Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Construction of Strain TMBRP011
2.3. Shake-Flask Cultivations
2.4. Anaerobic Continuous Cultivations
2.5. Aerobic Fed-Batch Yeast Propagation
2.6. Fermentation on Hydrolysate
2.7. Simultaneous Saccharification and Co-Fermentation (SScF)
2.8. Analytical Methods
2.9. Flow Cytometry
3. Results
3.1. Evaluation of Sensor Response to Increasing Inducer Concentrations
3.2. Dynamic Response of the Biosensor for Redox Imbalance to Furfural Pulse
3.3. Effect of Propagation Strategy on the Redox Response and the Fermentation Efficiency of Wheat-Straw Hydrolysate
3.4. Simultaneous Saccharification and Co-Fermentation (SScF) Using the H-Propagation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Lidén, G.; Zacchi, G. Bio-Ethanol—The Fuel of Tomorrow from the Residues of Today. Trends Biotechnol. 2006, 24, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. II: Inhibitors and Mechanisms of Inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Demeke, M.M.; Dumortier, F.; Li, Y.; Broeckx, T.; Foulquié-Moreno, M.R.; Thevelein, J.M. Combining Inhibitor Tolerance and D-Xylose Fermentation in Industrial Saccharomyces Cerevisiae for Efficient Lignocellulose-Based Bioethanol Production. Biotechnol. Biofuels 2013, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Demeke, M.M.; Dietz, H.; Li, Y.; Foulquié-Moreno, M.R.; Mutturi, S.; Deprez, S.; Den Abt, T.; Bonini, B.M.; Liden, G.; Dumortier, F.; et al. Development of a D-Xylose Fermenting and Inhibitor Tolerant Industrial Saccharomyces Cerevisiae Strain with High Performance in Lignocellulose Hydrolysates Using Metabolic and Evolutionary Engineering. Biotechnol. Biofuels 2013, 6, 89. [Google Scholar] [CrossRef]
- Hahn-Hägerdal, B.; Karhumaa, K.; Fonseca, C.; Spencer-Martins, I.; Gorwa-Grauslund, M.F. Towards Industrial Pentose-Fermenting Yeast Strains. Appl. Microbiol. Biotechnol. 2007, 74, 937–953. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Pejó, E.; Olsson, L. Influence of the Propagation Strategy for Obtaining Robust Saccharomyces Cerevisiae Cells That Efficiently Co-Ferment Xylose and Glucose in Lignocellulosic Hydrolysates. Microb. Biotechnol. 2015, 8, 999–1005. [Google Scholar] [CrossRef]
- Almeida, J.R.M.; Wiman, M.; Heer, D.; Brink, D.P.; Sauer, U.; Hahn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Physiological and Molecular Characterization of Yeast Cultures Pre-Adapted for Fermentation of Lignocellulosic Hydrolysate. Fermentation 2023, 9, 72. [Google Scholar] [CrossRef]
- Alkasrawi, M.; Rudolf, A.; Lidén, G.; Zacchi, G. Influence of Strain and Cultivation Procedure on the Performance of Simultaneous Saccharification and Fermentation of Steam Pretreated Spruce. Enzyme Microb. Technol. 2006, 38, 279–286. [Google Scholar] [CrossRef]
- Nielsen, F.; Tomás-Pejó, E.; Olsson, L.; Wallberg, O. Short-Term Adaptation during Propagation Improves the Performance of Xylose-Fermenting Saccharomyces Cerevisiae in Simultaneous Saccharification and Co-Fermentation. Biotechnol. Biofuels 2015, 8, 219. [Google Scholar] [CrossRef]
- Dobrescu, A.C.; Veras, H.C.T.; Varrone, C.; Knudsen, J.D. Novel Propagation Strategy of Saccharomyces Cerevisiae for Enhanced Xylose Metabolism during Fermentation on Softwood Hydrolysate. Fermentation 2021, 7, 288. [Google Scholar] [CrossRef]
