Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Hydrophobic Cryogel
2.1.1. Macroscopic Structure of Hydrophobic Cryogels Prepared with Various Solvents
2.1.2. Observation of Porous Structure of the Hydrophobic Cryogels
2.1.3. Porous Properties of Hydrophobic Cryogels
2.1.4. Content of LIX84-I in Hydrophobic Cryogels
2.2. Extraction Properties of Cu(II) by Cryogel Containing LIX84-I
2.2.1. Time Course of Cu(II) Extraction with the Cryogel Containing LIX84-I
2.2.2. Effect of Solvent Type and Trim Concentration Used for the Preparation on the Extraction Equilibria of Cu(II) with the Cryogels Containing LIX84-I
2.2.3. Relationship between LIX84-I Content in the Hydrophobic Cryogel and Maximum Extracted Amount of Cu(II)
2.2.4. Observation of the Hydrophobic Cryogels Containing LIX84-I in the Cu(II) Extraction Processes
2.2.5. Repeated Use of the Hydrophobic Cryogels Containing LIX84-I for the Cu(II) Extraction
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Hydrophobic Cryogel
4.3. Appearance of Hydrophobic Cryogel
4.4. Observation of Hydrophobic Cryogel
4.5. Characterization of Porous Structure
4.6. Containing Amount of the Extractant
4.7. Extraction of Cu(Ⅱ) with the Hydrophobic Cryogel Containing LIX84-I
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirsebom, H.; Rata, G.; Topgaard, D.; Mattiasson, B.; Galaev, I.Y. Mechanism of Cryopolymerization: Diffusion-Controlled Polymerization in a Nonfrozen Microphase. An NMR Study. Macromolecules 2009, 42, 5208–5214. [Google Scholar] [CrossRef]
- Memic, A.; Colombani, T.; Eggermont, L.J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z.J.; Navare, K.J.; Mohammed, H.S.; Bencherif, S.A. Latest Advances in Cryogel Technology for Biomedical Applications. Adv. Ther. 2019, 2, 1800114. [Google Scholar] [CrossRef]
- Plieva, F.M.; Galaev, I.Y.; Noppe, W.; Mattiasson, B. Cryogel Applications in Microbiology. Trends Microbiol. 2008, 16, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mishra, R.; Reinwald, Y.; Bhat, S. Cryogels: Freezing Unveiled by Thawing. Mater. Today 2010, 13, 42–44. [Google Scholar] [CrossRef]
- Takase, H.; Shiomori, K.; Okamoto, Y.; Watanabe, N.; Matsune, H.; Umakoshi, H. Micro Sponge Balls: Preparation and Characterization of Sponge-like Cryogel Particles of Poly(2-hydroxyethyl methacrylate) via the Inverse Leidenfrost Effect. ACS Appl. Polym. Mater. 2022, 4, 7081–7089. [Google Scholar] [CrossRef]
- Takase, H.; Watanabe, N.; Shiomori, K.; Okamoto, Y.; Matsune, H.; Umakoshi, H. Versatility of the Preparation Method for Macroporous Cryogel Particles Utilizing the Inverse Leidenfrost Effect. ACS Omega 2023, 8, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Takase, H.; Watanbwe, N.; Shiomori, K.; Okamoto, Y.; Ciptawati, E.; Matsune, H.; Umakoshi, H. Preparation of Hydrophobic Monolithic Supermacroporous Cryogel Particles for the Separation of Stabilized Oil-in-Water Emulsion. Colloids Interfaces 2023, 7, 9. [Google Scholar] [CrossRef]
- Lozinsky, V.I. A Brief History of Polymeric Cryogels. Adv. Polym. Sci. 2014, 263, 1–48. [Google Scholar]
- Li, L.; Zhang, Y.; Lu, H.; Wang, Y.; Liu, T. Cryopolymerization Enables Anisotropic Polyaniline Hybrid Hydrogels with Superelasticity and Highly Deformation-tolerant Electrochemical Energy Storage. Nat. Commun. 2020, 11, 62. [Google Scholar] [CrossRef]
