Textural Restoration of Broiler Breast Fillets with Spaghetti Meat Myopathy, Using Two Alginate Gels Systems
Abstract
:1. Introduction
2. Result and Discussion
3. Conclusions
4. Material and Methods
4.1. Meat Sample Preparation
4.2. Texture Analysis
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mottet, A.; Tempio, G. Global Poultry Production: Current State and Future Outlook and Challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Barbut, S. The Science of Poultry and Meat Processing. 2015, pp. 17–39, ISBN: 978-0-8895-625-6. Available online: www.poultryandmeatprocessing.com (accessed on 15 October 2023).
- Carney, V.L.; Anthony, N.B.; Robinson, F.E.; Reimer, B.L.; Korver, D.R.; Zuidhof, M.J.; Afrouziyeh, M. Evolution of Maternal Feed Restriction Practices over 60 Years of Selection for Broiler Productivity. Poult. Sci. 2022, 101, 101957. [Google Scholar] [CrossRef]
- Tijare, V.V.; Yang, F.L.; Kuttappan, V.A.; Alvarado, C.Z.; Coon, C.N.; Owens, C.M. Meat Quality of Broiler Breast Fillets with White Striping and Woody Breast Muscle Myopathies. Poult. Sci. 2016, 95, 2167–2173. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estévez, M. Wooden-Breast, White Striping, and Spaghetti Meat: Causes, Consequences and Consumer Perception of Emerging Broiler Meat Abnormalities. Compr. Rev. Food Sci. Food Saf. 2019, 18, 565–583. [Google Scholar] [CrossRef]
- Wang, C.; Che, S.; Susta, L.; Barbut, S. Textural and Physical Properties of Breast Fillets with Myopathies (Wooden Breast, White Striping, Spaghetti Meat) in Canadian Fast-Growing Broiler Chickens. Poult. Sci. 2023, 102, 102309. [Google Scholar] [CrossRef]
- Barbut, S. Understanding the woody breast syndrome and other myopathies in modern broiler chickens. In 31st Annual Australian Poultry Science Symposium; The Poultry Research Foundation: Sydney, Australia, 2020. [Google Scholar]
- Tasoniero, G.; Bowker, B.; Stelzleni, A.; Zhuang, H.; Rigdon, M.; Thippareddi, H. Use of Blade Tenderization to Improve Wooden Breast Meat Texture. Poult. Sci. 2019, 98, 4204–4211. [Google Scholar] [CrossRef]
- Baldi, G.; Soglia, F.; Mazzoni, M.; Sirri, F.; Canonico, L.; Babini, E.; Laghi, L.; Cavani, C.; Petracci, M. Implications of White Striping and Spaghetti Meat Abnormalities on Meat Quality and Histological Features in Broilers. Animal 2018, 12, 164–173. [Google Scholar] [CrossRef]
- Caldas-Cueva, J.P.; Mauromoustakos, A.; Sun, X.; Owens, C.M. Detection of Woody Breast Condition in Commercial Broiler Carcasses Using Image Analysis. Poult. Sci. 2021, 100, 100977. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Zheng, J.H.; Zhang, W.L.; Wang, F.J.; Jiao, Z.H.; Amoah, K.; Zhang, L. Breast Muscle Myopathies in Broiler: Mechanism, Status and Their Impact on Meat Quality—A Review. Ann. Anim. Sci. 2022, 22, 551–560. [Google Scholar] [CrossRef]
- Sihvo, H.K.; Lindén, J.; Airas, N.; Immonen, K.; Valaja, J.; Puolanne, E. Wooden Breast Myodegeneration of Pectoralis Major Muscle Over the Growth Period in Broilers. Vet. Pathol. 2017, 54, 119–128. [Google Scholar] [CrossRef]
