New Species of Didymellaceae within Aquatic Plants from Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Aquatic Plant Samples
2.2. Isolation of Endophytic Fungi
2.3. Morphological Characterization
2.4. DNA Extraction, Amplification and Sequence Analysis
2.5. Sequence Alignment and Phylogenetic Analysis
3. Results
3.1. Phylogenetic Analysis
3.2. Taxonomy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Ceng, C. The influence of aquatic plants on the lake ecosystem. Yangtze River 2008, 6, 88–91. [Google Scholar] [CrossRef]
- Srivastava, J.; Gupta, A.; Chandra, H. Managing water quality with aquatic macrophytes. Rev. Environ. Sci. Bio/Technol. 2008, 7, 255–266. [Google Scholar] [CrossRef]
- Lesiv, M.S.; Polishchuk, A.I.; Antonyak, H. Aquatic macrophytes: Ecological features and functions. Stud. Biol. 2020, 14, 79–94. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Bennicelli, R.; Stepniewska, Z.; Banach, A.M.; Szajnocha, K.; Ostrowski, J. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 2004, 55, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour. Technol. 2010, 101, 7239–7244. [Google Scholar] [CrossRef]
- Tao, G.; Liu, Z.Y.; Hyde, K.; Liu, X.; Yu, Z.N. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers. 2008, 33, 101–122. [Google Scholar]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.A.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2004, 100, 15649–15654. [Google Scholar] [CrossRef]
- Le Van, A.; Quaiser, A.; Duhamel, M.; Michon-Coudouel, S.; Dufresne, A.; Vandenkoornhuyse, P. Ecophylogeny of the endospheric root fungal microbiome of co-occurring Agrostis stolonifera. PeerJ 2017, 5, e3454. [Google Scholar] [CrossRef] [Green Version]
- Herre, E.A.; Mejía, L.C.; Kyllo, D.A.; Rojas, E.; Maynard, Z.; Butler, A.; Bael, S.A.V. Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 2007, 88, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.K.; Dai, C.C.; Liu, X.Z. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Micro-Biol. Res. 2010, 4, 1346–1351. [Google Scholar]
- Gond, S.K.; Verma, V.C.; Mishra, A.; Kumar, A.; Kharwar, R.N. Role of fungal endophytes in plant protection. In Management of Fungal Plant Pathogens; Arya, A., Perrello, A.E., Eds.; CAB International: Wallingford, UK, 2010; Volume 11, pp. 183–197. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, B.; Jørgensen, H.J. Fungal endophytes in plants and their relationship to plant disease. Curr. Opin. Microbiol. 2022, 69, 102177. [Google Scholar] [CrossRef] [PubMed]
- Ijarwal, T.; Sharma, B.; Khan, F.; Ibeyaima, A.; Dwivedi, A.; Saini, N.; Sarethy, I. Endophytes from the aquatic plant nelumbo nucifera: Diversity profile and activity characterization. Int. J. Pharm. Pharm. Sci. 2016, 8, 266–270. [Google Scholar]
- Zhao, B.Y.; Chen, J.J.; Zou, Y.J.; Dai, Z.C.; Xing, P.; Wu, Q. Co-occurrence pattern of bacteria and fungi on the leaves of invasive aquatic plant Alternanthera philoxeroides. FEMS Microbiol. Ecol. 2023, 99. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, C.A.; Liu, C.J.; Xu, X.F. Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro. J. Microbiol. 2010, 48, 1–6. [Google Scholar] [CrossRef]
- Rodrigues, K. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 1994, 86, 376–385. [Google Scholar] [CrossRef]
- Faeth, S.H.; Hammon, K.E. Fungal endophytes in oak trees: Experimental analyses of interactions with leafminers. Ecology 1997, 78, 820–827. [Google Scholar] [CrossRef]
- Arnold, A.E.; Maynard, Z.; Gilbert, G.S. Fungal endophytes in dicotyledonous neotropical trees: Patterns of abundance and diversity. Mycol. Res. 2001, 105, 1502–1507. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.E.; Lutzoni, F. Diversity and host range of foliar endophytes: Are tropical leaves biodiversity hotspots? Ecology 2007, 88, 541–549. [Google Scholar] [CrossRef]