- Razavi, M.; Qiao, Y.; Thakor, A.S. Three-dimensional Cryogels for Biomodical Applications. J. Biomed. Mater. Res. Part A 2019, 107, 2736–2755. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, A. Cell Separation Using Cryogel-Based Affinity Chromatography. Nat. Protoc. 2010, 5, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Plieva, F.M.; Karlsson, M.; Aguilar, M.-R.; Gomez, D.; Mikhalovsky, S.; Glaev, I.Y. Pore Structure in Supermacroporous Polyacrylamide Based Cryogels. Soft Matter 2005, 1, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sui, W.; Ren, D.; Ding, Y.; Zhu, X.; Chen, Z. Synthesis of Hydrophobic Polymeric Cryogel, Synthesis of Hydrophobic Polymeric Cryogels with Supermacroporous Structure. Macromol. Mater. Eng. 2016, 301, 659–664. [Google Scholar] [CrossRef]
- Lozinsky, V.I. Cryogels on the Basis of Natural and Synthetic Polymers: Preparation, Properties and Application. Usp. Khim. 2002, 71, 579–584. [Google Scholar] [CrossRef]
- Szekalska, M.; Sosnowska, K.; Wroblewska, M.; Basa, A. Does the Freeze-Thaw Technique Affect the Properties of the Alginate/Chitosan Glutamate Gels with Posaconazole as a Model Antifungal Drug? Int. J. Mol. Sci. 2022, 23, 6775. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhang, F.; Wei, Y.; Zhang, H. Freeze-Thaw-Induced Gelation of hyaluronan: Physical Cryostruction Correlated with Intermolecular Associations and Molecular Conformation. Macromolecules 2017, 50, 6647–6658. [Google Scholar] [CrossRef]
- Ivanov, A.E.; Kozynchenko, O.P.; Mikhalovska, L.I.; Tennison, S.R.; Jungvid, H.; Gun’kocd, V.M.; Mikhalovskyce, S.V. Activated Carbons and Carbon-containing Poly(vinyl alcohol) Cryogels: Characterization, Protein Adsorption and Possibility of Myoglobin Clearance. Phys. Chem. Chem. Phys. 2012, 14, 16267–16278. [Google Scholar] [CrossRef]
- Zheng, Y.; Gun’ko, V.M.; Howell, C.A.; Sandeman, S.R.; Philips, G.J.; Kozynchenko, O.P.; Tennison, S.R.; Ivanov, A.E.; Mikhalovsky, S.V. Composites with Macroporous Poly(vinyl alcohol) Cryogels with Attached Activated Carbon Microparticles with Controlled Accessibility of a Surface. ACS Appl. Mater. Interfaces 2012, 4, 5936–5944. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, X.P. Injectable Antibacterial Conductive Nanocomposite Cryogels with Rapid Shape Recovery for Nanocompressible Hemorrhage and Wound Healing. Nat. Commun. 2018, 9, 2784. [Google Scholar] [CrossRef]
- Zainol, M.M.; Amin, N.A.S.; Asmadi, M. Synthesis and Characterization of Carbon Cryogel Microspheres from Lignin-furtural Mixtures for Biodiesel Production. Bioresour. Technol. 2015, 190, 44–50. [Google Scholar] [CrossRef]
