An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product
Abstract
:1. Introduction
2. Proteins
2.1. Legumes as Protein Sources
2.1.1. Soy
2.1.2. Pea, Chickpea, Lentils, Other Beans and Peanuts
2.2. Cereals and Pseudocereals as Protein Sources
2.2.1. Cereals
2.2.2. Pseudocereals
2.3. Oil Seed Proteins
2.4. Algae as Protein Sources
3. Fats
4. Structural Ingredients and Stabilizing Agents
5. Spices
6. Coloring Agents
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Görkem Üçtuğ, F.; Günaydin, D.; Hünkar, B.; Öngelen, C. Carbon Footprints of Omnivorous, Vegetarian, and Vegan Diets Based on Traditional Turkish Cuisine. Sustain. Prod. Consum. 2021, 26, 597–609. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed]
- Allied Market Research Vegan Food Market Size, Share Industry Forecast to 2030. Available online: https://www.alliedmarketresearch.com/vegan-food-market (accessed on 26 September 2023).
- Santana, Á.L.; Macedo, G.A. Challenges on the Processing of Plant-Based Neuronutraceuticals and Functional Foods with Emerging Technologies: Extraction, Encapsulation and Therapeutic Applications. Trends Food Sci. Technol. 2019, 91, 518–529. [Google Scholar] [CrossRef]
- Godoi, F.C.; Prakash, S.; Bhandari, B.R. 3D Printing of Plant-Based Foods. In Engineering Plant-Based Food Systems, 1st ed.; Prakash, S., Bandhari, B., Gaiani, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 301–314. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Yen, P.P.L.; Singh, A.; Kitts, D.D. Technologies for Sustainable Plant-Based Food Systems: Removing the Plant-Based Flavours from Non-Dairy Beverages Using Microwave-Vacuum Dehydration. Innov. Food Sci. Emerg. Technol. 2023, 86, 103371. [Google Scholar] [CrossRef]
- Nachal, N.; Moses, J.A.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D Printing in Food Processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Severini, C.; Derossi, A.; Azzollini, D. Variables Affecting the Printability of Foods: Preliminary Tests on Cereal-Based Products. Innov. Food Sci. Emerg. Technol. 2016, 38, 281–291. [Google Scholar] [CrossRef]
- Ramachandraiah, K. Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. Sustainability 2021, 13, 938. [Google Scholar] [CrossRef]
- Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J.; Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J. A New Application for Food Customization with Additive Manufacturing Technologies. AIPC 2012, 1431, 825–833. [Google Scholar] [CrossRef]
- Le Tohic, C.; O’Sullivan, J.J.; Drapala, K.P.; Chartrin, V.; Chan, T.; Morrison, A.P.; Kerry, J.P.; Kelly, A.L. Effect of 3D Printing on the Structure and Textural Properties of Processed Cheese. J. Food Eng. 2018, 220, 56–64. [Google Scholar] [CrossRef]
- Derossi, A.; Caporizzi, R.; Azzollini, D.; Severini, C. Application of 3D Printing for Customized Food. A Case on the Development of a Fruit-Based Snack for Children. J. Food Eng. 2018, 220, 65–75. [Google Scholar] [CrossRef]
- Dong, X.; Huang, Y.; Pan, Y.; Wang, K.; Prakash, S.; Zhu, B. Investigation of Sweet Potato Starch as a Structural Enhancer for Three-Dimensional Printing of Scomberomorus niphonius Surimi. J. Texture Stud. 2019, 50, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, J.; Chen, Q.; Hu, A.; Li, T.; Guo, F.; Wang, Q.; Liu, H.; Zhang, J.; Chen, Q.; et al. Preparation of Whole-Cut Plant-Based Pork Meat and Its Quality Evaluation with Animal Meat. Gels 2023, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, A.; Irfan, S.; Sameen, A.; Khalid, N. Plant-Based Meat Analogs: A Review with Reference to Formulation and Gastrointestinal Fate. Curr. Res. Food Sci. 2022, 5, 973. