Food-Grade Bigel Systems: Formulation, Characterization, and Applications for Novel Food Product Development
Abstract
:1. Introduction
2. Bigel Composition and Preparation Methods
2.1. Oleogels Used for Bigel Preparation
2.1.1. Oleogelators
2.1.2. Oils
2.2. Hydrogels Used for Bigel Preparation
Hydrogelators
2.3. Bigel Preparation Techniques
2.3.1. Cold Homogenization
2.3.2. Hot Homogenization
3. Bigel Characterization
3.1. Physical Properties
3.2. Microstructure
3.2.1. Microscopy Methods
3.2.2. Fourier Transform Infrared Spectroscopy
3.2.3. X-Ray Diffraction
3.3. Textural and Rheological Properties of Bigels
3.3.1. Oleogel-to-Hydrogel Ratio
3.3.2. Type and Concentration of the Gelators
3.3.3. Process Parameters and Storage
3.4. Thermal Properties of Bigels
3.5. Swelling Capacity
3.6. Stability
3.6.1. Centrifugation Stability
3.6.2. Oxidative Stability
3.6.3. Freeze–Thaw Stability
4. Bigel Applications
4.1. Bigels as Delivery Systems for Bioactive Compounds
4.2. Bigels as Fat Substitutes
4.2.1. Meat Products
4.2.2. Bakery Products
4.3. 3D Printing
Packaging
4.4. Other Applications
Edible Coating
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, I.F.; Fernandes, A.R.; Fernandes, L.; Pena Ferreira, M.R.; Costa, P.C.; Bahia, M.F. Moisturizing effect of oleogel/hydrogel mixtures. Pharm. Dev. Technol. 2008, 13, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Ma, Q.; Yu, H.; Zhang, Y.; Yan, Z.; Liu, F.; Jiang, H.; Chen, Y. Macroscopic organohydrogel hybrid from rapid adhesion between dynamic covalent hydrogel and organogel. ACS Macro Lett. 2015, 4, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Singh, V.K.; Qureshi, D.; Nayak, S.K.; Pal, K. Bigels. In Polymeric Gels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 265–282. [Google Scholar] [CrossRef]
- Zulfakar, M.H.; Chan, L.M.; Rehman, K.; Wai, L.K.; Heard, C.M. Coenzyme Q10-loaded fish oil-based bigel system: Probing the delivery across porcine skin and possible interaction with fish oil fatty acids. AAPS PharmSciTech. 2018, 19, 1116–1123. [Google Scholar] [CrossRef]
- Samui, T.; Goldenisky, D.; Rosen-Kligvasser, J.; Davidovich-Pinhas, M. The development and characterization of novel in-situ bigel formulation. Food Hydrocoll. 2021, 113, 106416. [Google Scholar] [CrossRef]
- Di Michele, L.; Fiocco, D.; Varrato, F.; Sastry, S.; Eiser, E.; Foffi, G. Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter 2014, 10, 3633–3648. [Google Scholar] [CrossRef]
- Hu, Z.; Patten, T.; Pelton, R.; Cranston, E.D. Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals. ACS Sustain. Chem. Eng. 2015, 35, 1023–1031. [Google Scholar] [CrossRef]
- Singh, V.K.; Banerjee, I.; Agarwal, T.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf. B Biointerfaces 2014, 123, 582–592. [Google Scholar] [CrossRef]
- Martinez, R.M.; Magalhaes, W.V.; da Silva Sufi, B.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; da Silva Lannes, S.C.; Baby, A.R. Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloids Surf. B Biointerfaces 2021, 201, 111651. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, J.; Han, L.; Han, K.; Wei, W.; Wu, T.; Jinling, L.; Zhang, M. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chem. 2021, 365, 130419. [Google Scholar] [CrossRef]