- Almeida, J.R.M.; Röder, A.; Modig, T.; Laadan, B.; Lidén, G.; Gorwa-Grauslund, M.F. NADH- vs NADPH-Coupled Reduction of 5-Hydroxymethyl Furfural (HMF) and Its Implications on Product Distribution in Saccharomyces Cerevisiae. Appl. Microbiol. Biotechnol. 2008, 78, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Ask, M.; Bettiga, M.; Mapelli, V.; Olsson, L. The Influence of HMF and Furfural on Redox-Balance and Energy-State of Xylose-Utilizing Saccharomyces Cerevisiae. Biotechnol. Biofuels 2013, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Dacquay, L.C.; McMillen, D.R. Improving the Design of an Oxidative Stress Sensing Biosensor in Yeast. FEMS Yeast Res. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Sonnenschein, N.; Pihl, T.P.B.; Pedersen, K.R.; Jensen, M.K.; Keasling, J.D. Engineering an NADPH/NADP+ Redox Biosensor in Yeast. ACS Synth. Biol. 2016, 5, 1546–1556. [Google Scholar] [CrossRef]
- Besmer, M.D.; Weissbrodt, D.G.; Kratochvil, B.E.; Sigrist, J.A.; Weyland, M.S.; Hammes, F. The Feasibility of Automated Online Flow Cytometry for In-Situ Monitoring of Microbial Dynamics in Aquatic Ecosystems. Front. Microbiol. 2014, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Birgitte, R.; Hvid, A.T.; Ole, S. Microorganism Expressing Xylose Isomerase. Patent WO 2010/070549, 10 December 2009. [Google Scholar]
- Ole, S.; Birgitte, R.; Hvid, A.T. Microorganism Expressing Aldose-1-Epimerase. Patent WO 2010/001363, 3 July 2009. [Google Scholar]
- Verduyn, C.; Postma, E.; Scheffers, W.A.; Van Dijken, J.P. Effect of Benzoic Acid on Metabolic Fluxes in Yeasts: A Continuous-culture Study on the Regulation of Respiration and Alcoholic Fermentation. Yeast 1992, 8, 501–517. [Google Scholar] [CrossRef]
- Sluiter, A.; Hyman, D.; Payne, C.; Wolfe, J. Determination of Insoluble Solids in Pretreated Biomass Material; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; National Renewable Energy Laboratory: Golden, CO, USA, 2006. [Google Scholar]
- Gietz, R.D.; Woods, R.A. Transformation of Yeast by Lithium Acetate/Single-Stranded Carrier DNA/Polyethylene Glycol Method. Methods Enzymol. 2002, 350, 87–96. [Google Scholar]
- Jessop-Fabre, M.M.; Jakočiūnas, T.; Stovicek, V.; Dai, Z.; Jensen, M.K.; Keasling, J.D.; Borodina, I. EasyClone-MarkerFree: A Vector Toolkit for Marker-Less Integration of Genes into Saccharomyces Cerevisiae via CRISPR-Cas9. Biotechnol. J. 2016, 11, 1110–1117. [Google Scholar] [CrossRef]
- Verduyn, C.; Stouthamer, A.H.; Scheffers, W.A.; van Dijken, J.P. A Theoretical Evaluation of Growth Yields of Yeasts. Antonie Van Leeuwenhoek 1991, 59, 49–63. [Google Scholar] [CrossRef]
- Torello Pianale, L.; Rugbjerg, P.; Olsson, L. Real-Time Monitoring of the Yeast Intracellular State During Bioprocesses With a Toolbox of Biosensors. Front. Microbiol. 2022, 12, 802169. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Niklasson, C.; Lidén, G. On-Line Control of Fed-Batch Fermentation of Dilute-Acid Hydrolyzates. Biotechnol. Bioeng. 2000, 69, 330–338. [Google Scholar] [CrossRef]