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Kataria, P.; Nautiyal, M.; Tuteja, I.; Sharma, V.; Ahmad, F.; Haque, S.; Shahwan, M.; Capanoglu, E.; Vashishth, R.; et al. Comprehensive Review on the Role of Plant Protein As a Possible Meat Analogue: Framing the Future of Meat. ACS Omega 2023, 8, 23305–23319. [Google Scholar] [CrossRef] [PubMed]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.R.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal Proteins: Production Strategies and Nutritional and Functional Properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a Sustainable Source of Edible Proteins and Bioactive Peptides—Current Trends and Future Prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef]
- Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-Based Meat Analogue (PBMA) as a Sustainable Food: A Concise Review. Eur. Food Res. Technol. 2021, 247, 2499–2526. [Google Scholar] [CrossRef]
- Sheneni, V.D.; Momoh, I.S.; Emmanuel, V.S. Neuromodulatory Properties of Soyabean Bioactive Proteins and Peptides. Int. J. Nutr. Sci. 2023, 8, 1077. [Google Scholar]
- Tsumura, K.; Saito, T.; Tsuge, K.; Ashida, H.; Kugimiya, W.; Inouye, K. Functional Properties of Soy Protein Hydrolysates Obtained by Selective Proteolysis. LWT—Food Sci. Technol. 2005, 38, 255–261. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Chen, Y.H.; Chien, Y.W.; Huang, W.H.; Lin, S.H. Effect of Soy Saponin on the Growth of Human Colon Cancer Cells. World J. Gastroenterol. 2010, 16, 3371. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel Protein Sources for Applications in Meat-Alternative Products—Insight and Challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing, 1st ed.; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 103–126. [Google Scholar] [CrossRef]
- Zahari, I.; Östbring, K.; Purhagen, J.K.; Rayner, M. Plant-Based Meat Analogues from Alternative Protein: A Systematic Literature Review. Foods 2022, 11, 2870. [Google Scholar] [CrossRef]
- Krintiras, G.A.; Gadea Diaz, J.; Van Der Goot, A.J.; Stankiewicz, A.I.; Stefanidis, G.D. On the Use of the Couette Cell Technology for Large Scale Production of Textured Soy-Based Meat Replacers. J. Food Eng. 2016, 169, 205–213. [Google Scholar] [CrossRef]
- Nieuwland, M.; Geerdink, P.; Brier, P.; Van Den Eijnden, P.; Henket, J.T.M.M.; Langelaan, M.L.P.; Stroeks, N.; Van Deventer, H.C.; Martin, A.H. Food-Grade Electrospinning of Proteins. Innov. Food Sci. Emerg. Technol. 2013, 20, 269–275. [Google Scholar] [CrossRef]
- Chantanuson, R.; Nagamine, S.; Kobayashi, T.; Nakagawa, K. Preparation of Soy Protein-Based Food Gels and Control of Fibrous Structure and Rheological Property by Freezing. Food Struct. 2022, 32, 100258. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, D.Y.; Jeong, J.W.; Kim, J.H.; Yun, S.H.; Joo, S.T.; Choi, I.; Choi, J.S.; Kim, G.D.; Hur, S.J. Studies on Meat Alternatives with a Focus on Structuring Technologies. Food Bioprocess Technol. 2023, 16, 1389–1412. [Google Scholar] [CrossRef]
- Ozturk, O.K.; Hamaker, B.R. Texturization of Plant Protein-Based Meat Alternatives: Processing, Base Proteins, and Other Constructional Ingredients. Future Foods 2023, 8, 100248. [Google Scholar] [CrossRef]
- Samard, S.; Ryu, G.H. Physicochemical and Functional Characteristics of Plant Protein-Based Meat Analogs. J. Food Process. Preserv. 2019, 43, e14123. [Google Scholar] [CrossRef]