- Mohammadi, A.; Mirzaei, A.; Javanshir, S. Sonochemical Synthesis of Inorganic Cryogel Ag2Mo3O10@Ag/AgO: Structural Chacterization, Antibacterial Activity, and Dye Adsorption Properties. RSC Adv. 2022, 12, 16215–16228. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.A.; Jackson, R.J.; Bristow, R.M.D.; White, C.A. Magnetic Cryogels as a Shape-selective and Customizable Platform for Hyperthermia-mediated Drug Delivery. Sci. Rep. 2022, 12, 9654. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, K.; Chang, Q.; Darabi, M.A.; Lin, B.; Zhong, W.; Xing, M. Highly Flexible and Resilient Elastin Hybrid Cryogels with Shape Memory Injectability, Conductivity, and Magnetic Responsive Properties. Adv. Mater 2016, 28, 7758–7767. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, T.; Ivanov, A.E.; Dainiak, B.; Leistner, A.; Linsberger, I.; Jungvid, H.; Mikhalovsky, S.V.; Weber, V. Macroporous Composite Cryogels with Embedded Polystyrene Divinylbenzene Microparticles for the Adsorption of Toxic Metabolites from Blood. J. Chem. 2013, 2013, 348412. [Google Scholar] [CrossRef]
- Tao, S.P.; Wang, C.; Sun, Y. Coating of Nanocoparticles on Cryogel Surface and Subsequent Double-Modification for Enhanced Ion-exchange Capacity of Protein. J. Chromatogr. A 2014, 1359, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Juan, L.T.; Lin, S.H.; Wong, C.W.; Jeng, U.S.; Huang, C.F.; Hsu, S.H. Functionalized Cellulose Nanofibers as Crosslinkers to Produce Chitosan Self-Healing Hydrogel and Shape Memory Cryogel. ACS Appl. Mater. Interfaces 2022, 14, 36353–36365. [Google Scholar] [CrossRef]
- Kim, I.; Lee, S.S.; Bae, S.; Lee, H.; Hwang, N.S. Heparin Functionalized Injectable Cryogel with Rapid Shape-Recovery Property for Neovascularization. Biomacromolecules 2018, 19, 2257–2269. [Google Scholar] [CrossRef] [PubMed]
- Razavi, M.; Hu, S.; Thakor, A.S. A Collagen Based Cryogel Bioscaffold Coated with Nanostructured Polydopamine as a Platform for Mesenchymal Stem Cell Therapy. J. Biomed. Mater. Res. A 2018, 106, 2213–2228. [Google Scholar] [CrossRef]
- Conconi, M.T.; Borgio, L.; Di Liddo, R.; Sartore, L.; Dalzoppo, D.; Amistà, P.; Lora, S.; Parnigotto, P.P.; Grandi, C. Evaluation of Vascular Grafts Based on Polyvinyl Alcohol Cryogels. Mol. Med. Rep. 2014, 10, 1329–1334. [Google Scholar] [CrossRef]
- Sharma, M.; Tavares, A.P.M.; Nunes, J.C.F.; Singh, N.; Mondal, D.; Neves, M.C.; Prasad, K.; Freire, M.G. Hybrid Alginate-protein Cryogel Beads: Efficient and Sustainable Bio-based Materials to Purify Immunoglobulin G Antibodies. Green Chem. 2020, 22, 2225–2233. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Geng, B.; Ru, J.; Cheng, C.; Zhao, Y.; Wang, L. A Reusable Surface-quaternized Nanocellulose-based Hybrid Cryogel Loaded with N-doped TiO2 for Self-integrated Adsorption/photo-degradation of Methyl Orange Dye. RSC Adv. 2017, 7, 17279–17288. [Google Scholar] [CrossRef]
- Yeşilova, E.; Osman, B.; Kara, A.; Özer, E.T. Molecularly Imprinted Particle Embedded Composite Cryogel for Selective Tetracycline Adsorption. Sep. Purif. Technol. 2018, 200, 155–163. [Google Scholar] [CrossRef]
- Shaikh, H.; Andaç, M.; Memon, N.; Bhanger, M.I.; Nizamani, S.M.; Denizli, A. Synthesis and Characterization of Molecularly Imprinted Polymer Embedded Composite Cryogel Discs: Application for the Selective Extraction of Cypermethrins from Aqueous Samples Prior to GC-MS Analysis. RSC Adv. 2015, 5, 26604–26615. [Google Scholar] [CrossRef]
- Akkaya, B. Preparation and Characterization of Lysozyme Loaded Cryogel for Heavy Metal Removal. Int. J. Biol. Macromol. 2023, 253, 1274949. [Google Scholar] [CrossRef]
