Effect of Quercetin-Doped Hydrogen Peroxide Gels on Enamel Properties: An In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Experimental Design
4.2. Preparation of Enamel/Dentin Discs
4.3. Formulation and Determination of Experimental Groups
4.4. Color Change Analysis
4.4.1. Preliminary Selection and Allocation of Enamel/Dentin Discs
4.4.2. Staining Process of Enamel/Dentin Discs
4.4.3. Bleaching Procedure
4.4.4. Color Measurements
4.5. Assessment of Surface Roughness, Surface Hardness, and Cross-Sections
4.6. Transamelodentinal Diffusion of H2O2 Assay
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Chen, S.; Wang, J.; Xiao, X.; Song, Z.; Liu, S. Tooth whitening: Current status and prospects. Odontology 2024, 112, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Favoreto, M.W.; Camargo, C.M.; Forville, H.; Carneiro, T.D.; Ñaupari-Villasante, R.; Wendlinger, M.; Reis, A.; Loguercio, A.D. Bleaching efficacy of in-office dental bleaching with different application protocols: A single-blind randomized controlled trial. Clin. Oral Investig. 2024, 28, 295. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, R.; Stone, S.; German, M.; Waterhouse, P. A review on dental whitening. J. Dent. 2020, 100, 103423. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.J.; Yang, S.; Hong, D.W.; Cheng, Y.L.; Attin, T.; Yu, H. The efficacy of at-home, in-office, and combined bleaching regimens: A randomized controlled clinical trial. Oper. Dent. 2023, 48, E80. [Google Scholar] [CrossRef]
- Ferraz, N.K.L.; Nogueira, L.C.; Neiva, I.M.; Ferreira, R.C.; Moreira, A.N.; Magalhães, C.S. Longevity, effectiveness, safety, and impact on quality of life of low-concentration hydrogen peroxides in-office bleaching: A randomized clinical trial. Clin. Oral Investig. 2019, 23, 2061–2070. [Google Scholar] [CrossRef]
- Nunes, G.P.; de Oliveira Alves, R.; Peres, G.R.; Ragghianti, M.H.; de Toledo, P.T.; dos Reis Prado, A.H.; Ferreira-Baptista, C.; Delbem, A.C. Protective role of calcium-based agents in dental bleaching gels: Insights from a systematic review and meta-analysis of clinical and laboratory evidence. Clin. Oral Investig. 2025, 29, 180. [Google Scholar] [CrossRef]
- Eimar, H.; Siciliano, R.; Abdallah, M.N.; Nader, A.S.; Amin, W.M.; Martinez, P.P.; Celemin, A.; Cerruti, M.; Tamimi, F. Hydrogen peroxide whitens teeth by oxidizing the organic structure. J. Dent. 2012, 40, e25–e33. [Google Scholar] [CrossRef]
- Nunes, G.P.; Marques, M.T.; de Toledo, P.T.A.; Alves, R.O.; Martins, T.P.; Delbem, A.C.B. Effect of a novel low-concentration hydrogen peroxide bleaching gel containing nano-sized sodium trimetaphosphate and fluoride. J. Dent. 2024, 150, 105330. [Google Scholar] [CrossRef]
- Nunes, G.P.; de Farias Batista, G.; de Toledo, P.T.; Martins, T.P.; de Oliveira Alves, R.; Fernandes, A.V.; Delbem, A.C. Synthesis and application of calcium cyclotriphosphate in bleaching formulations: Effects on dental enamel properties. J. Dent. 2025, 155, 105614. [Google Scholar] [CrossRef]
- Gruba, A.S.; Nunes, G.P.; Marques, M.T.; Danelon, M.; de Oliveira Alves, R.; de Toledo, P.T.; Briso, A.L.; Delbem, A.C. Influence of bleaching gels formulated with nano-sized sodium trimetaphosphate and fluoride on the physicochemical, mechanical, and morphological properties of dental enamel. J. Dent. 2023, 139, 104743. [Google Scholar] [CrossRef]
- Garcia, K.G.; Nunes, G.P.; Delbem, A.C.; Dos Santos, P.H.; Fernandes, G.L.; Robles, H.F.; Lemos, P.B.; Danelon, M. Inorganic phosphate effect in a hydrogen peroxide-based bleaching agent: Physicochemical, mechanical, and morphological properties of dental enamel. Oper. Dent. 2024, 49, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Antunes, E.V.; Basting, R.T.; do Amaral, F.L.; França, F.M.; Turssi, C.P.; Kantovitz, K.R.; Bronze-Uhle, E.S.; Filho, P.N.; Basting, R.T. Titanium dioxide nanotubes in a hydrogen peroxide-based bleaching agent: Physicochemical properties and effectiveness of dental bleaching under the influence of a poliwave led light activation. Clin. Oral Investig. 2023, 27, 1745–1755. [Google Scholar] [CrossRef]