- Carranza, T.; Guerrero, P.; de la Caba, K.; Etxabide, A. Texture-Modified Soy Protein Foods: 3D Printing Design and Red Cabbage Effect. Food Hydrocoll. 2023, 145, 109141. [Google Scholar] [CrossRef]
- Taghian Dinani, S.; Zhang, Y.; Vardhanabhuti, B.; van der Goot, A.J. Enhancing Textural Properties in Plant-Based Meat Alternatives: The Impact of Hydrocolloids and Salts on Soy Protein-Based Products. Curr. Res. Food Sci. 2023, 7, 100571. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Singh, J.; Hodgkinson, S.; Farouk, M.; Kaur, L. Conformational Changes and Product Quality of High-Moisture Extrudates Produced from Soy, Rice, and Pea Proteins. Food Hydrocoll. 2024, 147, 109341. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Ettelaie, R.; Chen, J. Construction of 3D Printed Reduced-Fat Meat Analogue by Emulsion Gels. Part I: Flow Behavior, Thixotropic Feature, and Network Structure of Soy Protein-Based Inks. Food Hydrocoll. 2021, 120, 106967. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Chen, J.; Ettelaie, R. Construction of 3D Printed Reduced-Fat Meat Analogue by Emulsion Gels. Part II: Printing Performance, Thermal, Tribological, and Dynamic Sensory Characterization of Printed Objects. Food Hydrocoll. 2021, 121, 107054. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Kumari, T.; Deka, S.C. Potential Health Benefits of Garden Pea Seeds and Pods: A Review. Legum. Sci. 2021, 3, e82. [Google Scholar] [CrossRef]
- Batista, A.P.; Portugal, C.A.M.; Sousa, I.; Crespo, J.G.; Raymundo, A. Accessing Gelling Ability of Vegetable Proteins Using Rheological and Fluorescence Techniques. Int. J. Biol. Macromol. 2005, 36, 135–143. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Zhang, Y.; Meng, S.; Wang, Q. Rheological Properties of Pea Protein Isolate-Amylose/Amylopectin Mixtures and the Application in the High-Moisture Extruded Meat Substitutes. Food Hydrocoll. 2021, 117, 106732. [Google Scholar] [CrossRef]
- Wang, T.; Kaur, L.; Furuhata, Y.; Aoyama, H.; Singh, J. 3D Printing of Textured Soft Hybrid Meat Analogues. Foods 2022, 11, 478. [Google Scholar] [CrossRef]
- Ainis, W.N.; Feng, R.; van den Berg, F.W.J.; Ahrné, L. Comparing the Rheological and 3D Printing Behavior of Pea and Soy Protein Isolate Pastes. Innov. Food Sci. Emerg. Technol. 2023, 84, 103307. [Google Scholar] [CrossRef]
- Rodriguez, Y.; Beyrer, M. Impact of Native Pea Proteins on the Gelation Properties of Pea Protein Isolates. Food Struct. 2023, 37, 100340. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High Moisture Extrusion Cooking of Pea Protein Isolates: Raw Material Characteristics, Extruder Responses, and Texture Properties. J. Food Eng. 2014, 127, 67–74. [Google Scholar] [CrossRef]
- Desiderio, E.; Shanmugam, K.; Östergren, K. Plant Based Meat Alternative, from Cradle to Company-Gate: A Case Study Uncovering the Environmental Impact of the Swedish Pea Protein Value Chain. J. Clean. Prod. 2023, 418, 138173. [Google Scholar] [CrossRef]
- San Miguel, G.; Ruiz, D. Environmental Sustainability of a Pork and Bean Stew. Sci. Total Environ. 2021, 798, 149203. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Characterization of Protein Isolates from Different Indian Chickpea (Cicer arietinum L.) Cultivars. Food Chem. 2007, 102, 366–374. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Ahmed, M.A.; Verma, A.K.; Umaraw, P.; Mehta, N.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Lee, S.J.; et al. Technological Interventions in Improving the Functionality of Proteins during Processing of Meat Analogs. Front. Nutr. 2022, 9, 1044024. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Comparative Studies of Structural and Thermal Gelation Behaviours of Soy, Lentil and Whey Protein: A PH-Dependency Evaluation. Food Hydrocoll. 2024, 146, 109240. [Google Scholar] [CrossRef]