- Gao, C.P.; Wang, Y.A.; Shi, J.S.; Wang, Y.Y.; Huang, X.L.; Chen, X.L.; Chen, Z.Y.; Xie, Y.F.; Yang, Y.Z. Superamphiphilic Chitosan Cryogels for Continuous Flow Separation of Oil-In-Water Emulsions. ACS Omega 2022, 7, 5937–5945. [Google Scholar] [CrossRef]
- Agustin, M.; Lehtonen, M.; Kemell, M.; Lahtinen, P.; Oliaei, E.; Mikkonen, K.S. Lignin Nanoparticle-decorated Nanocellulose Cryogels as Adsorbents for Pharmaceutical Pollutants. J. Environ. Manag. 2023, 330, 117210. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Liang, Y.; He, J.; Guo, B. Multifunctional Tissue-adhesive Cryogel Wound Dressing for Rapid Nonpressing Surface Hemorrhage and Wound Repair. ACS Appl. Mater. Interfaces 2020, 12, 35856–35872. [Google Scholar] [CrossRef]
- Lee, S.S.; Kleger, N.; Kuhn, A.G.; Greutert, H.; Du, X.; Smit, T.; Studart, R.A.; Ferguson, J.S. A 3D-Printed Assemblable Bespoke Scaffold as a Versatile Microcryogel Carrier for Site-Specific Regenerative Medicine. Adv. Mater. 2023, 35, 2302008. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, X.; Zhang, Z.; Liang, Y.; Yin, Z.; Chen, B.; Bai, L.; Han, Y.; Guo, B. Degradable Gelatin-Based IPN Cryogel Hemostat for Rapidly Stopping Deep Noncompressible Hemorrhage and Simultaneously Improving Wound Healing. Chem. Mater. 2020, 32, 6595–6610. [Google Scholar] [CrossRef]
- Wardani, N.I.; Kangkamono, T.; Wannapob, R.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Electrochemical Sensor Based on Molecularly Imprinted Polymer Cryogel and Multiwalled Carbon Nanotubes for Direct Insulin Detection. Talanta 2023, 254, 124137. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S. The Use of p(4-VP) Cryogel as Template for in situ Preparation of p(An), p(Py), and p(Th) Conductive Polymer and their Potential Sensor Applications. Synth. Met. 2017, 227, 11–20. [Google Scholar] [CrossRef]
- Phatthanawiwat, K.; Boonkanon, C.; Wongniramaikul, W.; Choodum, A. Catechin and Curcumin Nanoparticle-immobilized Starch Cryogels as Green Colorimetric Sensors for On-site Detection of Iron. Sustain. Chem. Pharm. 2022, 29, 100782. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Cui, J.; Li, S.; Yuan, M.; Wang, T.; Hu, Q.; Hou, X. Fabrication and Characterization of Metal Organic Rrameworks/polyvinyl Alcohol Cryogel and their Application in Extraction of Non-steroidal Anti-inflammatory Drugs in Water Samples. Anal. Chim. Acta 2018, 1022, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Yudaev, P.; Butorova, I.; Stepanov, G.; Chistyakov, E. Extraction of Palladium (Ⅱ) with a Magnetic Sorbent Based on Polyvinyl Alcohol Gel, Metallic iron, and an Environmentally Friendly Polydentate Phosphazene-Containing Extractant. Gels 2022, 8, 492. [Google Scholar] [CrossRef]
- Liu, C.; Wang, D.; Wang, Z.; Zhang, H.; Chen, L.; Wei, Z. Sulfolane Crystals Templating: A One-Step and Tunable Polarity Approach for Self-Assembled Super-Macroporous Hydrophobic Monoliths. ACS Appl. Mater. Interfaces 2022, 14, 45810–458121. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, A.; Sana, T.; Kiyoyama, S.; Yoshida, M.; Shiomori, K. Preparation of Microcapsules Containing PC-88A with Interconnected Spherical Pores and Their Extraction Properties of Zn(II). Solv. Extr. Res. Dev. Jpn. 2011, 18, 123–135. [Google Scholar] [CrossRef]
