervical Cancer. Clin. Chem. Lab. Med. 2002, 40, 946–951. [Google Scholar] [CrossRef]
- Marasas, W.; Wehner, F.; Van Rensburg, S.; Van Schalkwyk, D. Mycoflora of corn produced in human esophageal cancer areas in Transkei, southern Africa. Phytopathology 1981, 71, 792–796. [Google Scholar] [CrossRef]
- Ellis, L.F.; Kleinschmidt, W.J. Virus-like Particles of a Fraction of Statolon, a Mould Product. Nature 1967, 215, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Ghabrial, S.A.; Caston, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus years of fungal viruses. Virology 2015, 479–480, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.R.; Lemke, P.A.; Esser, K. Viral influences on aflatoxin formation by Aspergillus flavus. Appl. Microbiol. Biotechnol. 1986, 24, 248–252. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Coutts, R.H.A. Mycoviruses in Aspergilli: A Comprehensive Review. Front. Microbiol. 2017, 8, 1699. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; Fu, Y.; Xie, J.; Cheng, J.; Ghabrial, S.A.; Li, G.; Yi, X.; Jiang, D. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc. Natl. Acad. Sci. USA 2013, 110, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Cho, Y.-J.; Kim, D.; Yang, C.-S.; Lee, S.M.; Dawson Jr, T.L.; Nakamizo, S.; Kabashima, K.; Lee, Y.W.; Jung, W.H. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. Mbio 2020, 11, e01521. [Google Scholar] [CrossRef]
- Clancey, S.A.; Ruchti, F.; LeibundGut-Landmann, S.; Heitman, J.; Ianiri, G. A Novel Mycovirus Evokes Transcriptional Rewiring in the Fungus Malassezia and Stimulates Beta Interferon Production in Macrophages. Mbio 2020, 11, e01534-20. [Google Scholar] [CrossRef]
- Vercammen, E.; Staal, J.; Beyaert, R. Sensing of Viral Infection and Activation of Innate Immunity by Toll-Like Receptor 3. Clin. Microbiol. Rev. 2008, 21, 13–25. [Google Scholar] [CrossRef]
- Vena, J.E.; Bona, J.R.; Byers, T.E.; Middleton, E.; Swanson, M.K.; Graham, S. Allergy-related diseases and cancer: An inverse association. Am. J. Epidemiol. 1985, 122, 66–74. [Google Scholar] [CrossRef]
- Hwang, C.-Y.; Chen, Y.-J.; Lin, M.-W.; Chen, T.-J.; Chu, S.-Y.; Chen, C.-C.; Lee, D.-D.; Chang, Y.-T.; Wang, W.-J.; Liu, H.-N. Cancer risk in patients with allergic rhinitis, asthma and atopic dermatitis: A nationwide cohort study in Taiwan. Int. J. Cancer 2011, 130, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
Allergies [1,2,3,4,5] |
Cutaneous infections [6,7,8], |
Rhinosinusitis [9,10,11], |
Wound and craniocerebral infections [12,13,14,15,16], |
Keratitis [17,18,19,20,21], |
Chronic granulomatous sinusitis [22,23,24,25], |
Neurotoxicity and meningitis [26,27,28], |
Scleritis [29,30,31], |
Endophthalmitis [32,33,34], |
Otomycosis [35,36,37], |
Pericarditis [38,39,40], |
Endocarditis [41,42,43], |
Mediastinitis [44,45,46], |
Osteoarticular disorders [47,48,49,50], |
Osteomyelitis [51,52,53], |
Urinary tract infections [54,55,56], |
Bronchopulmonary [57,58,59] |
Local and generalized infections [5,61] |
Type of Mycotoxin | Example of Producing Species |
---|---|
Aflatoxins (AFB1, AFB2) A. flavus and A. parasiticus | (AFG1, AFG2, AFM1) A. parasiticus |
Ochratoxins A. carbonarius, A. ochraceus, and A. niger | Patulin A. clavatus |
Citrinin A. ochraceus and A. terreus | Aflatrem A. aculeatus |
Secalonic acids A. aculeatus and japonicus | Cyclopiazonic acid A. flavus and A. oryzae |
Terrein A. terreus | Sterigmatocystin A. versicolor, A. nidulans, and A. sydowii |
Gliotoxin A. fumigatus | Fumonisins A. welwitschiae and A. niger |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebbi, C.K. Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related. J. Fungi 2023, 9, 368. https://doi.org/10.3390/jof9030368
Tebbi CK. Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related. Journal of Fungi. 2023; 9(3):368. https://doi.org/10.3390/jof9030368
Chicago/Turabian StyleTebbi, Cameron K. 2023. "Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related" Journal of Fungi 9, no. 3: 368. https://doi.org/10.3390/jof9030368
APA StyleTebbi, C. K. (2023). Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related. Journal of Fungi, 9(3), 368. https://doi.org/10.3390/jof9030368