- Shrestha, S.; van’t Hag, L.; Haritos, V.; Dhital, S. Rheological and Textural Properties of Heat-Induced Gels from Pulse Protein Isolates: Lentil, Mungbean and Yellow Pea. Food Hydrocoll. 2023, 143, 108904. [Google Scholar] [CrossRef]
- Guidi, S.; Formica, F.A.; Denkel, C. Mixing Plant-Based Proteins: Gel Properties of Hemp, Pea, Lentil Proteins and Their Binary Mixtures. Food Res. Int. 2022, 161, 111752. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, L.; Lee, S.J.; Yang, Z. Formation and Characterisation of Concentrated Emulsion Gels Stabilised by Faba Bean Protein Isolate and Its Applications for 3D Food Printing. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131622. [Google Scholar] [CrossRef]
- Ferawati, F.; Zahari, I.; Barman, M.; Hefni, M.; Ahlström, C.; Witthöft, C.; Östbring, K. High-Moisture Meat Analogues Produced from Yellow Pea and Faba Bean Protein Isolates/Concentrate: Effect of Raw Material Composition and Extrusion Parameters on Texture Properties. Foods 2021, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Saldanha do Carmo, C.; Rieder, A.; Varela, P.; Zobel, H.; Dessev, T.; Nersten, S.; Gaber, S.M.; Sahlstrøm, S.; Knutsen, S.H. Texturized Vegetable Protein from a Faba Bean Protein Concentrate and an Oat Fraction: Impact on Physicochemical, Nutritional, Textural and Sensory Properties. Future Foods 2023, 7, 100228. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Q.; Waterink, B.; Venema, P.; de Vries, R.; Sagis, L.M.C. Physical, Interfacial and Foaming Properties of Different Mung Bean Protein Fractions. Food Hydrocoll. 2023, 143, 108885. [Google Scholar] [CrossRef]
- De Angelis, D.; Opaluwa, C.; Pasqualone, A.; Karbstein, H.P.; Summo, C. Rheological Properties of Dry-Fractionated Mung Bean Protein and Structural, Textural, and Rheological Evaluation of Meat Analogues Produced by High-Moisture Extrusion Cooking. Curr. Res. Food Sci. 2023, 7, 100552. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Jiang, Y.; Faisal, S.; Wei, L.; Cao, C.; Yan, W.; Wang, Q. Converting Peanut Protein Biomass Waste into “Double Green” Meat Substitutes Using a High-Moisture Extrusion Process: A Multiscale Method to Explore a Process for Forming a Meat-Like Fibrous Structure. J. Agric. Food Chem. 2019, 67, 10713–10725. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Hu, Y.; Qiu, C.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Xu, X.; Wang, J.; et al. Peanut Protein-Polysaccharide Hydrogels Based on Semi-Interpenetrating Networks Used for 3D/4D Printing. Food Hydrocoll. 2023, 137, 108332. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, H.; Wang, Q.; Liu, H. A Novel Process for Peanut Tofu Gel: Its Texture, Microstructure and Protein Behavioral Changes Affected by Processing Conditions. LWT 2018, 96, 140–146. [Google Scholar] [CrossRef]
- Goldstein, N.; Reifen, R. The Potential of Legume-Derived Proteins in the Food Industry. Grain Oil Sci. Technol. 2022, 5, 167–178. [Google Scholar] [CrossRef]
- Li, M.; Hou, X.; Lin, L.; Jiang, F.; Qiao, D.; Xie, F. Legume Protein/Polysaccharide Food Hydrogels: Preparation Methods, Improvement Strategies and Applications. Int. J. Biol. Macromol. 2023, 243, 125217. [Google Scholar] [CrossRef]
- Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods 2019, 8, 391. [Google Scholar] [CrossRef]