- Kitabayashi, T.; Sana, T.; Kiyoyam, S.; Takei, T.; Yoshida, M.; Shiomori, K. Extraction Properties of Nickel (II) with Polymeric Particles with Interconnected Spherical Pores Impregnating with LIX84-I. Solv. Extr. Res. Dev. Jpn. 2013, 20, 137–147. [Google Scholar] [CrossRef]
- Inda, N.I.; Fukumaru, M.; Sana, T.; Kiyoyama, S.; Takei, T.; Yoshida, M.; Nakajima, A.; Shiomori, K. Characteristics and Mechanism of Cu(II) Extraction with Polymeric Particles with Interconnected Spherical Pores Impregnated with LIX84-I. J. Chem. Eng. Jpn. 2017, 50, 102–110. [Google Scholar] [CrossRef]
- Inda, N.I.; Fukumaru, M.; Sana, T.; Kiyoyama, S.; Takei, T.; Yoshida, M.; Nakajima, A.; Shiomori, K. A Kinetic Study of Copper(II) Extraction using LIX84-I Impregnated Polymeric Particles with Different Structures. Solv. Extr. Res. Dev. Japan 2018, 25, 23–36. [Google Scholar] [CrossRef]
- Li, M.; Shi, Q.; Song, N.; Xiao, Y.; Wang, L.; Chen, T.D. Current Trends in the Detection and Removal of Heavy Metal Ions using Functional Materials. Chem. Soc. Rev. 2023, 52, 5827–5860. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Zchnepp, Z. The evolution of ‘sol-gel’ as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91. [Google Scholar] [CrossRef]
- Zawierucha, I.; Kozlowski, C.; Malina, G. Immobilized Materials for Removal of Toxic Metal Ions from Surface/groundwaters and Aqueous Waste Streams. Environ. Sci. Proc. Impacts 2016, 18, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Shiomori, K.; Matsune, H.; Inda, N.I.; Kiyoyama, S.; Takei, T.; Yoshida, M. Extraction properties of Cu(II) from Aqueous Solution with PVA/Alg Cross-linked Gel Microcapsules Immobilizing Fine Droplets of Phenolic Oxime Extractant. AIP Conf. Proc. 2023, 2719, 030029-1–030029-8. [Google Scholar]
- Wilson, A.M.; Bailey, P.J.; Tasker, P.A.; Turkington, J.R.; Grant, R.A.; Love, J.B. Solvent Extraction: The Coordination Chemistry Behind Extractive Metallurgy. Chem. Soc. Rev. 2014, 43, 123–134. [Google Scholar] [CrossRef]
Entry | Solvent | T [°C] | Total Pore Volume [mL/g] | Total Pore Area [m2/g] | Dv [μm] |
---|---|---|---|---|---|
8 | 0 | n.d. a | n.d. a | n.d. a | |
5 | AcOH | −5 | 0.1599 | 0.064 | 10.00 |
2 | −15 | 1.7795 | 0.306 | 23.23 | |
9 | 0 | 1.8032 | 0.338 | 9.99 | |
6 | DMSO | −5 | 1.4380 | 0.435 | 13.23 |
3 | −15 | 1.8032 | 0.748 | 20.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takase, H.; Goya, N.; Kiyoyama, S.; Shiomori, K.; Matsune, H. Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ). Gels 2024, 10, 9. https://doi.org/10.3390/gels10010009
Takase H, Goya N, Kiyoyama S, Shiomori K, Matsune H. Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ). Gels. 2024; 10(1):9. https://doi.org/10.3390/gels10010009
Chicago/Turabian StyleTakase, Hayato, Naoto Goya, Shiro Kiyoyama, Koichiro Shiomori, and Hideki Matsune. 2024. "Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ)" Gels 10, no. 1: 9. https://doi.org/10.3390/gels10010009
APA StyleTakase, H., Goya, N., Kiyoyama, S., Shiomori, K., & Matsune, H. (2024). Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ). Gels, 10(1), 9. https://doi.org/10.3390/gels10010009