- Zhuang, X.; Clark, S.; Acevedo, N. Bigels—Oleocolloid matrices—As probiotic protective systems in yogurt. J. Food Sci. 2021, 86, 4892–4900. [Google Scholar] [CrossRef] [PubMed]
- Fasolin, L.H.; Martins, A.J.; Cerqueira, M.A.; Vicente, A.A. Modulating process parameters to change physical properties of bigels for food applications. Food Struct. 2021, 28, 100173. [Google Scholar] [CrossRef]
- Luo, S.Z.; Hu, X.F.; Jia, Y.J.; Pan, L.H.; Zheng, Z.; Zhao, Y.Y.; Mu, D.D.; Zhong, X.Y.; Jiang, S.T. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocoll. 2019, 95, 76–87. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. Development, characterization, and utilization of food-grade polymer oleogels. Annu. Rev. Food Sci. Technol. 2016, 7, 65–91. [Google Scholar] [CrossRef]
- Okesola, B.O.; Vieira, V.M.; Cornwell, D.J.; Whitelaw, N.K.; Smith, D.K. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives–efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matt. 2015, 11, 4768–4787. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A.; Przybysz, M.; Kowalska, M. Assessment of physical properties of structured oils and palm fat. Mater. Plast. 2017, 54, 800–805. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Zampouni, K.; Prodromidis, P.; Moschakis, T.; Katsanidis, E. Microstructure, physical properties, and oxidative stability of olive oil oleogels composed of sunflower wax and monoglycerides. Gels 2024, 10, 195. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B. Recent developments of oleogel utilizations in bakery products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2460–2479. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocoll. 2018, 77, 17–29. [Google Scholar] [CrossRef]
- Abdollahi, M.; Goli, S.A.H.; Soltanizadeh, N. Physicochemical properties of foam-templated oleogel based on gelatin and xanthan gum. Eur. J. Lipid Sci. Technol. 2020, 122, 1900196. [Google Scholar] [CrossRef]
- De Vries, A.; Jansen, D.; van der Linden, E.; Scholten, E. Tuning the rheological properties of protein-based oleogels by water addition and heat treatment. Food Hydrocoll. 2018, 79, 100–109. [Google Scholar] [CrossRef]
- Scharfe, M.; Flöter, E. Oleogelation: From scientific feasibility to applicability in food products. Eur. J. Lipid Sci. Technol. 2020, 122, 2000213. [Google Scholar] [CrossRef]
- Habibi, A.; Kasapis, S.; Truong, T. Effect of hydrogel particle size embedded into oleogels on the physico-functional properties of hydrogel-in-oleogel (bigels). LWT 2022, 163, 113501. [Google Scholar] [CrossRef]
- Golodnizky, D.; Davidovich-Pinhas, M. The effect of the HLB value of sucrose ester on physiochemical properties of bigel systems. Foods 2020, 9, 1857. [Google Scholar] [CrossRef] [PubMed]
- Mata-Mota, J.D.; Gallegos-Infante, J.A.; Pérez-Martínez, J.D.; Rocha-Guzmán, N.E.; González-Laredo, R.F. Effect of hydrogel/oleogel ratio, speed and time of mixing, on the mechanical properties of bigel materials and the application of Cox-Merz rule. Food Mater. Res. 2023, 3, 24. [Google Scholar] [CrossRef]