- Soglia, F.; Petracci, M.; Davoli, R.; Zappaterra, M. A Critical Review of the Mechanisms Involved in the Occurrence of Growth-Related Abnormalities Affecting Broiler Chicken Breast Muscles. Poult. Sci. 2021, 100, 101180. [Google Scholar] [CrossRef]
- Tasoniero, G.; Zhuang, H.; Gamble, G.R.; Bowker, B.C. Effect of Spaghetti Meat Abnormality on Broiler Chicken Breast Meat Composition and Technological Quality. Poult. Sci. 2020, 99, 1724–1733. [Google Scholar] [CrossRef]
- Jarvis, T.; Rowe, C.; Crist, C.; Schilling, W.; Zhang, X. Quality Differences in Traditional and Clean Label Chicken Patties Formulated with Woody Breast Meat. Meat Muscle Biol. 2020, 4, 23. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.; Meyer, A. Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies. Mar. Drugs 2015, 13, 3340–3359. [Google Scholar] [CrossRef]
- Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.C.; Thom, D. Biological Interactions between Polysaccharides and Divalent Cations: The Egg-Box Model. FEBS Lett. 1973, 32, 195–198. [Google Scholar] [CrossRef]
- Wood, F.W. Alginates in Food. Nutr. Bull. 1975, 3, 176–183. [Google Scholar] [CrossRef]
- Boles, J.A. Use of Cold-Set Binders in Meat Systems. In Processed Meats: Improving Safety, Nutrition and Quality; Elsevier: Amsterdam, The Netherlands, 2011; pp. 270–298. ISBN 9781845694661. [Google Scholar]
- Marcos, B.; Gou, P.; Arnau, J.; Guàrdia, M.D.; Comaposada, J. Co-Extruded Alginate as an Alternative to Collagen Casings in the Production of Dry-Fermented Sausages: Impact of Coating Composition. Meat Sci. 2020, 169, 108184. [Google Scholar] [CrossRef]
- Topuz, O.K.; Aygün, T.; Ural, G.N. Caviar-like Hydrogel Beads Containing Different Concentrations of NaCl and Melanin-Free Squid Ink. Food Biosci. 2020, 36, 100652. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, B.D.; Kumar, R.R. Evaluation of Sodium Alignate as a Fat Replacer on Processing and Shelf-Life of Low-Fat Ground Pork Patties. Asian-Australas. J. Anim. Sci. 2007, 20, 588–597. [Google Scholar] [CrossRef]
- Yang, L.; Chen, W.; Zheng, J.; Yue, J.; Wang, C. Extraction, Isolation and Purification of Seaweed Polysaccharide and Its Application in Food Industry. Sci. Technol. Food Ind. 2021, 42, 365–372. [Google Scholar] [CrossRef]
- Lasekan, O. The Significance of Physical Treatments of Tumbling, Massaging and Other Processing Factors in the Making of Reformed Meat Products. In Incorporated; Nova Science Publishers: Hauppauge, NY, USA, 2020; ISBN 1536173088. [Google Scholar]
- Abril, B.; Bou, R.; García-Pérez, J.V.; Benedito, J. Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification. Foods 2023, 12, 1940. [Google Scholar] [CrossRef]
- Kerry, J.; Kerry, J. Processed Meats: Improving Safety, Nutrition and Quality; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Oxford, UK, 2011; ISBN 9781845694661. [Google Scholar]
- Lennon, A.M.; McDonald, K.; Moon, S.S.; Ward, P.; Kenny, T.A. Performance of Cold-Set Binding Agents in Re-Formed Beef Steaks. Meat Sci. 2010, 85, 620–624. [Google Scholar] [CrossRef]