- Massimo, N.; Devan, M.M.N.; Arendt, K.R.; Wilch, M.H.; Riddle, J.M.; Furr, S.H.; Steen, C.; U’Ren, J.; Sandberg, D.C.; Arnold, A.E. Fungal endophytes in aboveground tissues of desert plants: Infrequent in culture, but highly diverse and distinctive symbionts. Microb. Ecol. 2015, 70, 61–76. [Google Scholar] [CrossRef]
- Gruyter, J.; Aveskamp, M.; Woudenberg, J.H.C.; Verkley, G.; Groenewald, J.Z.; Crous, P. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycol. Res. 2009, 113, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hou, L.W.; Duan, W.J.; Crous, P.W.; Cai, L. Didymellaceae revisited. Stud. Mycol. 2017, 87, 105–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jiang, J.R.; Zhang, G.Z.; Cai, L.; Crous, P. Resolving the Phoma enigma. Stud. Mycol. 2015, 82, 137–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Zhang, K.; Zhang, G.; Cai, L. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa 2015, 197, 267–281. [Google Scholar] [CrossRef]
- Aveskamp, M.M.; de Gruyter, J.; Crous, P.W. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers. 2008, 31, 1–18. [Google Scholar] [CrossRef]
- Aveskamp, M.M.; Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.; Crous, P. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010, 65, 1–60. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, G.H.; Xu, X.Y.; Nong, X.H.; Wang, J.; Amin, M.; Qi, S.H. Exploring fungal diversity in deep-sea sediments from Okinawa trough using high-throughput Illumina sequencing. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 2016, 116, 99–105. [Google Scholar] [CrossRef]
- Yarden, O. Fungal association with sessile marine invertebrates. Front. Microbiol. 2014, 5, 228. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tang, G.L.; Xu, X.Y.; Nong, X.H.; Qi, S.H. Insights into deep-sea sediment fungal communities from the east indian ocean using targeted environmental sequencing combined with traditional cultivation. PLoS ONE 2014, 9, e109118. [Google Scholar] [CrossRef] [Green Version]
- Boerema, G.H.; Bollen, G.J. Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 1975, 8, 111–144. [Google Scholar]
- Boerema, G.H. Contributions towards a monograph of Phoma (Coelomycetes)-v. Subdivision of the genus in sections. Mycotaxon 1997, 64, 321–333. [Google Scholar]
- Woudenberg, J.H.C.; Aveskamp, M.M.; Gruyter, J.; Spiers, A.G.; Crous, P. Multiple didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 2009, 22, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gruyter, J.; Woudenberg, J.H.C.; Aveskamp, M.M.; Verkley, G.J.M.; Groenewald, J.Z.; Crous, P.W. Redisposition of Phoma-likeanamorphs in Pleosporales. Stud. Mycol. 2013, 75, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.W.; Hernández-Restrepo, M.; Groenewald, J.; Cai, L.; Crous, P.W. Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). Mycokeys 2020, 65, 49–99. [Google Scholar] [CrossRef] [PubMed]
- Keirnan, E.; Tan, Y.P.; Laurence, M.; Mertin, A.; Liew, E.C.Y.; Summerell, B.; Shivas, R. Cryptic diversity found in Didymellaceae from australian native legumes. Mycokeys 2021, 78, 1–20. [Google Scholar] [CrossRef]
- Wijayawardene, N.; Hyde, K.D.; Dai, D.; Sanchez-Garcia, M.; Tomio Goto, B.; Saxena, R.; Erdoğdu, M.; Selcuk, F.; Rajeshkumar, K.C.; Aptroot, A.; et al. Outline of fungi and fungus-like taxa. Mycosphere 2022, 13, 53–453. [Google Scholar] [CrossRef]
- Yang, X.Q.; Ma, S.Y.; Peng, Z.X.; Wang, Z.Q.; Qiao, M.; Yu, Z.F. Diversity of Plectosphaerella within aquatic plants from Southwest China, with P. endophytica and P. sichuanensis spp. nov. Mycokeys 2021, 80, 57–75. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Wang, J.J.; Peng, Z.B.; Sun, H.; Nie, Z.L.; Meng, Y. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet Plateau and Hengduan Mountains. Biodivers. Sci. 2017, 25, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Qiao, M.; Xu, J.P.; Yu, Z.F. Culture-based and culture-independent assessments of endophytic fungal diversity in aquatic plants in Southwest China. Front. Fungal Biol. 2021, 2, 27. [Google Scholar] [CrossRef]