- Lu, Y.; Zhong, Y.; Guo, X.; Zhang, J.; Gao, Y.; Mao, L. Structural modification of O/W bigels by glycerol monostearate for improved co-delivery of curcumin and epigallocatechin gallate. ACS Food Sci. Technol. 2022, 2, 975–983. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Miao, S.; Gao, Y.; Mao, L. Alginate-based gel beads with bigel structures: Preparation, characterization and bioactive encapsulation. Food Hydrocoll. 2024, 146, 109294. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, H.; Mo, Y.; Gao, Y.; Mao, L. Structural characterization of hydrogel-oleogel biphasic systems as affected by oleogelators. Food Res. Int. 2022, 158, 111536. [Google Scholar] [CrossRef]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll. 2020, 105, 105855. [Google Scholar] [CrossRef]
- Barroso, L.A.; Karatay, G.G.B.; Hubinger, M.D. Effect of potato starch hydrogel: Glycerol monostearate oleogel ratio on the physico-rheological properties of bigels. Gels 2022, 8, 694. [Google Scholar] [CrossRef]
- Kanelaki, A.; Zampouni, K.; Mourtzinos, I.; Katsanidis, E. Hydrogels, oleogels and bigels as edible coatings of sardine fillets and delivery systems of rosemary extract. Gels 2022, 8, 660. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.J.; Guimarães, A.; Fuciños, P.; Sousa, P.; Venâncio, A.; Pastrana, L.M.; Cerqueira, M.A. Food-grade bigels: Evaluation of hydrogel: Oleogel ratio and gelator concentration on their physicochemical properties. Food Hydrocoll. 2023, 143, 108893. [Google Scholar] [CrossRef]
- Siachou, C.; Zampouni, K.; Katsanidis, E. Bigels as fat replacers in fermented sausages: Physicochemical, microbiological, sensory, and nutritional characteristics. Gels 2023, 9, 340. [Google Scholar] [CrossRef]
- Zampouni, K.; Mouzakitis, C.K.; Lazaridou, A.; Moschakis, T.; Katsanidis, E. Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocoll. 2023, 140, 108636. [Google Scholar] [CrossRef]
- Zampouni, K.; Filippou, A.; Papadimitriou, K.; Katsanidis, E. Evaluation of bigel systems as potential substitutes to partially replace pork backfat in semi-dry sausages. Meat Sci. 2024, 208, 109392. [Google Scholar] [CrossRef]
- Han, L.; Chen, F.; Qiu, Y.; Gao, J.; Zhu, Q.; Wu, T.; Wang, P.; Zhang, M. Development and characterization of hydrogel-in-oleogel (bigel) system and their application in replacement of butter for bread making. J. Sci. Food Agric. 2023, 104, 1920–1927. [Google Scholar] [CrossRef]
- Nutter, J.; Shi, X.; Lamsal, B.; Acevedo, N.C. Plant-based bigels as a novel alternative to commercial solid fats in short dough products: Textural and structural properties of short dough and shortbread. Food Biosci. 2023, 54, 102865. [Google Scholar] [CrossRef]
- Nutter, J.; Shi, X.; Lamsal, B.; Acevedo, N.C. Designing and characterizing multicomponent, plant-based bigels of rice bran wax, gums, and monoglycerides. Food Hydrocoll. 2023, 138, 108425. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Z.; Meng, Z. Bigels constructed from hybrid gelator systems: Bulk phase-interface stability and 3D printing. Food Funct. 2023, 14, 5078–5089. [Google Scholar] [CrossRef]
- Saffold, A.C.; Acevedo, N.C. Development of novel rice bran wax/gelatin-based biphasic edible gels and characterization of their microstructural, thermal, and mechanical properties. Food Bioprocess Technol. 2021, 14, 2219–2230. [Google Scholar] [CrossRef]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocoll. 2020, 101, 105570. [Google Scholar] [CrossRef]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion. Food Biosci. 2021, 39, 100813. [Google Scholar] [CrossRef]