- Jarpa-Parra, M. Lentil Protein: A Review of Functional Properties and Food Application. An Overview of Lentil Protein Functionality. Int. J. Food Sci. Technol. 2018, 53, 892–903. [Google Scholar] [CrossRef]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the Functional Properties of Pea, Chickpea and Lentil Protein Concentrates Processed Using Ultrafiltration and Isoelectric Precipitation Techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- García-Mora, P.; Martín-Martínez, M.; Angeles Bonache, M.; González-Múniz, R.; Peñas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, Functional Gastrointestinal Stability and Molecular Docking Studies of Lentil Peptides with Dual Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activities. Food Chem. 2017, 221, 464–472. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Verni, M.; Bordignon, S.; Gramaglia, V.; Gobbetti, M. Hydrolysate from a Mixture of Legume Flours with Antifungal Activity as an Ingredient for Prolonging the Shelf-Life of Wheat Bread. Food Microbiol. 2017, 64, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Quintero, J.; Torres, J.D.; Corrales-Garcia, L.L.; Ciro, G.; Delgado, E.; Rojas, J. Effect of the Concentration, PH, and Ca2+ Ions on the Rheological Properties of Concentrate Proteins from Quinoa, Lentil, and Black Bean. Foods 2022, 11, 3116. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.J.; Huang, W.; Chen, L. Fabrication and Characterization of Lentil Protein Gels from Fibrillar Aggregates and the Gelling Mechanism Study. Food Funct. 2020, 11, 10114–10125. [Google Scholar] [CrossRef]
- Sharma, N.; Sahu, J.K.; Joshi, S.; Khubber, S.; Bansal, V.; Bhardwaj, A.; Bangar, S.P.; Bal, L.M. Modulation of Lentil Antinutritional Properties Using Non-Thermal Mediated Processing Techniques—A Review. J. Food Compos. Anal. 2022, 109, 104498. [Google Scholar] [CrossRef]
- De Angelis, D.; Kaleda, A.; Pasqualone, A.; Vaikma, H.; Tamm, M.; Tammik, M.L.; Squeo, G.; Summo, C. Physicochemical and Sensorial Evaluation of Meat Analogues Produced from Dry-Fractionated Pea and Oat Proteins. Foods 2020, 9, 1754. [Google Scholar] [CrossRef] [PubMed]
- Parilli-Moser, I.; Hurtado-Barroso, S.; Guasch-Ferré, M.; Lamuela-Raventós, R.M. Effect of Peanut Consumption on Cardiovascular Risk Factors: A Randomized Clinical Trial and Meta-Analysis. Front. Nutr. 2022, 9, 853378. [Google Scholar] [CrossRef]
- Xia, J.Y.; Yu, J.H.; Xu, D.F.; Yang, C.; Xia, H.; Sun, G.J. The Effects of Peanuts and Tree Nuts on Lipid Profile in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized, Controlled-Feeding Clinical Studies. Front. Nutr. 2021, 8, 765571. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.; Zhang, J.; Li, S. Effect of Enzymatic Hydrolysis on the Formation and Structural Properties of Peanut Protein Gels. Int. J. Food Eng. 2021, 17, 167–176. [Google Scholar]
- Chen, C.; Huang, X.; Wang, L.J.; Li, D.; Adhikari, B. Effect of Flaxseed Gum on the Rheological Properties of Peanut Protein Isolate Dispersions and Gels. LWT 2016, 74, 528–533. [Google Scholar] [CrossRef]
- Haidar, E.; Lakkis, J.; Karam, M.; Koubaa, M.; Louka, N.; Debs, E. Peanut Allergenicity: An Insight into Its Mitigation Using Thermomechanical Processing. Foods 2023, 12, 1253. [Google Scholar] [CrossRef] [PubMed]
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Letras, P.; Oliveira, S.; Varela, J.; Nunes, M.C.; Raymundo, A. 3D Printed Gluten-Free Cereal Snack with Incorporation of Spirulina (Arthrospira platensis) and/or Chlorella Vulgaris. Algal Res. 2022, 68, 102863. [Google Scholar] [CrossRef]