- Schulz, B.J.; Guske, S.; Dammann, U.; Boyle, C. Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 1998, 25, 213–227. [Google Scholar]
- Rayner, R.W. A Mycological Colour Chart; Commonwealth Mycological Institute, Kew, Surrey & British Mycological Society: London, UK, 1970. [Google Scholar]
- Turner, D.; Kovacs, W.; Kuhls, K.; Lieckfeldt, E.; Peter, B.; Arisan-Atac, I.; Strauss, J.; Samuels, G.J.; Börner, T.; Kubicek, C.P. Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. Mycol. Res. 1997, 101, 449–459. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehner, S.A.; Samuels, G.J. Taxonomy and phylogeny of gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Fungal Biol. 1994, 98, 625–634. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among Ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Sung, G.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenetics Evol. 2007, 44, 1204–1223. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Gerrits Van Den Ende, A.H. Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 1998, 41, 183–189. [Google Scholar] [CrossRef]
- Chung, P.C.; Wu, H.Y.; Wang, Y.W.; Ariyawansa, H.A.; Hu, H.P.; Hung, T.H.; Tzean, S.S.; Chung, C.L. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in taiwan and description of a new species, colletotrichum miaoliense sp. nov. Sci. Rep. 2020, 10, 14664. [Google Scholar] [CrossRef]
- Kindermann, J.; El-Ayouti, Y.; Samuels, G.J.; Kubicek, C.P. Phylogeny of the genustrichodermabased on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet. Biol. 1998, 24, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. Mega6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Dayarathne, M.; Maharachchikumbura, S.; Hyde, K.; Devadatha, B.; Jones, G.; Chomnunti, P.; Khongphinitbunjong, K. Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 2020, 11, 1–188. [Google Scholar] [CrossRef]
- Scarpari, M.; Vitale, S.; Di Giambattista, G.; Luongo, L.; De Gregorio, T.; Schreiber, G.; Petrucci, M.; Belisario, A.; Voglmayr, H. Didymella corylicola sp. nov., A new fungus associated with hazelnut fruit development in Italy. Mycol. Prog. 2020, 19, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Crous, P.W.; Hou, L.W.; Duan, W.J.; Cai, L.; Ma, Z.Y.; Liu, F. Fungi of quarantine concern for China I: Dothideomycetes. Persoonia 2021, 47, 45–105. [Google Scholar] [CrossRef]
- Ahmadpour, S.A.; Mehrabi-Koushki, M.; Farokhinejad, R.; Asgari, B. New species of the family Didymellaceae in iran. Mycol. Prog. 2022, 21, 28. [Google Scholar] [CrossRef]
- Chen, Q.; Bakhshi, M.; Balci, Y.; Broders, K.D.; Cheewangkoon, R.; Chen, S.F.; Fan, X.; Gramaje, D.; Halleen, F.; Horta Jung, M.; et al. Genera of phytopathogenic fungi: Gophy 4. Stud. Mycol. 2022, 101, 417–564. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.M.; Li, G.S.; Hou, L.W.; Zhao, M.Q.; Cai, L. Leptosphaerulina species isolated from golf turfgrass in China, with description of L. Macrospora, sp. nov. Mycologia 2021, 113, 1–12. [Google Scholar] [CrossRef]
- Higgins, D.G. Clustal v: Multiple alignment of DNA and protein sequences. Methods Mol. Biol. 1994, 25, 307–318. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res. 1999, 41, 95–98. [Google Scholar]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. Iq-tree: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada, D. Jmodeltest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Guo, L.D. Micronematobotrys, a new genus and its phylogenetic placement based on rDNA sequence analyses. Mycol. Prog. 2010, 9, 567–574. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1. 4.0. A Graphical Viewer of Phylogenetic Trees. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 13 August 2022).