- Liu, L.; Tian, W.; Chen, Μ.; Huang, Y.; Xiao, J. Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydr. Polym. 2023, 312, 120765. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Huang, Y.; Song, Z.; Yu, Y.; Liu, J.; Cao, Y.; Xiao, J. Flexible Control of Bigel Microstructure for Enhanced Stability and Flavor Release during Oral Consumption. Food Res. Int. 2023, 174, 113606. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Iturra, N.; Contardo, I.; Millao, S.; Morales, E.; Rubilar, M. Food-grade bigels with potential to replace saturated and trans fats in cookies. Gels 2022, 8, 445. [Google Scholar] [CrossRef]
- Vershkov, B.; Davidovich-Pinhas, M. The effect of preparation temperature and composition on bigel performance as fat replacers. Food Funct. 2023, 14, 3838–3848. [Google Scholar] [CrossRef]
- De Los Santos-Trinidad, J.D.L.; Pérez-Alonso, C.; Cruz-Sosa, F.; Román-Guerrero, A. Effect of the use of sweet potato or chayote tuber starch hydrogels on the physical properties of oleogel-in-hydrogel (bigels) systems. Int. J. Food Sci. Technol. 2023, 58, 6871–6880. [Google Scholar] [CrossRef]
- Qiu, R.; Wang, K.; Tian, H.; Liu, X.; Liu, G.; Hu, Z.; Zhao, L. Analysis on the printability and rheological characteristics of bigel inks: Potential in 3D food printing. Food Hydrocoll. 2022, 129, 107675. [Google Scholar] [CrossRef]
- Martins, A.J.; Silva, P.; Maciel, F.; Pastrana, L.M.; Cunha, R.L.; Cerqueira, M.A.; Vicente, A.A. Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Res. Int. 2019, 116, 1298–1305. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Neves, B.V.; Mazzo, T.M.; Longo, E.; Jacob-Lopez, E.; Zepka, L.Q.; de Rosso, V.V. Bigels as potential inks for extrusion-based 3d food printing: Effect of oleogel fraction on physical characterization and printability. Food Hydrocoll. 2023, 144, 108986. [Google Scholar] [CrossRef]
- Li, J.; Han, J.; Xiao, Y.; Guo, R.; Liu, X.; Zhang, H.; Bi, Y.; Xu, X. Fabrication and characterization of novel food-grade bigels based on interfacial and bulk Stabilization. Foods 2023, 12, 2546. [Google Scholar] [CrossRef] [PubMed]
- Hashim, A.F.; El-Sayed, S.M.; El-Sayed, H.S. Bigel formulations based on sesame oleogel with probiotics alginate hydrogel: A novel structure for nutritious spreadable butter. Int. J. Biol. Macromol. 2023, 242, 124782. [Google Scholar] [CrossRef] [PubMed]
- Ghorghi, Z.B.; Yeganehzad, S.; Hesarinejad, M.A.; Faezian, A.; Kutsenkova, V.; Gao, Z.; Nishinari, K.; Nepovinnykh, N. Fabrication of novel hybrid gel based on beeswax oleogel: Application in the compound chocolate formulation. Food Hydrocoll. 2023, 140, 108599. [Google Scholar] [CrossRef]
- Cho, K.; Tarté, R.; Acevedo, N.C. Development and characterization of the freeze-thaw and oxidative stability of edible rice bran wax-gelatin biphasic gels. LWT 2023, 174, 114330. [Google Scholar] [CrossRef]
- Kibler, N.D.; Acevedo, N.C.; Cho, K.; Zuber-McQuillen, E.A.; Carvajal, Y.B.; Tarté, R. Novel biphasic gels can mimic and replace animal fat in fully-cooked coarse-ground sausage. Meat Sci. 2022, 194, 108984. [Google Scholar] [CrossRef]