- Radoš, K.; Benković, M.; Čukelj Mustač, N.; Habuš, M.; Voučko, B.; Pavičić, T.V.; Ćurić, D.; Ježek, D.; Novotni, D. Powder Properties, Rheology and 3D Printing Quality of Gluten-Free Blends. J. Food Eng. 2023, 338, 111251. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S. 3D Printing of Soy Protein- and Gluten-Based Gels Facilitated by Thermosensitive Cocoa Butter in a Model Study. ACS Food Sci. Technol. 2021, 1, 1990–1996. [Google Scholar] [CrossRef]
- Nikinmaa, M.; Zehnder-Wyss, O.; Nyström, L.; Sozer, N. Effect of Extrusion Processing Parameters on Structure, Texture and Dietary Fibre Composition of Directly Expanded Wholegrain Oat-Based Matrices. LWT 2023, 184, 114972. [Google Scholar] [CrossRef]
- Pöri, P.; Nisov, A.; Nordlund, E. Enzymatic Modification of Oat Protein Concentrate with Trans- and Protein-Glutaminase for Increased Fibrous Structure Formation during High-Moisture Extrusion Processing. LWT 2022, 156, 113035. [Google Scholar] [CrossRef]
- Ramos-Diaz, J.M.; Kantanen, K.; Edelmann, J.M.; Jouppila, K.; Sontag-Strohm, T.; Piironen, V. Functionality of Oat Fiber Concentrate and Faba Bean Protein Concentrate in Plant-Based Substitutes for Minced Meat. Curr. Res. Food Sci. 2022, 5, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Kaleda, A.; Talvistu, K.; Vaikma, H.; Tammik, M.L.; Rosenvald, S.; Vilu, R. Physicochemical, Textural, and Sensorial Properties of Fibrous Meat Analogs from Oat-Pea Protein Blends Extruded at Different Moistures, Temperatures, and Screw Speeds. Future Foods 2021, 4, 100092. [Google Scholar] [CrossRef]
- Rekola, S.M.; Kårlund, A.; Mikkonen, S.; Kolehmainen, M.; Pomponio, L.; Sozer, N. Structure, Texture and Protein Digestibility of High Moisture Extruded Meat Alternatives Enriched with Cereal Brans. Appl. Food Res. 2023, 3, 100262. [Google Scholar] [CrossRef]
- Lingiardi, N.; Galante, M.; de Sanctis, M.; Spelzini, D. Are Quinoa Proteins a Promising Alternative to Be Applied in Plant-Based Emulsion Gel Formulation? Food Chem. 2022, 394, 133485. [Google Scholar] [CrossRef]
- Schoenlechner, R.; Jurackova, K.; Berghofer, E. Pasta production from the pseudocereals amaranth, quinoa and buckwheat. In Woodhead Publishing Series in Food Science Technology and Nutrition, Using Cereal Science and Technology for the Benefit of Consumers; Cauvain, S.P., Salmon, S.S., Young, L., Eds.; Woodhead Pusblishing: Sawston, UK, 2005; Volume 1, pp. 74–81. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Rheological, Structural and Thermal Characteristics of Protein Isolates Obtained from Album (Chenopodium album) and Quinoa (Chenopodium quinoa) Seeds. Food Hydrocoll. Health 2021, 1, 100019. [Google Scholar] [CrossRef]
- Cui, H.; Li, S.; Roy, D.; Guo, Q.; Ye, A. Modifying Quinoa Protein for Enhanced Functional Properties and Digestibility: A Review. Curr. Res. Food Sci. 2023, 7, 100604. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, L.; Wang, H.; Yang, Z. Limited Alcalase Hydrolysis Improves the Thermally-Induced Gelation of Quinoa Protein Isolate (QPI) Dispersions. Curr. Res. Food Sci. 2022, 5, 2061–2069. [Google Scholar] [CrossRef]
- Figueroa-González, J.J.; Lobato-Calleros, C.; Vernon-Carter, E.J.; Aguirre-Mandujano, E.; Alvarez-Ramirez, J.; Martínez-Velasco, A. Modifying the Structure, Physicochemical Properties, and Foaming Ability of Amaranth Protein by Dual PH-Shifting and Ultrasound Treatments. LWT 2022, 153, 112561. [Google Scholar] [CrossRef]