- Guan, Y.M.; Zhang, S.N.; Ma, Y.Y.; Zhang, Y. Leaf spot caused by Boeremia linicola on Siberian ginseng in China. Plant Dis. 2020, 105, 1567. [Google Scholar] [CrossRef]
- Qian, N.; Cheng, Y.P.; Zhang, L.; Feng, C.L.; Zhang, G.Z.; Lu, X.L.; Zhao, W.S. First report of leaf spot disease caused by Boeremia linicola on Trifolium repens in China. Plant Dis. 2022, 107, 964. [Google Scholar] [CrossRef]
- Hou, L.W.; Groenewald, J.Z.; Pfenning, L.H.; Yarden, O.; Crous, P.W.; Cai, L. The Phoma-like dilemma. Stud. Mycol. 2020, 96, 309–396. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Jiang, S.; Li, D.; Li, T.; Yang, Z.; Yuan, J.; Zhao, Y.; Tan, X.; Wang, D.; et al. First report of Stagonosporopsis caricae causing chayote leaf spot in Guizhou province, China. Plant Dis. 2022. [Google Scholar] [CrossRef]
- Aveskamp, M.; Verkley, G.; Gruyter, J.; Murace, M.; Perelló, A.; Woudenberg, J.H.C.; Groenewald, J.Z.; Crous, P. DNA phylogeny reveals polyphyly of Phoma section peyronellaea and multiple taxonomic novelties. Mycologia 2009, 101, 363–382. [Google Scholar] [CrossRef] [Green Version]
- Boerema, G.H. Contributions towards a monograph of Phoma (Coelomycetes) II. Section Peyronellaea. Persoonia 1993, 15, 197–221. [Google Scholar]
- Phookamsak, R.; Liu, J.J.K.; Chukeatirote, E.; Mckenzie, E.; Hyde, K.D. Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces. Cryptogam. Mycol. 2013, 34, 303–319. [Google Scholar] [CrossRef]
- Graham, J.H.; Luttrell, E.S. Species of Leptosphaerulina on forage plants. Phytopathology 1961, 51, 680–693. [Google Scholar]
- Zhang, L.L.; Li, Y.Z. First report of alfalfa leaf spot caused by Leptosphaerulina australis in China. Plant Dis. 2021, 105, 2254. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, D.S.; Thambugala, K.M.; de Silva, N.I.; Kuo, C.H.; Hyde, K.D. Leaf litter saprobic Didymellaceae (Dothideomycetes) leptosphaerulina longiflori sp. nov. and Didymella sinensis, a new record from Roystonea regia. AJOM 2019, 2, 87–100. [Google Scholar] [CrossRef]
- Valenzuela-Lopez, N.; Cano-Lira, J.F.; Guarro, J.; Sutton, D.A.; Wiederhold, N.; Crous, P.W.; Stchigel, A.M. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud. Mycol. 2018, 90, 1–69. [Google Scholar] [CrossRef]
- An, X.; Sang, W.; Li, H.; Yang, J.; Lei, X. First report of Cumuliphoma indica causing leaf spot on tobacco in China. J. Plant Pathol. 2022, 105, 331–332. [Google Scholar] [CrossRef]
- Boerema, G.H.; de Gruyter, J.; Noordeloos, M.E.; Hamers, M.E.C. Phoma Identification Manual. Differentiation of Specific and Infra-Specific Taxa in Culture; CABI Publishing: Wallingford, UK, 2004; p. 470. [Google Scholar] [CrossRef]
- Agtmaal, M.V.; Straathof, A.; Termorshuizen, A.; Teurlincx, S.; Hundscheid, M.; Ruyters, S.; Busschaert, P.; Lievens, B.; Boer, W.D. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Appl. Soil Ecol. 2017, 121, 152–160. [Google Scholar] [CrossRef]
- Kularathnage, N.; Senanayake, I.; Wanasinghe, D.N.; Doilom, M.; Stephenson, S.L.; Song, J.; Dong, W.; Xu, B. Plant-associated novel didymellaceous taxa in the south China botanical garden (Guangzhou, China). J. Fungi 2023, 9, 182. [Google Scholar] [CrossRef]