- Baltuonytė, G.; Eisinaitė, V.; Kazernavičiūtė, R.; Vinauskienė, R.; Jasutienė, I.; Leskauskaitė, D. Novel formulation of bigel-based vegetable oil spreads enriched with lingonberry pomace. Foods 2022, 11, 2213. [Google Scholar] [CrossRef]
- Eisinaitė, V.; Jasutienė, I.; Vinauskienė, R.; Leskauskaitė, D. Development of bigel based dysphagia-oriented products, structured with collagen and carnauba wax: Characterisation and rheological behaviour. Int. J. Food Sci. Technol. 2023, 58, 145–153. [Google Scholar] [CrossRef]
- Ghiasi, F.; Golmakani, M.T. Fabrication and characterization of a novel biphasic system based on starch and ethylcellulose as an alternative fat replacer in a model food system. Innov. Food Sci. Emerg. Technol. 2022, 78, 103028. [Google Scholar] [CrossRef]
- Hashemi, B.; Varidi, M.; Jafari, S.M. Fabrication and characterization of novel whey protein-based bigels as structured materials with high-mechanical properties. Food Hydrocoll. 2023, 145, 109082. [Google Scholar] [CrossRef]
- Scharfe, M.; Ahmane, Y.; Seilert, J.; Keim, J.; Flöter, E. On the effect of minor oil components on β-sitosterol/γ-oryzanol oleogels. Eur. J. Lipid Sci. Technol. 2019, 121, 1800487. [Google Scholar] [CrossRef]
- Martins, A.J.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Edible oleogels: An opportunity for fat replacement in foods. Food Funct. 2019, 9, 758–773. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bian, F.; Cao, X.; Shi, Z.; Meng, Z. Novel bigels constructed from oleogels and hydrogels with contrary thermal characteristics: Phase inversion and 3D printing applications. Food Hydrocoll. 2023, 134, 108063. [Google Scholar] [CrossRef]
- Saffold, A.C.; Acevedo, N.C. The effect of mono-diglycerides on the mechanical properties, microstructure, and physical stability of an edible rice bran wax–gelatin biphasic gel system. J. Am. Oil Chem. Soc. 2022, 99, 1033–1043. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Machado, M.; Sousa, S.; Morais, P.; Miranda, A.; Rodriguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Novel avocado oil-functionalized yogurt with anti-obesity potential: Technological and nutraceutical perspectives. Food Biosci. 2022, 50, 101983. [Google Scholar] [CrossRef]
- Machado, M.; Sousa, S.C.; Rodríguez-Alcalá, L.M.; Pintado, M.; Gomes, A.M. Bigels as delivery systems of bioactive fatty acids present in functional edible oils: Coconut, avocado, and pomegranate. Gels 2023, 9, 349. [Google Scholar] [CrossRef]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.K.; Seyfoddin, A.; Fatihhi, S.J. Acrylic acid/acrylamide based hydrogels and its properties—A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Himashree, P.; Sengar, A.S.; Sunil, C.K. Food thickening agents: Sources, chemistry, properties and applications—A review. Int. J. Gastron. Food Sci. 2022, 27, 100468. [Google Scholar] [CrossRef]
- Nath, P.C.; Debnath, S.; Sridhar, K.; Inbaraj, B.S.; Nayak, P.K.; Sharma, M.A. Comprehensive review of food hydrogels: Principles, formation mechanisms, microstructure, and its applications. Gels 2022, 9, 1. [Google Scholar] [CrossRef]
