Swelling Behavior of Anionic Hydrogels: Experiments and Modeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanical Compression Tests
2.2. Steady-State Behavior
2.3. Transient Regime
3. Conclusions
4. Materials and Methods
4.1. Swelling/Deswelling Experiments
4.2. Mechanical Compression Test
5. Modeling
5.1. Phenomenology
5.2. Free Energy Imbalance and Constitutive Equations
5.3. Steady State’s Modeling
Implementation at Steady State
5.4. Transient Regime’s Modeling
Implementation at Transient Regime
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Donnan Equations
References
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Peppas, N.A.; Khare, A.R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 1993, 11, 1–35. [Google Scholar] [CrossRef]
- Gao, X.; He, C.; Xiao, C.; Zhuang, X.; Chen, X. Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 2013, 54, 1786–1793. [Google Scholar] [CrossRef]
- Li, Y.; Tanaka, T. Phase transitions of gels. Annu. Rev. Mater. Sci. 1992, 22, 243–277. [Google Scholar] [CrossRef]
- Osada, Y.; Gong, J.P. Soft and wet materials: Polymer gels. Adv. Mater. 1998, 10, 827–837. [Google Scholar] [CrossRef]
- Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003, 2, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; La Flamme, K.; Peppas, N.A. Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J. Appl. Polym. Sci. 2003, 89, 1606–1613. [Google Scholar] [CrossRef]
- Lewus, R.K.; Carta, G. Protein transport in constrained anionic hydrogels: Diffusion and boundary-layer mass transfer. Ind. Eng. Chem. Res. 2001, 40, 1548–1558. [Google Scholar] [CrossRef]
- Galaev, I.Y.; Mattiasson, B. ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 1999, 17, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Ulijn, R.V.; Bibi, N.; Jayawarna, V.; Thornton, P.D.; Todd, S.J.; Mart, R.J.; Smith, A.M.; Gough, J.E. Bioresponsive hydrogels. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef]
- Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 2009, 5, 511–524. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 2016, 23, 748–770. [Google Scholar] [CrossRef] [PubMed]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm. 2020, 573, 118803. [Google Scholar] [CrossRef]
- De Piano, R.; Caccavo, D.; Barba, A.A.; Lamberti, G. Hydrogel: Ph Role on Polyelectrolyte Behaviour in Aqueous Media. Chem. Eng. Trans. 2023, 100, 397–402. [Google Scholar]
- Horkay, F.; Tasaki, I.; Basser, P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2000, 1, 84–90. [Google Scholar] [CrossRef]
- Mattoussi, H.; Karasz, F.E.; Langley, K.H. Electrostatic and screening effects on the dynamic aspects of polyelectrolyte solutions. J. Chem. Phys. 1990, 93, 3593–3603. [Google Scholar] [CrossRef]
- English, A.E.; Tanaka, T.; Edelman, E.R. Polyelectrolyte hydrogel instabilities in ionic solutions. J. Chem. Phys. 1996, 105, 10606–10613. [Google Scholar] [CrossRef]
- Budtova, T.; Suleimenov, I.; Frenkel, S. Peculiarities of the kinetics of polyelectrolyte hydrogel collapse in solutions of copper sulfate. Polymer 1995, 36, 2055–2058. [Google Scholar] [CrossRef]
- Caccavo, D. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. Int. J. Pharm. 2019, 560, 175–190. [Google Scholar] [CrossRef]
- Caccavo, D.; Lamberti, G. PoroViscoElastic model to describe hydrogels’ behavior. Mater. Sci. Eng. C 2017, 76, 102–113. [Google Scholar] [CrossRef]
- Caccavo, D.; Lamberti, G.; Barba, A.A. Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling. Eur. J. Pharm. Biopharm. 2020, 152, 299–306. [Google Scholar] [CrossRef] [PubMed]
- De Piano, R.; Caccavo, D.; Barba, A.A.; Lamberti, G. Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior. Chem. Eng. Sci. 2023, 279, 118959. [Google Scholar] [CrossRef]
- Marcombe, R.; Cai, S.; Hong, W.; Zhao, X.; Lapusta, Y.; Suo, Z. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 2010, 6, 784–793. [Google Scholar] [CrossRef]