- Pan, H.; Chen, M.Y.; Deng, L.; Wang, Z.P.; Li, L.; Zhong, C.H. First report of Didymella glomerata causing black spot disease of kiwifruit in China. Plant Dis. 2018, 102, 2654. [Google Scholar] [CrossRef]
- Blancard, D. Diagnosis of parasitic and nonparasitic diseases. In Tomato Diseases; CRC Press: Boca Raton, FL, USA, 2012; pp. 35–412. [Google Scholar] [CrossRef]
- Chilvers, M.I.; Rogers, J.D.; Dugan, F.; Stewart, J.E.; Chen, W.D.; Peever, T. Didymella pisi sp. nov., The teleomorph of Ascochyta pisi. Mycol. Res. 2009, 113, 391–400. [Google Scholar] [CrossRef]
- Giebel, J.; Dopierała, U. Pathogenesis of potato gangrene caused by Phoma exigua var. foveata: II. Activities of some Hydrolases and Dehydrogenases. J. Phytopathol. 2004, 152, 399–403. [Google Scholar] [CrossRef]
- Koike, S.T.; Subbarao, K.V.; Verkley, G.J.M.; Fogle, D.; O’Neill, T. Phoma basal rot of romaine lettuce in california caused by Phoma exigua: Occurrence, characterization, and control. Plant Dis. 2006, 90, 1268–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gai, Y.P.; Ma, H.J.; Chen, X.L.; Chen, H.H.; Li, H.Y. Boeremia tuber rot of sweet potato caused by B. exigua, a new postharvest storage disease in China. Can. J. Plant Pathol. 2016, 38, 243–249. [Google Scholar] [CrossRef]
- Colmán, A.A.; Lima, I.M.; Costa, H.; Barreto, R.W. Boeremia exigua causing leaf spots on sweet potato in Brazil. Australas. Plant Dis. Notes 2020, 15, 21. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Hyde, K.D.; Wanasinghe, D.N.; Papizadeh, M.; Goonasekara, I.D.; Camporesi, E.; Bhat, D.J.; Mckenzie, E.H.C.; Phillips, A.J.L.; Diederich, P.; et al. Taxonomy and phylogeny of Dematiaceous Coelomycetes. Fungal Divers. 2016, 77, 1–316. [Google Scholar] [CrossRef]
- Abler, S.W. Ecology and Taxonomy of Leptosphaerulina spp. Associated with Turfgrasses in the United States. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2003. [Google Scholar]
- Vaghefi, N.; Pethybridge, S.; Ford, R.; Nicolas, M.; Crous, P.; Taylor, P. Stagonosporopsis spp. associated with ray blight disease of Asteraceae. Australas. Plant Pathol. 2012, 41, 675–686. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, J.Z.; Zhang, L.Y.; Xu, L.Z.; Yan, C.; Gong, Z.P. Identification and characteristics of Stagonosporopsis cucurbitacearum pathogenic factors influencing pumpkin seeding survival in north-east China. J. Phytopathol. 2018, 167, 41–55. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wang, S.; Jiang, X.; Huang, Y.; Mo, M.; Yu, Z. New Species of Didymellaceae within Aquatic Plants from Southwestern China. J. Fungi 2023, 9, 761. https://doi.org/10.3390/jof9070761
Chen T, Wang S, Jiang X, Huang Y, Mo M, Yu Z. New Species of Didymellaceae within Aquatic Plants from Southwestern China. Journal of Fungi. 2023; 9(7):761. https://doi.org/10.3390/jof9070761
Chicago/Turabian StyleChen, Tong, Siyuan Wang, Xinwei Jiang, Ying Huang, Minghe Mo, and Zefen Yu. 2023. "New Species of Didymellaceae within Aquatic Plants from Southwestern China" Journal of Fungi 9, no. 7: 761. https://doi.org/10.3390/jof9070761
APA StyleChen, T., Wang, S., Jiang, X., Huang, Y., Mo, M., & Yu, Z. (2023). New Species of Didymellaceae within Aquatic Plants from Southwestern China. Journal of Fungi, 9(7), 761. https://doi.org/10.3390/jof9070761