- Siqueira, T.S.; Borges, T.D.; Rocha, R.M.M.; Figueira, P.T.; Luciano, F.B.; Macedo, R.E.F. Effect of Electrical Stunning Frequency and Current Waveform in Poultry Welfare and Meat Quality. Poult. Sci. 2017, 96, 2956–2964. [Google Scholar] [CrossRef]
- Girasole, M.; Marrone, R.; Anastasio, A.; Chianese, A.; Mercogliano, R.; Cortesi, M.L. Effect of Electrical Water Bath Stunning on Physical Reflexes of Broilers: Evaluation of Stunning Efficacy under Field Conditions. Poult. Sci. 2016, 95, 1205–1210. [Google Scholar] [CrossRef]
- Che, S.; Wang, C.; Varga, C.; Barbut, S.; Susta, L. Prevalence of Breast Muscle Myopathies (Spaghetti Meat, Woody Breast, White Striping) and Associated Risk Factors in Broiler Chickens from Ontario Canada. PLoS ONE 2022, 17, e0267019. [Google Scholar] [CrossRef]
- Sadeghi-Mehr, A.; Raudsepp, P.; Brüggemann, D.A.; Lautenschlaeger, R.; Drusch, S. Dynamic Rheology, Microstructure and Texture Properties of Model Porcine Meat Batter as Affected by Different Cold-Set Binding Systems. Food Hydrocoll. 2018, 77, 937–944. [Google Scholar] [CrossRef]
- Draget, K.I.; Ostgaard, K.; Smidsrod, O. Homogeneous Alginate Gels: A Technical Approach. Carbohydr. Polym. 1991, 14, 159–178. [Google Scholar] [CrossRef]
- Wang, C.; Susta, L.; Barbut, S. Restoring Functionalities in Chicken Breast Fillets with Spaghetti Meat Myopathy by Using Dairy Proteins Gels. Gels 2022, 8, 558. [Google Scholar] [CrossRef]
- Barbut, S.; Leishman, E.M. Quality and Processability of Modern Poultry Meat. Animals 2022, 12, 2766. [Google Scholar] [CrossRef]
- Jeon, D.S.; Moon, Y.H.; Park, K.S.; Jung, I.C. Effects of gums on the quality of low-fat chicken patty. J. Korean Soc. Food Sci. Nutr. 2004, 33, 193–200. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, Y.; Chen, X.; Ma, F.; Li, P.; Chen, C. Effect of Sodium Alginate with Three Molecular Weight Forms on the Water Holding Capacity of Chicken Breast Myosin Gel. Food Chem. 2018, 239, 1134–1142. [Google Scholar] [CrossRef]
- Jalal, H.; Salahuddin, M.; Wani, S.; Sofi, H.; Pal, M.; Rather, F. Development of Low Fat Meat Products. Int. J. Food Nutr. Saf. 2013, 4, 98–107. [Google Scholar]
- Zhang, Z.; Ma, R.; Xu, Y.; Chi, L.; Li, Y.; Mu, G.; Zhu, X. Investigation of the Structure and Allergic Potential of Whey Protein by Both Heating Sterilization and Simulation with Molecular Dynamics. Foods 2022, 11, 4050. [Google Scholar] [CrossRef]
- Syed, M.; Chopra, R.; Sachdev, V. Allergic Reactions to Dental Materials-A Systematic Review. J. Clin. Diagn. Res. 2015, 9, ZE04–ZE09. [Google Scholar] [CrossRef]
- Saxton, R.; Mcdougal, O.M. Whey Protein Powder Analysis by Mid-Infrared Spectroscopy. Foods 2021, 10, 1033. [Google Scholar] [CrossRef]
- Lin, K.W.; Mei, M.Y. Influences of Gums, Soy Protein Isolate, and Heating Temperatures on Reduced-Fat Meat Batters in a Model System. J. Food Sci. 2000, 65, 48–52. [Google Scholar] [CrossRef]
- Barbut, S.; Choy, V. Use of Dairy Proteins in Lean Poultry Meat Batters—A Comparative Study. Int. J. Food Sci. Technol. 2007, 42, 453–458. [Google Scholar] [CrossRef]