- Kara, S.; Arda, E.; Pekcan, Ö. Fractal dimensions of κ-carrageenan gels during gelation and swelling. J. Macromol. Sci. Part B 2018, 57, 715–731. [Google Scholar] [CrossRef]
- Ostroha, J.; Pong, M.; Lowman, A.; Dan, N. Controlling the collapse/swelling transition in charged hydrogels. Biomaterials 2004, 25, 4345–4353. [Google Scholar] [CrossRef]
- Olofsson, G.; Vlasenko, K. dynamics of Proton Dissociation of Polyacrylic Acid. Acta Chem. Scand. 1982, 36, 485–488. [Google Scholar] [CrossRef]
- Gunnarsson, G.; Wennerströum, H.; Olofsson, G.; Zacharov, A. Enthalpies of proton dissociation of poly (acrylic acid). Comparison between experiment and theory for a polyelectrolyte system. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1980, 76, 1287–1295. [Google Scholar] [CrossRef]
- Teraoka, I. Polymer Solutions: An Introduction to Physical Properties; John Wiley & Sons, Inc., Publication: Hoboken, NJ, USA, 2002. [Google Scholar]
- Eichenbaum, G.M.; Kiser, P.F.; Simon, S.A.; Needham, D. pH and ion-triggered volume response of anionic hydrogel microspheres. Macromolecules 1998, 31, 5084–5093. [Google Scholar] [CrossRef]
- Ogawa, I.; Yamano, H.; Miyagawa, K. Rate of swelling of sodium polyacrylate. J. Appl. Polym. Sci. 1993, 47, 217–222. [Google Scholar] [CrossRef]
- Tally, M.; Atassi, Y. Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly (acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym. Bull. 2016, 73, 3183–3208. [Google Scholar] [CrossRef]
- Paul, J.; Romeis, S.; Tomas, J.; Peukert, W. A review of models for single particle compression and their application to silica microspheres. Adv. Powder Technol. 2014, 25, 136–153. [Google Scholar] [CrossRef]
- Caccavo, D.; Vietri, A.; Lamberti, G.; Barba, A.A.; Larsson, A. Modeling the mechanics and the transport phenomena in hydrogels. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 42, pp. 357–383. [Google Scholar]
- Gurtin, M.E.; Fried, E.; Anand, L. The Mechanics and Thermodynamics of Continua; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Holzapfel, A.G. Nonlinear Solid Mechanics II; John Wiley & Sons Inc.: Chichester, UK, 2000. [Google Scholar]
- Horkay, F.; McKenna, G.B. Polymer networks and gels. In Physical Properties of Polymers Handbook; Springer: Berlin/Heidelberg, Germany, 2007; pp. 497–523. [Google Scholar]
- Hong, W.; Zhao, X.; Suo, Z. Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 2010, 58, 558–577. [Google Scholar] [CrossRef]
- Liu, Z.; Toh, W.; Ng, T.Y. Advances in mechanics of soft materials: A review of large deformation behavior of hydrogels. Int. J. Appl. Mech. 2015, 7, 1530001. [Google Scholar] [CrossRef]
- Table of Diffusion Coefficients. Available online: https://www.aqion.de/site/diffusion-coefficients (accessed on 9 December 2024).
Parameters | Source | |
---|---|---|
KNa | 10−1 | Literature ([31]) |
GDry | 140 kPa | Independent experiment (Section Mechanical Compression Test) |
Ka | 10−3.8 | Optimization 1 |
f | 0.14 | Optimization |
χ12 | α = 0.38 | Optimization |
β = 0.78 | Optimization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Piano, R.; Caccavo, D.; Barba, A.A.; Lamberti, G. Swelling Behavior of Anionic Hydrogels: Experiments and Modeling. Gels 2024, 10, 813. https://doi.org/10.3390/gels10120813
De Piano R, Caccavo D, Barba AA, Lamberti G. Swelling Behavior of Anionic Hydrogels: Experiments and Modeling. Gels. 2024; 10(12):813. https://doi.org/10.3390/gels10120813
Chicago/Turabian StyleDe Piano, Raffaella, Diego Caccavo, Anna Angela Barba, and Gaetano Lamberti. 2024. "Swelling Behavior of Anionic Hydrogels: Experiments and Modeling" Gels 10, no. 12: 813. https://doi.org/10.3390/gels10120813
APA StyleDe Piano, R., Caccavo, D., Barba, A. A., & Lamberti, G. (2024). Swelling Behavior of Anionic Hydrogels: Experiments and Modeling. Gels, 10(12), 813. https://doi.org/10.3390/gels10120813