- Zheng, R.; Chen, Y.; Wang, Y.; Rogers, M.A.; Cao, Y.; Lan, Y. Microstructure and physical properties of novel bigel-based foamed emulsions. Food Hydrocoll. 2023, 134, 108097. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Y.; Song, X.; Meng, Z. Stabilization models of foams prepared from whippable bigels: Crystal absorption and droplet stability. Food Hydrocoll. 2023, 147, 109383. [Google Scholar] [CrossRef]
- Cui, H.; Tang, C.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chem. 2022, 384, 132589. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Hu, H.; Huang, Q.; Lu, X. Influence of oleogel/hydrogel ratios and emulsifiers on structural and digestion properties of food-grade 3D printed bigels as carriers for quercetin and catechin. Food Hydrocoll. 2023, 144, 108948. [Google Scholar] [CrossRef]
- Xie, D.; Hu, H.; Huang, Q.; Lu, X. Development and characterization of food-grade bigel system for 3D printing applications: Role of oleogel/hydrogel ratios and emulsifiers. Food Hydrocoll. 2023, 139, 108565. [Google Scholar] [CrossRef]
- Zampouni, K.; Sideris, N.; Tsavdaris, E.; Katsanidis, E. On the structural and mechanical properties of mixed coconut and olive oil oleogels and bigels. Int. J. Biol. Macromol. 2024, 268, 131942. [Google Scholar] [CrossRef]
- Kaimal, A.M.; Singhal, R.S. A bigel based formulation protects lutein better in the gastric environment with controlled release and antioxidant profile than other gel based systems. Food Chem. 2023, 423, 136304. [Google Scholar] [CrossRef]
- Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key characteristics and modelling of bigels systems: A review. Mat. Sci. Eng. C 2019, 97, 932–953. [Google Scholar] [CrossRef]
- Tejada-Ortigoza, V.; Cuan-Urquizo, E. Towards the development of 3D-printed food: A rheological and mechanical approach. Foods 2022, 11, 1191. [Google Scholar] [CrossRef]
Oleogel (O) | Hydrogel (H) | O:H Ratio | Bigel Mixing Parameters | Reference | |
---|---|---|---|---|---|
Edible Oil | Oleogelator | Hydrogelator | |||
Canola oil | MGs * (10%) | KC (4%) WPC 80 (15%) | 80:20 | 4000 rpm at 90 °C for 2 min Sonication at 90 °C for 2 min 10,000 rpm for 2 min + Sonication at 90 °C | [24] |
MGs (0–35%) SL (2–20%) | GEL (0.5–3%) Glycerol (5–15%) | 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 | 1600 rpm at 70 °C for 3 min | [6] | |
MGs (25%) SL (1.6%) SEs (2%) | GEL (1%) Glycerol (5%) | 50:50 | O:70 °C, H:90 °C 16,000 rpm for 1 min | [25] | |
CW (8%) SEs | XG (0.5%) | 55:45, 65:35, 75:25, 85:15 | 20,000 rpm at 30–60 °C for 2.5 min | [47] | |
MGs (10%) PGPR (1.5%) | GGM (1%) Tween 60 (1.7%) | 67:33, 83:17, 58:15 | 600/800 rpm for 20 min | [26] | |
BW (5%) | SPS (10%) CTS (10%) | 30:70, 40:60, 50:50 | Sonication at 90 °C for 2 min | [48] | |
Corn oil | GMS (4–8%) BW (4–8%) | KC (0.75%) Tween 20 (0.5%) | 50:50 | 300 rpm at 45 °C | [29] |
MCT oil | BW (3%, 6%) | SA (2%) | 50:50, 80:20, 90:10, 95:5, 99:1 | 600 rpm at 22 °C for 45 min | [50] |
Soybean oil | SL, SAC (7:3, 20%) | WPC 80 (15–25%) | 30:70, 50:50, 70:30 | 23,000 rpm for 3 min | [42] |
RBW (10%) | GEL (5, 7, 10%) | 20:80, 30:70, 40:60, 50:50 | 24,000 rpm at 90 °C for 2 min | [41] | |
RBW (7.5%) | GEL (7%) | 40:60, 50:50, 60:40, 70:30 | 24,000 rpm at 85 °C for 20 sec 13,000 rpm at 85 °C for 30 sec | [55] | |