Sample Type | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment | NB | SM | NB + 1% “A” | SM + 1% “A” | NB + 0.5% “B” | SM + 0.5% “B” | NB + 1% “B” | SM + 1% “B” |
NO SALT ADDED | ||||||||
Penetration Cooked (N) | 6.03 ± 0.30 a | 3.76 ± 0.22 b | 7.58 ± 0.28 c | 4.85 ± 0.31 ab | 8.08 ± 0.38 c | 5.59 ± 0.36 a | 10.03 ± 0.50 d | 8.04 ± 0.36 c |
Cooking loss (%) | 6.72 ± 0.39 a | 10.03 ± 0.57 b | 0.60 ± 0.07 cd | 0.90 ± 0.12 cd | 0.69 ± 0.11 cd | 1.37 ± 0.22 c | 0.11 ± 0.03 d | 0.08 ± 0.02 d |
SALT ADDED | ||||||||
Penetration Cooked (N) | 10.87 ± 0.45 a | 7.72 ± 0.54 b | N/A | N/A | 12.95 ± 0.57 c | 10.02 ± 0.50 a | 13.64 ± 0.45 c | 10.55 ± 0.46 a |
Cooking loss (%) | 1.20 ± 0.18 a | 2.37 ± 0.23 b | N/A | N/A | 0.06 ± 0.01 c | 0.13 ± 0.03 c | 0.10 ± 0.02 c | 0.09 ± 0.02 c |
Sample Type | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment | NB | SM | NB + 1% “A” | SM + 1% “A” | NB + 0.5% “B” | SM + 0.5% “B” | NB + 1% “B” | SM + 1% “B” |
Springiness | 0.74 ± 0.01 b | 0.72 ± 0.01 c | 0.78 ± 0.01 a | 0.76 ± 0.01 ab | 0.76 ± 0.01 ab | 0.75 ± 0.01 abc | 0.78 ± 0.01 ab | 0.78 ± 0.01 a |
Cohesiveness | 0.57 ± 0.01 a | 0.51 ± 0.01 b | 0.45 ± 0.01 c | 0.39 ± 0.01 d | 0.43 ± 0.01 c | 0.38 ± 0.01 de | 0.40 ± 0.01 d | 0.35 ± 0.01 e |
Chewiness | 9.04 ± 0.48 b | 4.77 ± 0.43 d | 7.88 ± 0.43 bc | 4.26 ± 0.38 d | 6.81 ± 0.26 c | 3.99 ± 0.25 d | 10.41 ± 0.41 a | 6.89 ± 0.79 c |
Resilience | 0.18 ± 0.01 a | 0.16 ± 0.01 b | 0.15 ± 0.01 b | 0.12 ± 0.01 cd | 0.15 ± 0.01 bc | 0.12 ± 0.01 d | 0.15 ± 0.01 b | 0.14 ± 0.01 bcd |
Sample Type | ||||||
---|---|---|---|---|---|---|
Treatment | NB + Salt | SM + Ssalt | NB + 0.5% “B” + Salt | SM + 0.5% “B” + Salt | NB + 1.0% “B” + Salt | SM + 1.0% “B” + Salt |
Springiness | 0.83 ± 0.01 a | 0.83 ± 0.01 a | 0.82 ± 0.01 a | 0.84 ± 0.01 a | 0.82 ± 0.01 a | 0.79 ± 0.01 b |
Cohesiveness | 0.53 ± 0.01 a | 0.47 ± 0.01 b | 0.51 ± 0.01 a | 0.47 ± 0.01 b | 0.49 ± 0.01 ab | 0.40 ± 0.01 c |
Chewiness | 13.25 ± 0.43 b | 10.11 ± 0.41 c | 18.41 ± 0.79 a | 12.80 ± 0.56 b | 17.73 ± 0.96 a | 8.92 ± 0.52 c |
Resilience | 0.19 ± 0.01 ab | 0.17 ± 0.01 bc | 0.20 ± 0.01 a | 0.19 ± 0.01 ab | 0.20 ± 0.01 a | 0.15 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Susta, L.; Barbut, S. Textural Restoration of Broiler Breast Fillets with Spaghetti Meat Myopathy, Using Two Alginate Gels Systems. Gels 2024, 10, 7. https://doi.org/10.3390/gels10010007
Wang C, Susta L, Barbut S. Textural Restoration of Broiler Breast Fillets with Spaghetti Meat Myopathy, Using Two Alginate Gels Systems. Gels. 2024; 10(1):7. https://doi.org/10.3390/gels10010007
Chicago/Turabian StyleWang, Chaoyue, Leonardo Susta, and Shai Barbut. 2024. "Textural Restoration of Broiler Breast Fillets with Spaghetti Meat Myopathy, Using Two Alginate Gels Systems" Gels 10, no. 1: 7. https://doi.org/10.3390/gels10010007
APA StyleWang, C., Susta, L., & Barbut, S. (2024). Textural Restoration of Broiler Breast Fillets with Spaghetti Meat Myopathy, Using Two Alginate Gels Systems. Gels, 10(1), 7. https://doi.org/10.3390/gels10010007