- Pini, N.I.P.; Piccelli, M.R.; Vieira-Junior, W.F.; Ferraz, L.N.; Aguiar, F.H.B.; Lima, D.A.N.L. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: In vitro results. Clin. Oral Investig. 2022, 26, 471–479. [Google Scholar] [CrossRef]
- Fattah, Z.; Shafiei, F.; Rajabi, F. Effect of tannic acid and quercetin antioxidants on bond strength of resin cement to dentin after internal bleaching. Eur. J. Prosthodont. Restor. Dent. 2022, 30, 126–133. [Google Scholar]
- Bulut, H.; Kaya, A.D.; Turkun, M. Tensile bond strength of brackets after antioxidant treatment on bleached teeth. Eur. J. Orthod. 2005, 27, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Ebeler, S.E. Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food Chem. Toxicol. 2009, 47, 2716–2722. [Google Scholar] [CrossRef]
- Pereira, R.C.; de Souza, L.V.S.; Kury, M.; Matos, I.C.R.T.; Carneiro, R.V.D.T.S.D.M.; Berger, S.B.; Cavalli, V. Color stability of enamel treated with different antioxidant agents following at-home bleaching with 10% hydrogen peroxide. J. Appl. Oral Sci. 2024, 32, e20240056. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review. Phytother. Res. 2022, 36, 778–807. [Google Scholar] [CrossRef]
- Rather, R.A.; Bhagat, M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med. 2020, 9, 9181–9192. [Google Scholar] [CrossRef]
- Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889–904. [Google Scholar] [CrossRef]
- Alasmari, A.F. Cardioprotective and nephroprotective effects of quercetin against different toxic agents. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7425–7439. [Google Scholar] [PubMed]
- Moradian, M.; Saadat, M.; Shiri, M.H.; Sohrabniya, F. Comparative evaluation of the postbleaching application of sodium ascorbate, alpha-tocopherol, and quercetin on shear bond strength of composite resin to enamel. Clin. Exp. Dent. Res. 2022, 8, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.J.; Hong, D.W.; Lu, Z.C.; Yu, H. Effect of quercetin pretreatment on the immediate and aged bond strength of bleached dentin. J. Mech. Behav. Biomed. Mater. 2022, 135, 105476. [Google Scholar] [CrossRef] [PubMed]
- Pourhajibagher, M.; Bahrami, R.; Bahador, A. An ex vivo evaluation of physico-mechanical and anti-biofilm properties of resin-modified glass ionomer containing ultrasound waves-activated nanoparticles against Streptococcus mutans biofilm around orthodontic bands. Photodiagnosis Photodyn. Ther. 2022, 40, 103051. [Google Scholar] [CrossRef]
- Arpornmaeklong, P.; Sareethammanuwat, M.; Apinyauppatham, K.; Boonyuen, S. Characteristics and biologic effects of thermosensitive quercetin-chitosan/collagen hydrogel on human periodontal ligament stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1656–1670. [Google Scholar] [CrossRef]
- Catauro, M.; Papale, F.; Bollino, F.; Piccolella, S.; Marciano, S.; Nocera, P.; Pacifico, S. Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci. Technol. Adv. Mater. 2015, 16, 035001. [Google Scholar] [CrossRef]
- Shamsedin, M.; Arash, V.; Jahromi, M.B.; Moghadamnia, A.A.; Kamel, M.R.; Ezoji, F.; Kavoli, S.; Ghasemi, T.; Ramezani, G. Efficacy of quercetin flavonoid in recovering the postbleaching bond strength of orthodontic brackets: A preliminary study. J. Orthod. Sci. 2017, 6, 16–21. [Google Scholar]
- Kanno, S.; Shouji, A.; Asou, K.; Ishikawa, M. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J. Pharmacol. Sci. 2003, 92, 166–170. [Google Scholar] [CrossRef]
- Olmedo, D.E.R.-P.; Kury, M.; Resende, B.A.; Cavalli, V. Use of antioxidants to restore bond strength after tooth bleaching with peroxides. Eur. J. Oral Sci. 2021, 129, e12773. [Google Scholar] [CrossRef]
