Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties
2.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3. X-Ray Diffraction (XRD)
2.4. Thermogravimetric Analysis (TGA)
2.5. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.6. Texture Profile Analysis (TPA)
2.7. Gel Strength of Jelly
2.8. Freezing and Thawing Stability of Jelly
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. SE-Assisted Alkali Extraction of κ-Carrageenan from Eucheuma
4.3. Jelly-Making Process
4.4. Physicochemical Properties of κ-Carrageenan
4.4.1. Sulfate Content
4.4.2. 3,6-AG Content
4.4.3. Viscosity
4.4.4. Water-Holding Capacity (WHC)
4.5. FT-IR
4.6. XRD
4.7. TGA
4.8. LF-NMR
4.9. Texture Profile Analysis
4.10. Gel Strength
4.11. Freezing and Thawing Stability
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, L.-X.; Chen, X.-Q.; Cheong, K.-L. Current Trends in Marine Algae Polysaccharides: The Digestive Tract, Microbial Catabolism, and Prebiotic Potential. Int. J. Biol. Macromol. 2020, 151, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Jumaidin, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Characteristics of Eucheuma Cottonii Waste from East Malaysia: Physical, Thermal and Chemical Composition. Eur. J. Phycol. 2017, 52, 200–207. [Google Scholar] [CrossRef]
- Cao, C.; Feng, Y.; Kong, B.; Xia, X.; Liu, M.; Chen, J.; Zhang, F.; Liu, Q. Textural and Gel Properties of Frankfurters as Influenced by Various κ-Carrageenan Incorporation Methods. Meat Sci. 2021, 176, 108483. [Google Scholar] [CrossRef]
- Brenner, T.; Tuvikene, R.; Fang, Y.; Matsukawa, S.; Nishinari, K. Rheology of Highly Elastic Iota-Carrageenan/Kappa-Carrageenan/Xanthan/Konjac Glucomannan Gels. Food Hydrocoll. 2015, 44, 136–144. [Google Scholar] [CrossRef]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis—A Review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Udo, T.; Mummaleti, G.; Mohan, A.; Singh, R.K.; Kong, F. Current and Emerging Applications of Carrageenan in the Food Industry. Food Res. Int. 2023, 173, 113369. [Google Scholar] [CrossRef] [PubMed]
- Nurani, W.; Anwar, Y.; Batubara, I.; Arung, E.T.; Fatriasari, W. Kappaphycus Alvarezii as a Renewable Source of Kappa-Carrageenan and Other Cosmetic Ingredients. Int. J. Biol. Macromol. 2024, 260, 129458. [Google Scholar] [CrossRef]
- Hilliou, L.; Larotonda, F.D.S.; Abreu, P.; Ramos, A.M.; Sereno, A.M.; Gonçalves, M.P. Effect of Extraction Parameters on the Chemical Structure and Gel Properties of κ/ι-Hybrid Carrageenans Obtained from Mastocarpus Stellatus. Biomol. Eng. 2006, 23, 201–208. [Google Scholar] [CrossRef]
- Bono, A.; Anisuzzaman, S.M.; Ding, O.W. Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-Refined Carrageenan (SRC) Produced from Seaweed (Kappaphycus Alvarezii). J. King Saud Univ.—Eng. Sci. 2014, 26, 3–9. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Yang, Q.; Fu, C.; Guo, Z. The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products. Foods 2023, 12, 3307. [Google Scholar] [CrossRef]
- Yi, J.; Li, X.; Wang, S.; Wu, T.; Liu, P. Steam Explosion Pretreatment of Achyranthis Bidentatae Radix: Modified Polysaccharide and Its Antioxidant Activities. Food Chem. 2022, 375, 131746. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Hou, C.; Sun, J.; Wan, F. Effect of Steam Explosion on Phenolic Compounds and Antioxidant Capacity in Adzuki Beans. J Sci Food Agric 2020, 100, 4495–4503. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, C.; Cui, B.; Liu, Y. Influence of Cations on Texture, Compressive Elastic Modulus, Sol-Gel Transition and Freeze-Thaw Properties of Kappa-Carrageenan Gel. Carbohydr. Polym. 2018, 202, 530–535. [Google Scholar] [CrossRef]
