Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Materials
4.2. Synthesis of Highly Cross-Linked PAAm Hydrogel
4.3. Alkaline Hydrolysis of PAAm Hydrogel
4.4. Synthesis of Pseudo-IPNs from Hydrolyzed and Neutral PAAm Gels
4.5. Synthesis of a Pseudo-IPN from PAMPS Gel
4.6. Tensile Experiments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omidian, H.; Park, K. Introduction to hydrogels. In Biomedical Applications of Hydrogels Handbook; Springer: New York, NY, USA, 2010; pp. 1–16. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Wu, S.; Sun, Y.; Yang, H.; Lin, B. Physically and chemically dual-crosslinked hydrogels with superior mechanical properties and self-healing behavior. New J. Chem. 2020, 44, 9903–9911. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical applications of hydrogels in drug delivery system: An update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ummartyotin, S.; Narain, R. Advances and challenges on hydrogels for wound dressing. Curr. Opin. Biomed. Eng. 2023, 26, 100443. [Google Scholar] [CrossRef]
- Lee, Y.; Song, W.J.; Sun, J.Y. Hydrogel soft robotics. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Li, H.; Shen, J.; Zhang, F.; He, J.; Lin, J.; Wang, B.; Niu, S.; Han, Z.; et al. Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today 2023, 49, 101764. [Google Scholar] [CrossRef]
- Michalek, J.; Hobzova, R.; Pradny, M.; Duskova, M. Hydrogels contact lenses. In Biomedical Applications of Hydrogels Handbook; Springer: New York, NY, USA, 2010; pp. 303–315. [Google Scholar] [CrossRef]
- Kim, T.Y.; Lee, G.H.; Mun, J.; Cheong, S.; Choi, I.; Kim, H.; Hahn, S.K. Smart Contact Lens Systems for Ocular Drug Delivery and Therapy. Adv. Drug Deliv. Rev. 2023, 196, 114817. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Cheng, Y.; Deng, Y.; Wen, F.; Lai, Y.; Li, H. Conductive Hydrogel for Flexible Bioelectronic Device: Current Progress and Future Perspective. Adv. Funct. Mater. 2023, 2308974. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, F.; Li, Y.; Li, L.; Liu, M.; Wang, S.; Wang, Y.; Li, T.; Liu, L.; Feng, S.; et al. Biological Tissue-Inspired Ultrasoft, Ultrathin, and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics. Nano-Micro Lett. 2023, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Wu, Z.L.; Kurokawa, T.; Gong, J.P. Novel Developed Systems and Techniques Based on Double-Network Principle. Bull. Chem. Soc. Jpn. 2011, 84, 1295–1311. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of Double Network Hydrogels. J. Mater. Chem. B 2015, 3, 3654–3676. [Google Scholar] [CrossRef]
- Rodell, C.B.; Dusaj, N.N.; Highley, C.B.; Burdick, J.A. Injectable and Cytocompatible Tough Double-Network Hydrogels through Tand em Supramolecular and Covalent Crosslinking. Adv. Mater. 2016, 28, 8419–8424. [Google Scholar] [CrossRef]
- Xiang, S.; Qian, W.; Li, T.; Wang, Y.; Chen, M.; Ma, P.; Dong, W. Hierarchical Structural Double Network Hydrogel with High Strength, Toughness, and Good Recoverability. New J. Chem. 2017, 41, 14397–14402. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, C.Y.; Wang, Z.J.; Zhao, Y.; Chen, L.; Wu, Z.L.; Zheng, Q. Hydrogen Bond-Reinforced Double-Network Hydrogels with Ultrahigh Elastic Modulus and Shape Memory Property. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1281–1286. [Google Scholar] [CrossRef]
- Nakajima, T.; Ozaki, Y.; Namba, R.; Ota, K.; Maida, Y.; Matsuda, T.; Gong, J.P. Tough Double-Network Gels and Elastomers from the Nonprestretched First Network. ACS Macro Lett. 2019, 8, 1407–1412. [Google Scholar] [CrossRef]