RBW (10%) MGs/DGs (0.5–3%) | GEL (7%) | 60:40, 70:30, 80:20 | 24,000 rpm for 1 min | [64] | |
RBW (9%) MGs (0–2%) | SA (1%) KC (0.5%) | 70:30, 80:20 | 15,000 rpm at 85 °C for 1 min | [38] | |
GMS (8%) | WPS (8%) | 20:80, 30:70, 40:60, 60:40, 70:30, 80:20 | 10,000 rpm at 25 °C for 3 min | [31] | |
SAC (3%) | KG/GEL (2.25%) | 20:80, 30:70 40:60, 50:50 | 9000 rpm at 75 °C for 3 min | [45] | |
Sunflower oil | GMS (5–15%) | GG (1–1.5%) | 20:80, 35:65, 50:50, 65:35, 80:20 | 500–1500 rpm at 25 °C for 10 min | [13] |
GMS (5–20%) | KC/LBG (1:1, 0.5–2.5%) | 10:90, 20:80, 30:70, 40:60, 50:50 | 2000 rpm for 10 min | [33] | |
Fatty acids mixture (10%) | XG (1%) | 40:60, 50:50, 60:40, 70:30, 80:20 | 14,000 rpm at 85 °C for 3 min | [72] | |
BW (6%) | TAP (5–10%) | 25:75, 40:60, 50:50, 60:40, 75:25 | 14,000 rpm at 85 °C for 1 min | [52] | |
WPI (40 mg/mL) | WPI (60, 80 mg/mL) | 30:70, 50:50, 70:30 | 800 rpm at 24 ± 2 °C for 10 min | [60] | |
Sunflower oil Olive pomace oil | CBW (8%) SL (0.5%) | COL (40%, 60%) | 40:60, 50:50, 60:40 | 11,000 rpm at 85 °C for 3 min | [58] |
Olive oil | MGs (15%) | GEL (8–12%) KC (1%) | 20:80, 40:60 | 300 rpm at 50 °C or 80 °C for 15 min | [35] |
Olive oil Coconut oil | MGs Ps | GEL | 40:60, 60:40 | 600 rpm at 50 °C for 15 min | [77] |
Application | Oleogel (O) | Hydrogel (H) | O:H ratio | Bigel Mixing Parameters | Reference | ||
---|---|---|---|---|---|---|---|
Edible Oil | Oleogelator | Hydrogelator | |||||
Delivery system | Bioactive fatty acids | Coconut oil Avocado oil Pomegranate oil | MGs * Tween 80 | CMC (2%) | Non reported | 18.000 rpm for 1 min + sonication for 1 min | [67] |
Bioactive fatty acids in yogurt | Avocado oil | MGs+DGs Tween 80 | CMC (2%) | Non reported | 18.000 rpm for 1 min + sonication for 1 min | [66] | |
β-Carotene | Corn oil | MGs (20%) | KC (1.5%) | 25:75, 40:60, 50:50, 60:40, 75:25 | 300 rpm at 80 °C for 20 min + 500 rpm at 80 °C for 2 min | [31] | |
Curcumin EGCG | Corn oil | GMS (4–8%) | GEL (2.5%) Tween 20 (0.5%) | 50:50 | 300 rpm at 60 °C for 20 min | [27] | |
Curcumin EGCG in bigel beads | Corn oil | GMS (10%) | SA (1%) Tween 20 (0.5% in bigel) | 10:90, 15:85, 20:80, 25:75, 30:70 | 500 rpm | [28] | |
Lutein | Sunflower oil | EC (15%) | XG GGM (1:1, 1.5%) | 25:75, 50:50, 75:25 | 10,000 rpm at 75 °C for 5 min | [78] | |
Lycopene | Soybean oil | GMS (1%) BW (1%) | GG (0.3%) | 10:90, 20:80, 30:70, 40:60, 50:50, 60:40 | 10,000 for 1 min | [11] | |
Probiotics | Soybean oil | SL, SAC (1:1, 20%) | WPC 80 (20%) | 80:20 | 13,500 rpm at 85 °C for 2 min | [26] | |
Probiotics in yogurt | Soybean oil | SL, SAC (1:1, 16%) | WPC 80 (20%) | 75:25 | 13,500 rpm at 85 °C for 2 min | [12] | |
Quercetin | Soybean oil | SAC (2.5%) | KG, GEL (2.25%) | Non reported | 9000 rpm at 75 °C for 3 min | [44] | |
Fat substitution | Beef burger | Sunflower oil | EC (10%) | WS (10%) | 25:75, 50:50, 75:25 | 2000 rpm for 2 min + 2500 rpm for 2 min | [59] |
Coarse-ground sausages | High oleic soybean oil | RBW (7.5%) | GEL (7- 8%) | 70:30, 80:20 | 24,000 rpm for 1.5 min | [56] | |
Fermented sausages | Olive oil | MGs (15%) | GEL (10%) KC (1%) | 20:80, 40:60 | 600 rpm at 80 °C for 15 min | [34] | |