- Diharmi, A.; Fardiaz, D.; Andarwulan, N.; Heruwati, E.S. Chemical and Physical Characteristics of Carrageenan Extracted from Eucheuma Spinosum Harvested from Three Different Indonesian Coastal Sea Regions. Phycol. Res. 2017, 65, 256–261. [Google Scholar] [CrossRef]
- Rudke, A.R.; de Andrade, C.J.; Ferreira, S.R.S. Kappaphycus Alvarezii Macroalgae: An Unexplored and Valuable Biomass for Green Biorefinery Conversion. Trends Food Sci. Technol. 2020, 103, 214–224. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, F.; Lin, K.; Fang, J.; Chen, F.; Ru, Y.; Weng, H.; Xiao, Q.; Yang, Q.; Xiao, A. Anhydride Esterification to Regulate Water Migration and Reduce Ice Crystal Formation in κ-Carrageenan Gel during Freezing. Food Hydrocoll. 2024, 150, 109726. [Google Scholar] [CrossRef]
- Paula, G.A.; Benevides, N.M.B.; Cunha, A.P.; de Oliveira, A.V.; Pinto, A.M.B.; Morais, J.P.S.; Azeredo, H.M.C. Effect of K-Carrageenan on the Gelation Properties of Oyster Protein. Food Hydrocoll. 2015, 47, 140–145. [Google Scholar] [CrossRef]
- Wan, F.; Feng, C.; Luo, K.; Cui, W.; Xia, Z.; Cheng, A. Effect of Steam Explosion on Phenolics and Antioxidant Activity in Plants: A Review. Trends Food Sci. Technol. 2022, 124, 13–24. [Google Scholar] [CrossRef]
- Şen, M.; Erboz, E.N. Determination of Critical Gelation Conditions of κ-Carrageenan by Viscosimetric and FT-IR Analyses. Food Res. Int. 2010, 43, 1361–1364. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Tye, Y.Y.; HPS, A.K.; Kok, C.Y.; Saurabh, C.K. Preparation and Characterization of Modified and Unmodified Carrageenan Based Films. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012020. [Google Scholar] [CrossRef]
- Li, Z.; Cheong, K.-L.; Song, B.; Yin, H.; Li, Q.; Chen, J.; Wang, Z.; Xu, B.; Zhong, S. Preparation of κ-Carrageenan Oligosaccharides by Photocatalytic Degradation: Structural Characterization and Antioxidant Activity. Food Chem. X 2024, 22, 101294. [Google Scholar] [CrossRef]
- Xi, H.; Wang, A.; Qin, W.; Nie, M.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Huang, Y.; Wang, F.; et al. The Structural and Functional Properties of Dietary Fibre Extracts Obtained from Highland Barley Bran through Different Steam Explosion-Assisted Treatments. Food Chem. 2023, 406, 135025. [Google Scholar] [CrossRef]
- Ouyang, H.; Guo, B.; Hu, Y.; Li, L.; Jiang, Z.; Li, Q.; Ni, H.; Li, Z.; Zheng, M. Effect of Ultra-High Pressure Treatment on Structural and Functional Properties of Dietary Fiber from Pomelo Fruitlets. Food Biosci. 2023, 52, 102436. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, Y.; Wang, Y.; Wang, R.; Zeng, M. Effect of κ-Carrageenan on the Gelation Properties of Oyster Protein. Food Chem. 2022, 382, 132329. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Lyu, J.; Wang, F.; Xie, J.; Bai, L.; Bi, J. Analysis of Gelation Properties of Peach-κ-Carrageenan Gels: Effect of Erythritol. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100385. [Google Scholar] [CrossRef]
- Shen, Y.-R.; Kuo, M.-I. Effects of Different Carrageenan Types on the Rheological and Water-Holding Properties of Tofu. LWT 2017, 78, 122–128. [Google Scholar] [CrossRef]