- Guo, Z.; Xia, J.; Mi, S.; Sun, W. Mussel-Inspired Naturally Derived Double-Network Hydrogels and Their Application in 3D Printing: From Soft, Injectable Bioadhesives to Mechanically Strong Hydrogels. ACS Biomater. Sci. Eng. 2020, 6, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhao, L.; Wang, J.; Wang, S.; Liu, Y.; Liu, X. High-Strength and High-Toughness Sodium Alginate/Polyacrylamide Double Physically Crosslinked Network Hydrogel with Superior Self-healing and Self-recovery Properties Prepared by a One-Pot Method. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124402. [Google Scholar] [CrossRef]
- Xu, X.; Jerca, V.V.; Hoogenboom, R. Bioinspired Double Network Hydrogels: From Covalent Double Network Hydrogels via Hybrid Double Network Hydrogels to Physical Double Network Hydrogels. Mater. Horiz. 2021, 8, 1173–1188. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, F.; Qin, X.; Feng, S. Triple networks hydrogel with high strength made by chemical and physical cross-linking. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124428. [Google Scholar] [CrossRef]
- Yin, Y.; Gu, Q.; Liu, X.; Liu, F.; McClements, D.J. Double-Network Hydrogels: Design, Fabrication, and Application in Foods and Biom edicines. Adv. Colloid Interface Sci. 2023, 320, 102999. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, Q.; Pang, Q.; Hu, S.; Wan, Z.; Peng, X.; Geng, L. Constructing Triple-Network Cellulose Nanofiber Hydrogels with Excellent Strength, Toughness and Conductivity for Real-Time Monitoring of Human Movements. Carbohydr. Polym. 2023, 321, 121282. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liao, Q.; Zhang, H. Polysaccharide-Based Double-Network Hydrogels: Polysaccharide Effect, Strengthening Mechanisms, and Applications. Biomacromolecules 2023. [Google Scholar] [CrossRef]
- Shams Es-haghi, S.; Leonov, A.I.; Weiss, R.A. Deconstructing the Double-Network Hydrogels: The Importance of Grafted Chains for Achieving Toughness. Macromolecules 2014, 47, 4769–4777. [Google Scholar] [CrossRef]
- Argun, A.; Can, V.; Altun, U.; Okay, O. Nonionic Double and Triple Network Hydrogels of High Mechanical Strength. Macromolecules 2014, 47, 6430–6440. [Google Scholar] [CrossRef]
- Shams Es-Haghi, S.; Weiss, R.A. Fabrication of Tough Hydrogels from Chemically Cross-Linked Multiple Neutral Networks. Macromolecules 2016, 49, 8980–8987. [Google Scholar] [CrossRef]
- Cotner, S.N.; Shams Es-haghi, S. Unimpaired Highly Extensible Tough Chemically Crosslinked Hydrogel after Experiencing Freeze/Thaw and Boiling Processes. Polym. Eng. Sci. 2023, 63, 402–412. [Google Scholar]
- Nakajima, T.; Sato, H.; Zhao, Y.; Kawahara, S.; Kurokawa, T.; Sugahara, K.; Gong, J.P. A Universal Molecular Stent Method to Toughen any Hydrogels Based on Double Network Concept. Adv. Funct. Mater. 2012, 22, 4426–4432. [Google Scholar] [CrossRef]
- Shams Es-Haghi, S.; Weiss, R.A. Do Physically Trapped Polymer Chains Contribute to the Mechanical Response of a Host Double-Network Hydrogel under Finite Tensile Deformation? Macromolecules 2017, 50, 8267–8273. [Google Scholar] [CrossRef]
- Tsukeshiba, H.; Huang, M.; Na, Y.H.; Kurokawa, T.; Kuwabara, R.; Tanaka, Y.; Furukawa, H.; Osada, Y.; Gong, J.P. Effect of Polymer Entanglement on the Toughening of Double Network Hydrogels. J. Phys. Chem. B 2005, 109, 16304–16309. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, L. Hydrolysis-induced large swelling of polyacrylamide hydrogels. Soft Matter 2020, 16, 5740–5749. [Google Scholar] [CrossRef]
- Shams Es-haghi, S. Mechanics of Tough Chemically Cross-linked Hydrogels. Ph.D. Dissertation, University of Akron, Akron, OH, USA, 2015. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=akron1430411138 (accessed on 25 November 2023).