- Akabane, S.T.F.; Danelon, M.; Nunes, G.P.; Gruba, A.S.; de Souza-Costa, C.A.; de Oliveira Duque, C.; de Oliveira Gallinari, M.; Fraga Briso, A.L.; Botazzo Delbem, A.C. Evaluation of the aesthetic effect, enamel microhardness, and trans-amelodentinal cytotoxicity of a new bleaching agent for professional use containing trimetaphosphate and fluoride. J. Mech. Behav. Biomed. Mater. 2021, 114, 104225. [Google Scholar] [CrossRef]
- Júnior, N.A.N.; Nunes, G.P.; Gruba, A.S.; Danelon, M.; da Silva, L.M.A.V.; de Farias Batista, G.; Briso, A.L.F.; Delbem, A.C.B. Evaluation of bleaching efficacy, microhardness, and trans-amelodentinal diffusion of a novel bleaching agent for an in-office technique containing hexametaphosphate and fluoride. Clin. Oral Investig. 2022, 26, 5071–5078. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Huo, M.S.; Kim, K.H.; Kim, S.K.; Kim, Y.J. Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel. J. Oral Rehabil. 2002, 29, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Ferrari, M.; Davidson, C.L. Color and opacity variations in three different resin-based composite products after water aging. Dent. Mater. 2004, 20, 530–534. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Zdanowicz, M.; Macieja, S.; Kowalczyk, K.; Bartkowiak, A. Development and characterization of bioactive poly(butylene-succinate) films modified with quercetin for food packaging applications. Polymers 2021, 13, 1798. [Google Scholar] [CrossRef]
- Strazzi-Sahyon, H.B.; da Silva, L.M.A.; Briso, A.L.F.; Dos Santos, P.H. In vitro study on how antioxidant solutions affect enamel surface characteristics and bonding interface of ceramic laminate veneers luting after dental bleaching. J. Mech. Behav. Biomed. Mater. 2022, 133, 105322. [Google Scholar] [CrossRef]
- Strazzi-Sahyon, H.B.; Seixas, D.A.; Maluly-Proni, A.T.; Briso, A.; Yoshimura, H.N.; Constantino, C.; Dos Santos, P.H. Effect of antioxidant agents after dental bleaching on color stability and mechanical properties of bonding interface components in ceramic laminate veneer luting. Oper. Dent. 2023, 48, 391–403. [Google Scholar] [CrossRef]
- Coceska, E.; Gjorgievska, E.; Coleman, N.J.; Gabric, D.; Slipper, I.J.; Stevanovic, M.; Nicholson, J.W. Enamel alteration following tooth bleaching and remineralization. J. Microsc. 2016, 262, 232–244. [Google Scholar] [CrossRef]
- Remigante, A.; Spinelli, S.; Straface, E.; Gambardella, L.; Caruso, D.; Falliti, G.; Dossena, S.; Marino, A.; Morabito, R. Antioxidant activity of quercetin in a H2O2-induced oxidative stress model in red blood cells: Functional role of band 3 protein. Int. J. Mol. Sci. 2022, 23, 10991. [Google Scholar] [CrossRef]
- Jiang, N.W.; Hong, D.W.; Attin, T.; Cheng, H.; Yu, H. Quercetin reduces erosive dentin wear: Evidence from laboratory and clinical studies. Dent. Mater. 2020, 36, 1430–1436. [Google Scholar] [CrossRef]
- Hosseinpour-Nader, A.; Karimi, N.; Ghafari, H.A. Ex-vivo effects of propolis quantum dots-nisin-nanoquercetin-mediated photodynamic therapy on Streptococcus mutans biofilms and white spot lesions. Photodiagn. Photodyn. Ther. 2023, 41, 103255. [Google Scholar] [CrossRef]
- Epasinghe, D.J.; Yiu, C.; Burrow, M.F. Effect of flavonoids on remineralization of artificial root caries. Aust. Dent. J. 2016, 61, 196–202. [Google Scholar] [CrossRef]
- Nunes, G.P.; Alves, R.O.; Ragghianti, M.H.F.; Reis-Prado, A.H.; Toledo, P.T.A.; Martins, T.P.; Vieira, A.P.M.; Peres, G.R.; Duque, C. Effects of quercetin on mineralized dental tissues: A scoping review. Arch. Oral Biol. 2025, 169, 106119. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Cheng, Y.L.; Yang, M.H.; Su, C.; Yu, H. Enhancing the inhibition of dental erosion and abrasion with quercetin-encapsulated hollow mesoporous silica nanocomposites. Front. Bioeng. Biotechnol. 2024, 12, 1343329. [Google Scholar] [CrossRef] [PubMed]
