The Effects of Polymerization on the Performance of Viologen-Based Electrochromic Devices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cyclic Voltammetry Measurements
2.2. UV-Vis-NIR Spectroscopy
2.3. Raman Spectroscopy
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capoferri, D.; Álvarez-Diduk, R.; Del Carlo, M.; Compagnone, D.; Merkoçi, A. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Anal. Chem. 2018, 90, 5850–5856. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A.; Simone, F. Performance Requirements for Electrochromic Smart Window. J. Build. Eng. 2015, 3, 94–103. [Google Scholar] [CrossRef]
- Rizzuto, C.; Barberi, R.C.; Castriota, M. Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications. Polymers 2023, 15, 3347. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, C.; Barberi, R.C.; Castriota, M. Tungsten and Titanium Oxide Thin Films Obtained by the Sol-Gel Process as Electrodes in Electrochromic Devices. Front. Mater. 2022, 9, 912013. [Google Scholar] [CrossRef]
- Barawi, M.; Veramonti, G.; Epifani, M.; Giannuzzi, R.; Sibillano, T.; Giannini, C.; Rougier, A.; Manca, M. A Dual Band Electrochromic Device Switchable across Four Distinct Optical Modes. J. Mater. Chem. A 2018, 6, 10201–10205. [Google Scholar] [CrossRef]
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier Science & Technology: Amsterdam, The Netherlands, 2005; ISBN 978-1-281-98511-8. [Google Scholar]
- Zhou, K.; Wang, H.; Jiu, J.; Liu, J.; Yan, H.; Suganuma, K. Polyaniline Films with Modified Nanostructure for Bifunctional Flexible Multicolor Electrochromic and Supercapacitor Applications. Chem. Eng. J. 2018, 345, 290–299. [Google Scholar] [CrossRef]
- Sonavane, A.C.; Inamdar, A.I.; Dalavi, D.S.; Deshmukh, H.P.; Patil, P.S. Simple and Rapid Synthesis of NiO/PPy Thin Films with Improved Electrochromic Performance. Electrochim. Acta 2010, 55, 2344–2351. [Google Scholar] [CrossRef]
- Chang, T.-H.; Lu, H.-C.; Lee, M.-H.; Kao, S.-Y.; Ho, K.-C. Multi-Color Electrochromic Devices Based on Phenyl and Heptyl Viologens Immobilized with UV-Cured Polymer Electrolyte. Sol. Energy Mater. Sol. Cells 2018, 177, 75–81. [Google Scholar] [CrossRef]
- Mishra, S.; Pandey, H.; Yogi, P.; Saxena, S.K.; Roy, S.; Sagdeo, P.R.; Kumar, R. Interfacial Redox Centers as Origin of Color Switching in Organic Electrochromic Device. Opt. Mater. 2017, 66, 65–71. [Google Scholar] [CrossRef]
- Danine, A.; Manceriu, L.; Fargues, A.; Rougier, A. Eco-Friendly Redox Mediator Gelatin-Electrolyte for Simplified TiO2-Viologen Based Electrochromic Devices. Electrochim. Acta 2017, 258, 200–207. [Google Scholar] [CrossRef]
- Groat, K.A.; Creager, S.E. Self-Assembled Monolayers in Organic Solvents: Electrochemistry at Alkanethiolate-Coated Gold in Propylene Carbonate. Langmuir 1993, 9, 3668–3675. [Google Scholar] [CrossRef]
- Vergaz, R.; Barrios, D.; Sánchez-Pena, J.-M.; Pozo-Gonzalo, C.; Salsamendi, M. Relating Cyclic Voltammetry and Impedance Analysis in a Viologen Electrochromic Device. Sol. Energy Mater. Sol. Cells 2009, 93, 2125–2132. [Google Scholar] [CrossRef]
- Wen, R.-T.; Granqvist, C.G.; Niklasson, G.A. Cyclic Voltammetry on Sputter-Deposited Films of Electrochromic Ni Oxide: Power-Law Decay of the Charge Density Exchange. Appl. Phys. Lett. 2014, 105, 163502. [Google Scholar] [CrossRef]