Semi-dry sausages | Olive oil | MGs (15%) | GEL (4%) KC (2%) | 20:80 | 300 rpm at 80 °C for 15 min 12,000 rpm for at 80 °C 15 min | [36] | |
Bread | Corn oil | GMS (1%) RBW (2%) | SA (2%) | 20:80, 30:70, 40:60, 50:50, 60:40 | 10,000 rpm at 85 °C for 3 min | [37] | |
Cookies | Canola oil | BW (10%) | CMC SA (3%) | 50:50 | 2500 rpm at 30 °C | [46] | |
Shortbread | Soybean oil | RBW (9%) MGs (0–2%) | KC (0.5%) SA (1%) | 80:20 | 15,000 rpm for 1 min at 85 °C | [38] | |
Butter spread | Sesame oil | BW (10%) | SA (3%) WPC 80 (25%) | Non reported | 900 rpm for 2 min | [53] | |
Chocolate | Grape seed oil | BW (20%) | SA (2%) | 99:1, 95:5, 90:10 | 600 rpm for 45 min | [54] | |
3D printing | Corn oil | BW (15%) | KC XG (1:1, 1.5%) | 20:80, 30:70, 50:50, 70:30, 80:20 | 3000 rpm for 2 min + 6000 rpm for 3 min | [49] | |
Soybean oil | BW (10%) PGPR (1%) | HPMC (3%) | 20:80, 40:60, 50:50, 60:40, 80:20 | 8000 rpm at 85 °C | [63] | ||
Soybean oil | BW (10%) GMS (2%) | GG (3%) | 30:70, 40:60, 50:50, 60:40, 65:35, 70:30, 80:20 | 8000 rpm at 80 °C for 3 min + 100 rpm for 10 min | [40] | ||
High oleic acid sunflower seed oil | CW (3%), MGs (1%), PGPR (1%), SL (1%) | Fish GEL (5%) | 30:70, 50:50, 70:30 | 10,000 rpm for 1 min | [76] | ||
Sunflower oil | BW (5%) | GEL (10%) XG (1%) Agar (15%) | 5:95, 10:90, 20:80 | 2000 rpm at 50 °C for 10 min | [51] | ||
3D printing | Delivery system of quercetin | High oleic acid sunflower seed oil | CW (3%) MGs (1%) SL (1%) | Fish GEL | 30:70, 50:50, 70:30 | 10,000 rpm for 1 min | [75] |
Food packaging | Sunflower oil | BW (6%) GMS (2%) | Agar (0.5–2%) | 90:10, 80:20, 70:30, 60:40 | 12,000 rpm for 1 min | [65] | |
Other applications | Edible coating with rosemary extract | Sunflower oil | MGs (15%) | GEL (10%) | 20:80 | 300 rpm min at 70 °C for 15 | [32] |
Spread with lingonberry pomace | Sunflower oil Olive pomace oil | CBW (10%) SL (0.5–1.5%) | COL (15.6%) GEL (5%) Agar (2.5%) | 60:40 | 15,000 rpm for 2 min at 85 °C | [57] | |
Cream analogue | MCT oil | GMS Cinnamaldelhyde Span 80 (0–0.9%) | Chitosan | 20:80, 33:67, 40:60 | 200 rpm for 20 min | [74] | |
Foam-based bigels | Soybean oil | BW (10%) GMS (2%) | GG (1.2%) | 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:10, 90:10 | 8000 rpm for 2 min | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampouni, K.; Dimakopoulou-Papazoglou, D.; Katsanidis, E. Food-Grade Bigel Systems: Formulation, Characterization, and Applications for Novel Food Product Development. Gels 2024, 10, 712. https://doi.org/10.3390/gels10110712
Zampouni K, Dimakopoulou-Papazoglou D, Katsanidis E. Food-Grade Bigel Systems: Formulation, Characterization, and Applications for Novel Food Product Development. Gels. 2024; 10(11):712. https://doi.org/10.3390/gels10110712
Chicago/Turabian StyleZampouni, Konstantina, Dafni Dimakopoulou-Papazoglou, and Eugenios Katsanidis. 2024. "Food-Grade Bigel Systems: Formulation, Characterization, and Applications for Novel Food Product Development" Gels 10, no. 11: 712. https://doi.org/10.3390/gels10110712
APA StyleZampouni, K., Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2024). Food-Grade Bigel Systems: Formulation, Characterization, and Applications for Novel Food Product Development. Gels, 10(11), 712. https://doi.org/10.3390/gels10110712