- Capalbo, L.C.; Delbem, A.C.B.; Dal-Fabbro, R.; Inácio, K.K.; de Oliveira, R.C.; Pessan, J.P. Effect of sodium hexametaphosphate and quercetin, associated or not with fluoride, on dentin erosion in vitro. Arch. Oral Biol. 2022, 143, 105541. [Google Scholar] [CrossRef]
- Afanas’ev, I.B.; Dorozhko, A.I.; Brodskii, A.V.; Kostyuk, V.A.; Potapovitch, A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 1989, 38, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Maddula, D.; Vasepalli, M.; Martha, S.; Birapu, U.; Punithavathy, R.; Raparla, M. Comparative evaluation of effect of different antioxidants on shear bond strength of composites on bleached enamel: An in vitro study. Int. J. Clin. Pediatr. Dent. 2023, 16, 87–92. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Valko, R.; Liska, J.; Nepovimova, E.; Kuca, K.; Valko, M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem.-Biol. Interact. 2025, 413, 111489. [Google Scholar] [CrossRef]
- Sulieman, M.; Addy, M.; Rees, J.S. Development and evaluation of a method in vitro to study the effectiveness of tooth bleaching. J. Dent. 2003, 31, 415–422. [Google Scholar] [CrossRef]
- del Mar Pérez, M.; Ghinea, R.; Rivas, M.J.; Yebra, A.; Ionescu, A.M.; Paravina, R.D.; Herrera, L.J. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 2016, 32, 461–467. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2004, 30, 21–30. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Mar Perez, M.D. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Mottola, H.A.; Simpson, B.E.; Gorin, G. Absorptiometric determination of hydrogen peroxide in submicrogram amounts with leuco crystal violet and peroxidase as catalyst. Anal. Chem. 1970, 42, 410–411. [Google Scholar] [CrossRef]
Treatments | Variables | ||||
---|---|---|---|---|---|
Ra | SH | ||||
Initial | Final | Initial | Final | %SH | |
NC | 0.068 aA (0.015) | 0.070 aA (0.018) | 368.1 aA (5.7) | 369.7 aA (3.5) | 0.4 a (1.0) |
HP | 0.071 aA (0.018) | 0.116 bB (0.012) | 368.1 aA (6.4) | 307.4 bB (3.1) | −16.5 b (1.4) |
HP/0.25%QC | 0.068 aA (0.020) | 0.088 cB (0.017) | 368.3 aA (6.2) | 347.6 cB (3.4) | −5.6 c (1.7) |
HP/0.5%QC | 0.071 aA (0.024) | 0.084 cB (0.023) | 368.0 aA (6.0) | 354.5 cB (4.1) | −3.6 c (1.7) |
HP/1%QC | 0.069 aA (0.014) | 0.073 aA (0.011) | 368.0 aA (6.1) | 365.5 aA (4.7) | −0.7 a (0.6) |
Experimental Gels | Composition | pH |
---|---|---|
HP | 35% HP, carbopol® polymers thickeners, and NaOH 4.0 Mol/L to adjust the pH | 7.02 (0.2) |
HP/0.25%QC | 35% HP, carbopol® polymers thickeners, 0.25% quercetin, and NaOH 4.0 Mol/L to adjust the pH | 7.03 (0.1) |
HP/0.5%QC | 35% HP, carbopol® polymers thickeners, 0.5% quercetin, and NaOH 4.0 Mol/L to adjust the pH | 7.05 (0.3) |
HP/1%QC | 35% HP, carbopol® polymers thickeners, 1% quercetin, and NaOH 4.0 Mol/L to adjust the pH | 7.03 (0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, R.d.O.; Nunes, G.P.; Martins, T.P.; Alves de Toledo, P.T.; Ragghianti, M.H.F.; Delbem, A.C.B. Effect of Quercetin-Doped Hydrogen Peroxide Gels on Enamel Properties: An In Vitro Study. Gels 2025, 11, 325. https://doi.org/10.3390/gels11050325
Alves RdO, Nunes GP, Martins TP, Alves de Toledo PT, Ragghianti MHF, Delbem ACB. Effect of Quercetin-Doped Hydrogen Peroxide Gels on Enamel Properties: An In Vitro Study. Gels. 2025; 11(5):325. https://doi.org/10.3390/gels11050325
Chicago/Turabian StyleAlves, Renata de Oliveira, Gabriel Pereira Nunes, Tamires Passadori Martins, Priscila Toninatto Alves de Toledo, Matheus Henrique Faccioli Ragghianti, and Alberto Carlos Botazzo Delbem. 2025. "Effect of Quercetin-Doped Hydrogen Peroxide Gels on Enamel Properties: An In Vitro Study" Gels 11, no. 5: 325. https://doi.org/10.3390/gels11050325
APA StyleAlves, R. d. O., Nunes, G. P., Martins, T. P., Alves de Toledo, P. T., Ragghianti, M. H. F., & Delbem, A. C. B. (2025). Effect of Quercetin-Doped Hydrogen Peroxide Gels on Enamel Properties: An In Vitro Study. Gels, 11(5), 325. https://doi.org/10.3390/gels11050325