- Shams Es-haghi, S.; Weiss, R.A. Finite Strain Damage-Elastoplasticity in Double-Network Hydrogels. Polymer 2016, 103, 277–287. [Google Scholar] [CrossRef]
- Webber, R.E.; Creton, C.; Brown, H.R.; Gong, J.P. Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels. Macromolecules 2007, 40, 2919–2927. [Google Scholar] [CrossRef]
- Fu, Y.B.; Ogden, R.W. Nonlinear Elasticity: Theory and Applications; Cambridge University Press: Cambridge, UK, 2001; Chapter 13. [Google Scholar]
- Shams Es-haghi, S.; Weiss, R.A. A Theory of Finite Tensile Deformation of Double-Network Hydrogels. J. Polym. Sci. 2022, 60, 2476–2487. [Google Scholar] [CrossRef]
- Shams Es-haghi, S.; Leonov, A.I.; Weiss, R.A. On the Necking Phenomenon in Pseudo- Semi-Interpenetrating Double-Network Hydrogels. Macromolecules 2013, 46, 6203–6208. [Google Scholar] [CrossRef]
- Nakajima, T.; Kurokawa, T.; Ahmed, S.; Wu, W.L.; Gong, J.P. Characterization of Internal Fracture Process of Double Network Hydrogels under Uniaxial Elongation. Soft Matter 2013, 9, 1955–1966. [Google Scholar] [CrossRef]
- Tamarin, Y. Atlas of Stress-Strain Curves, 2nd ed.; ASM International, Materials Park: Novelty, OH, USA, 2002. [Google Scholar]
DN Hydrogel Notation | Formulation of First Network (pphm) a | Formulation of Second Network (pphm) a | First Network/ Second Network | ||||
---|---|---|---|---|---|---|---|
OXGA | MBAA | UV Dose (J/cm2) | OXGA | MBAA | UV Dose (J/cm2) | ||
AAm(1,1,2,9)/ AAm(2,0.1,0.01,97) | 1 | 2 | 9 | 0.1 | 0.01 | 97 | Neutral/Neutral |
AAm(1,1,2,9)/ AAm(2,0.1,0.02,97) | 1 | 2 | 9 | 0.1 | 0.02 | 97 | Neutral/Neutral |
AAm(1,1,2,9)/ AAm(2,0.1,0.05,97) | 1 | 2 | 9 | 0.1 | 0.05 | 97 | Neutral/Neutral |
H-AAm(1,1,2,9)/ AAm(2,0.1,0.01,97) | 1 | 2 | 9 | 0.1 | 0.01 | 97 | Hydrolyzed/Neutral |
H-AAm(1,1,2,9)/ AAm(2,0.1,0.02,97) | 1 | 2 | 9 | 0.1 | 0.02 | 97 | Hydrolyzed/Neutral |
H-AAm(1,1,2,9)/ AAm(2,0.1,0.05,97) | 1 | 2 | 9 | 0.1 | 0.05 | 97 | Hydrolyzed/Neutral |
AMPS(1,1,2,9)/ AAm(2,0.1,0.01,97) | 1 | 2 | 9 | 0.1 | 0.01 | 97 | Polyelectrolyte/Neutral |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shams Es-haghi, S.; Weiss, R.A. Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis. Gels 2024, 10, 29. https://doi.org/10.3390/gels10010029
Shams Es-haghi S, Weiss RA. Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis. Gels. 2024; 10(1):29. https://doi.org/10.3390/gels10010029
Chicago/Turabian StyleShams Es-haghi, S., and R. A. Weiss. 2024. "Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis" Gels 10, no. 1: 29. https://doi.org/10.3390/gels10010029