- Gadgil, B.; Damlin, P.; Dmitrieva, E.; Ääritalo, T.; Kvarnström, C. ESR/UV-Vis-NIR Spectroelectrochemical Study and Electrochromic Contrast Enhancement of a Polythiophene Derivative Bearing a Pendant Viologen. RSC Adv. 2015, 5, 42242–42249. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Skene, W.G. Visible-to-NIR Electrochromic Device Prepared from a Thermally Polymerizable Electroactive Organic Monomer. ACS Appl. Mater. Interfaces 2017, 9, 21524–21531. [Google Scholar] [CrossRef]
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Castriota, M.; Desiderio, G.; Davoli, M.; Vena, C.; Bartolino, R. Micro-Raman Investigation of Ag/Graphene Oxide/Au Sandwich Structure. Mater. Res. Express 2019, 6, 075605. [Google Scholar] [CrossRef]
- De Luca, O.; Grillo, R.; Castriota, M.; Policicchio, A.; De Santo, M.P.; Desiderio, G.; Fasanella, A.; Agostino, R.G.; Cazzanelli, E.; Giarola, M.; et al. Different Spectroscopic Behavior of Coupled and Freestanding Monolayer Graphene Deposited by CVD on Cu Foil. Appl. Surf. Sci. 2018, 458, 580–585. [Google Scholar] [CrossRef]
- Rizzuto, C.; Teeters, D.C.; Barberi, R.C.; Castriota, M. Plasticizers and Salt Concentrations Effects on Polymer Gel Electrolytes Based on Poly (Methyl Methacrylate) for Electrochemical Applications. Gels 2022, 8, 363. [Google Scholar] [CrossRef]
- Politano, G.G.; Castriota, M.; De Santo, M.P.; Pipita, M.M.; Desiderio, G.; Vena, C.; Versace, C. Variable Angle Spectroscopic Ellipsometry Characterization of Spin-Coated MoS2 Films. Vacuum 2021, 189, 110232. [Google Scholar] [CrossRef]
- Marino, S.; Castriota, M.; Bruno, V.; Cazzanelli, E.; Strangi, G.; Versace, C.; Scaramuzza, N. Changes of the Electro-Optic Response of Nematic Liquid Crystal Cells Due to Inserted Titania-Vanadia Films. J. Appl. Phys. 2005, 97, 013523. [Google Scholar] [CrossRef]
- Barba Castagnaro, I.; Nucera, A.; Barberi, R.C.; Castriota, M. Study and Micro-Raman Characterization of Pigments Present on Majolicas of Historical and Artistic Interest from Gerace, Italy. Herit. Sci. 2023, 11, 24. [Google Scholar] [CrossRef]
- Fasanella, A.; Cosentino, K.; Beneduci, A.; Chidichimo, G.; Cazzanelli, E.; Barberi, R.C.; Castriota, M. Thermal Structural Evolutions of DMPC-Water Biomimetic Systems Investigated by Raman Spectroscopy. Biochim. Biophys. Acta (BBA)—Biomembr. 2018, 1860, 1253–1258. [Google Scholar] [CrossRef]
- Algieri, V.; Tursi, A.; Costanzo, P.; Maiuolo, L.; De Nino, A.; Nucera, A.; Castriota, M.; De Luca, O.; Papagno, M.; Caruso, T.; et al. Thiol-Functionalized Cellulose for Mercury Polluted Water Remediation: Synthesis and Study of the Adsorption Properties. Chemosphere 2024, 355, 141891. [Google Scholar] [CrossRef] [PubMed]
- Nucera, A.; Grillo, R.; Rizzuto, C.; Barberi, R.C.; Castriota, M.; Bürgi, T.; Caputo, R.; Palermo, G. Effect of the Combination of Gold Nanoparticles and Polyelectrolyte Layers on SERS Measurements. Biosensors 2022, 12, 895. [Google Scholar] [CrossRef]
- Rafailov, P.M.; Maultzsch, J.; Thomsen, C.; Dettlaff-Weglikowska, U.; Roth, S. Kohn Anomaly and Electron−Phonon Interaction at the K-Derived Point of the Brillouin Zone of Metallic Nanotubes. Nano Lett. 2009, 9, 3343–3348. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Pandey, H.; Yogi, P.; Saxena, S.K.; Roy, S.; Sagdeo, P.R.; Kumar, R. Live Spectroscopy to Observe Electrochromism in Viologen Based Solid State Device. Solid State Commun. 2017, 261, 17–20. [Google Scholar] [CrossRef]