- Voron’ko, N.G.; Derkach, S.R.; Vovk, M.A.; Tolstoy, P.M. Complexation of κ-Carrageenan with Gelatin in the Aqueous Phase Analysed by 1H NMR Kinetics and Relaxation. Carbohydr. Polym. 2017, 169, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.C.; Swaminathan, K.; Sud, K.C. An Improved Turbidimetric Procedure for the Determination of Sulphate in Plants and Soils. Talanta 1977, 24, 49–50. [Google Scholar] [CrossRef]
- Yaphe, W.; Arsenault, G.P. Improved Resorcinol Reagent for the Determination of Fructose, and of 3,6-Anhydrogalactose in Polysaccharides. Anal. Biochem. 1965, 13, 143–148. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Li, Y.; Guo, Z. Improvement of Soluble Dietary Fiber Quality in Tremella Fuciformis Stem by Steam Explosion Technology: An Evaluation of Structure and Function. Food Chem. 2024, 437, 137867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Liu, Y.; Xiao, Q.; Chen, F.; Weng, H.; Chen, J.; Zhang, Y.; Xiao, A. Eco-Friendly Extraction, Structure, and Gel Properties of ι-Carrageenan Extracted Using Ca(OH)2. Mar. Drugs 2022, 20, 419. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, Y.; Wang, M.; Cui, T.; Peng, Z.; Cheng, J. Moisture Distribution and Structural Properties of Frozen Cooked Noodles with NaCl and Kansui. Foods 2021, 10, 3132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, Q.; Zhang, Y.; Weng, H.; Wang, S.; Chen, F.; Xiao, A. A Comparative Study on the Gel Transition, Structural Changes, and Emulsifying Properties of Anhydride-Esterified Agar with Varied Degrees of Substitution and Carbon Chain Lengths. Food Hydrocoll. 2023, 141, 108690. [Google Scholar] [CrossRef]
KC | SE-KC | |||
---|---|---|---|---|
T21 | T22 | T21 | T22 | |
peak onset time/ms | 2.97 | 943.79 | 0.56 | 666.99 |
peak point time/ms | 4.20 | 1534.37 | 0.91 | 1084.37 |
peak end time/ms | 7.32 | 2171.12 | 1.83 | 1644.67 |
peak ratio (%) | 0.10 | 99.90 | 0.49 | 99.51 |
Carrageenan Content/% | Hardness (N) | Cohesiveness (%) | Springiness (mm) | Gumminess (N) | |
---|---|---|---|---|---|
KC Jelly | 0.7 | 20.87 ± 2.91 e | 0.4 ± 0.1 a | 2.29 ± 0.09 c | 7.93 ± 2.12 d |
0.9 | 31.01 ± 3.32 d | 0.33 ± 0.15 a | 2.57 ± 0.21 ab | 11.44 ± 5.94 d | |
1.1 | 43.45 ± 7.05 c | 0.5 ± 0.1 a | 2.8 ± 0.05 a | 19.89 ± 2.59 c | |
1.3 | 59.68 ± 1.24 b | 0.5 ± 0 a | 2.78 ± 0.08 a | 30.03 ± 0.96 b | |
1.5 | 70.19 ± 4.17 a | 0.5 ± 0 a | 2.69 ± 0.05 a | 34.18 ± 1.25 bc | |
1.7 | 74.76 ± 4.77 a | 0.5 ± 0 a | 2.37 ± 0.17 bc | 36.85 ± 1.28 a | |
SE-KC Jelly | 0.7 | 24.19 ± 0.5 e | 0.47 ± 0.01 c | 2.61 ± 0.07 d | 11.32 ± 0.35 d |
0.9 | 31.13 ± 1.11 d | 0.51 ± 0.03 bc | 2.9 ± 0.16 c | 15.77 ± 0.77 cd | |
1.1 | 41.7 ± 1.69 c | 0.51 ± 0.03 a | 3.19 ± 0.08 ab | 21.37 ± 0.48 c | |
1.3 | 55.23 ± 3.89 b | 0.53 ± 0.02 a | 3.03 ± 0.23 abc | 29.14 ± 1.13 b | |
1.5 | 67.09 ± 2.15 a | 0.52 ± 0.01 ab | 3.27 ± 0.07 a | 35.09 ± 1.34 a | |
1.7 | 69.05 ± 4.05 a | 0.47 ± 0.08 a | 2.94 ± 0.13 bc | 32.19 ± 6.95 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Yang, Q.; Wang, C.; Guo, Z. Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application. Gels 2024, 10, 791. https://doi.org/10.3390/gels10120791
Lin M, Yang Q, Wang C, Guo Z. Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application. Gels. 2024; 10(12):791. https://doi.org/10.3390/gels10120791
Chicago/Turabian StyleLin, Mengfan, Qingyu Yang, Changrong Wang, and Zebin Guo. 2024. "Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application" Gels 10, no. 12: 791. https://doi.org/10.3390/gels10120791
APA StyleLin, M., Yang, Q., Wang, C., & Guo, Z. (2024). Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application. Gels, 10(12), 791. https://doi.org/10.3390/gels10120791