- Luo, X.; Song, R.; Moreno, D.F.; Ryu, H.Y.; Hochstrasser, M.; Acar, M. Epigenetic Mechanisms Contribute to Evolutionary Adaptation of Gene Network Activity under Environmental Selection. Cell Rep. 2020, 33, 108306. [Google Scholar] [CrossRef] [PubMed]
- Bouchedja, D.N.; Danthine, S.; Kar, T.; Fickers, P.; Boudjellal, A.; Delvigne, F. Online Flow Cytometry, an Interesting Investigation Process for Monitoring Lipid Accumulation, Dimorphism, and Cells’ Growth in the Oleaginous Yeast Yarrowia Lipolytica JMY 775. Bioresour. Bioprocess. 2017, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Perruca-Foncillas, R.; Davidsson, J.; Carlquist, M.; Gorwa-Grauslund, M.F. Assessment of Fluorescent Protein Candidates for Multi-Color Flow Cytometry Analysis of Saccharomyces Cerevisiae. Biotechnol. Rep. 2022, 34, e00735. [Google Scholar] [CrossRef] [PubMed]
- Xiros, C.; Janssen, M.; Byström, R.; Børresen, B.T.; Cannella, D.; Jørgensen, H.; Koppram, R.; Larsson, C.; Olsson, L.; Tillman, A.-M.; et al. Toward a Sustainable Biorefi Nery Using High-Gravity Technology. Biofuels Bioprod. Biorefining 2017, 11, 15–27. [Google Scholar] [CrossRef]
- Wang, R.; Lorantfy, B.; Fusco, S.; Olsson, L.; Franzén, C.J. Analysis of Methods for Quantifying Yeast Cell Concentration in Complex Lignocellulosic Fermentation Processes. Sci. Rep. 2021, 11, 11293. [Google Scholar] [CrossRef]
- Moreno, A.D.; González-Fernández, C.; Tomás-Pejó, E. Insights into Cell Robustness against Lignocellulosic Inhibitors and Insoluble Solids in Bioethanol Production Processes. Sci. Rep. 2022, 12, 557. [Google Scholar] [CrossRef]
Compound | Concentration (g/L) |
---|---|
Glucose | 3.05 |
Xylose | 25.69 |
Galactose | 0.88 |
Arabinose | 4.70 |
Mannose | - |
Furfural | 6.03 |
HMF | 0.58 |
Acetic acid | 4.34 |
Propagation Method | Volumetric Ethanol Productivity (g/L/h) | Ethanol Yield (%max) | ||||||
---|---|---|---|---|---|---|---|---|
8 h | 24 h | 48 h | 72 h | 96 h | 48 h | 72 h | 96 h | |
GX | 1.18 ± 0.07 | 1.89 ± 0.17 | 2.15 ± 0.16 | 2.38 ± 0.13 | 2.54 ± 0.25 | 73.7 ± 0.6 | 81.4 ± 2.1 | 86.7 ± 1.4 |
H | 1.57 ± 0.01 | 2.03 ± 0.10 | 2.35 ± 0.11 | 2.54 ± 0.12 | 2.56 ± 0.14 | 84.8 ± 4.5 | 91.3 ± 5.0 | 92.3 ± 5.6 |
GE | 0.55 ± 0.07 | 1.53 ± 0.05 | 1.80 ± 0.07 | 2.23 ± 0.04 | 2.55 ± 0.07 | 60.5 ± 3.2 | 74.9 ± 2.7 | 85.7 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perruca Foncillas, R.; Sanchis Sebastiá, M.; Wallberg, O.; Carlquist, M.; Gorwa-Grauslund, M.F. Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation. J. Fungi 2023, 9, 630. https://doi.org/10.3390/jof9060630
Perruca Foncillas R, Sanchis Sebastiá M, Wallberg O, Carlquist M, Gorwa-Grauslund MF. Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation. Journal of Fungi. 2023; 9(6):630. https://doi.org/10.3390/jof9060630
Chicago/Turabian StylePerruca Foncillas, Raquel, Miguel Sanchis Sebastiá, Ola Wallberg, Magnus Carlquist, and Marie F. Gorwa-Grauslund. 2023. "Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation" Journal of Fungi 9, no. 6: 630. https://doi.org/10.3390/jof9060630
APA StylePerruca Foncillas, R., Sanchis Sebastiá, M., Wallberg, O., Carlquist, M., & Gorwa-Grauslund, M. F. (2023). Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation. Journal of Fungi, 9(6), 630. https://doi.org/10.3390/jof9060630