- Kamau, G.N.; Saccucci, T.M.; Gounili, G.; Nassar, A.-E.F.; Rusling, J.F. Films Formed by Oxidation of Ferrocene at Platinum Electrodes. Anal. Chem. 1994, 66, 994–1001. [Google Scholar] [CrossRef]
- Lu, H.-C.; Kao, S.-Y.; Yu, H.-F.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Appl. Mater. Interfaces 2016, 8, 30351–30361. [Google Scholar] [CrossRef]
- Raghavan, R.; Iwamoto, R.T. Chemical-Electrochemical Method for the Determination of the Positions of Coupling in the Dimeric One-Electron Reduction Products of Ring-Substitued 1-Alkylpyridinium Ions. J. Electroanal. Chem. Interfacial Electrochem. 1979, 102, 85–92. [Google Scholar] [CrossRef]
- Tahara, H.; Baba, R.; Iwanaga, K.; Sagara, T.; Murakami, H. Electrochromism of a Bipolar Reversible Redox-Active Ferrocene–Viologen Linked Ionic Liquid. Chem. Commun. 2017, 53, 2455–2458. [Google Scholar] [CrossRef]
- Luo, X.; Wan, R.; Zhang, Z.; Song, M.; Yan, L.; Xu, J.; Yang, H.; Lu, B. 3D-Printed Hydrogel-Based Flexible Electrochromic Device for Wearable Displays. Adv. Sci. 2024, 11, 2404679. [Google Scholar] [CrossRef] [PubMed]
- Pande, G.K.; Heo, J.S.; Choi, J.H.; Eom, Y.S.; Kim, J.; Park, S.K.; Park, J.S. RGB-to-Black Multicolor Electrochromic Devices Enabled with Viologen Functionalized Polyhedral Oligomeric Silsesquioxanes. Chem. Eng. J. 2021, 420, 130446. [Google Scholar] [CrossRef]
- Woodward, A.N.; Kolesar, J.M.; Hall, S.R.; Saleh, N.-A.; Jones, D.S.; Walter, M.G. Thiazolothiazole Fluorophores Exhibiting Strong Fluorescence and Viologen-Like Reversible Electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473. [Google Scholar] [CrossRef] [PubMed]
- Battisti, D.; Nazri, G.A.; Klassen, B.; Aroca, R. Vibrational Studies of Lithium Perchlorate in Propylene Carbonate Solutions. J. Phys. Chem. 1993, 97, 5826–5830. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Misra, A.; Park, J.; Ye, Q.; Spencer, P. Diffusion Coefficients of Water and Leachables in Methacrylate-Based Crosslinked Polymers Using Absorption Experiments. J. Mater. Sci. Mater. Med. 2012, 23, 1157–1172. [Google Scholar] [CrossRef]
Sample | Not-Polymerized | Polymerized | ||
---|---|---|---|---|
CE [C]/[cm]2 (at 580 nm) | CE [C]/[cm]2 (at 1200 nm) | CE [C]/[cm]2 (at 580 nm) | CE [C]/[cm]2 (at 1200 nm) | |
EM55 | 101.03 | 100.93 | 27.12 | 24.07 |
EM60 | 93.61 | 65.03 | 92.82 | 80.38 |
EM65 | 42.83 | 71.96 | 54.76 | 56.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nucera, A.; Rizzuto, C.; Pipita, M.M.; Barba Castagnaro, I.; Termine, R.; Barberi, R.C.; Castriota, M. The Effects of Polymerization on the Performance of Viologen-Based Electrochromic Devices. Gels 2024, 10, 694. https://doi.org/10.3390/gels10110694
Nucera A, Rizzuto C, Pipita MM, Barba Castagnaro I, Termine R, Barberi RC, Castriota M. The Effects of Polymerization on the Performance of Viologen-Based Electrochromic Devices. Gels. 2024; 10(11):694. https://doi.org/10.3390/gels10110694
Chicago/Turabian StyleNucera, Antonello, Carmen Rizzuto, Mario Michele Pipita, Irene Barba Castagnaro, Roberto Termine, Riccardo C. Barberi, and Marco Castriota. 2024. "The Effects of Polymerization on the Performance of Viologen-Based Electrochromic Devices" Gels 10, no. 11: 694. https://doi.org/10.3390/gels10110694
APA StyleNucera, A., Rizzuto, C., Pipita, M. M., Barba Castagnaro, I., Termine, R., Barberi, R. C., & Castriota, M. (2024). The Effects of Polymerization on the Performance of Viologen-Based Electrochromic Devices. Gels, 10(11), 694. https://doi.org/10.3390/gels10110694