- Graziano, S.; Agrimonti, C.; Marmiroli, N.; Gullì, M. Utilisation and Limitations of Pseudocereals (Quinoa, Amaranth, and Buckwheat) in Food Production: A Review. Trends Food Sci. Technol. 2022, 125, 154–165. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat Proteins and Peptides: Biological Functions and Food Applications. Trends Food Sci. Technol. 2021, 110, 155–167. [Google Scholar] [CrossRef]
- Nasrollahzadeh, F.; Roman, L.; Swaraj, V.J.S.; Ragavan, K.V.; Vidal, N.P.; Dutcher, J.R.; Martinez, M.M. Hemp (Cannabis sativa L.) Protein Concentrates from Wet and Dry Industrial Fractionation: Molecular Properties, Nutritional Composition, and Anisotropic Structuring. Food Hydrocoll. 2022, 131, 107755. [Google Scholar] [CrossRef]
- Zahari, I.; Purhagen, J.K.; Rayner, M.; Ahlström, C.; Helstad, A.; Landers, M.; Müller, J.; Eriksson, J.; Östbring, K. Extrusion of High-Moisture Meat Analogues from Hempseed Protein Concentrate and Oat Fibre Residue. J. Food Eng. 2023, 354, 111567. [Google Scholar] [CrossRef]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial Hemp Seed: From the Field to Value-Added Food Ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Amagliani, L.; Fanesi, B.; de Oliveira Reis, G.; Bovay, C.; Affolter, M.; Schmitt, C. High Moisture Extrusion Processing of Hemp Protein Ingredients as Influenced by Their Composition and Physicochemical Properties. Sci. Talks 2023, 8, 100250. [Google Scholar] [CrossRef]
- Pöri, P.; Lille, M.; Edelmann, M.; Aisala, H.; Santangelo, D.; Coda, R.; Sozer, N. Technological and Sensory Properties of Plant-Based Meat Analogues Containing Fermented Sunflower Protein Concentrate. Future Foods 2023, 8, 100244. [Google Scholar] [CrossRef]
- Jia, W.; Sutanto, I.R.; Ndiaye, M.; Keppler, J.K.; van der Goot, A.J. Effect of Aqueous Ethanol Washing on Functional Properties of Sunflower Materials for Meat Analogue Application. Food Struct. 2022, 33, 100274. [Google Scholar] [CrossRef]
- Jia, W.; Curubeto, N.; Rodríguez-Alonso, E.; Keppler, J.K.; van der Goot, A.J. Rapeseed Protein Concentrate as a Potential Ingredient for Meat Analogues. Innov. Food Sci. Emerg. Technol. 2021, 72, 102758. [Google Scholar] [CrossRef]
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Di Stasio, A.; Pierri, B.; Gallo, A. A Review of Hemp as Food and Nutritional Supplement. Cannabis Cannabinoid Res. 2021, 6, 19. [Google Scholar] [CrossRef]
- Aguchem, R.N.; Okagu, I.U.; Okagu, O.D.; Ndefo, J.C.; Udenigwe, C.C. A Review on the Techno-Functional, Biological, and Health-Promoting Properties of Hempseed-Derived Proteins and Peptides. J. Food Biochem. 2022, 46, e14127. [Google Scholar] [CrossRef]
- Hadidi, M.; Aghababaei, F.; McClements, D.J. Sunflower Meal/Cake as a Sustainable Protein Source for Global Food Demand: Towards a Zero-Hunger World. Food Hydrocoll. 2024, 147, 109329. [Google Scholar] [CrossRef]
- Subaşı, B.G.; Casanova, F.; Capanoglu, E.; Ajalloueian, F.; Sloth, J.J.; Mohammadifar, M.A. Protein Extracts from De-Oiled Sunflower Cake: Structural, Physico-Chemical and Functional Properties after Removal of Phenolics. Food Biosci. 2020, 38, 100749. [Google Scholar] [CrossRef]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed Proteins—Properties and Application as a Food Ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Achouri, A.; Nail, V.; Boye, J.I. Sesame Protein Isolate: Fractionation, Secondary Structure and Functional Properties. Food Res. Int. 2012, 46, 360–369. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Quinoa and Chia Products as Ingredients for Healthier Processed Meat Products: Technological Strategies for Their Application and Effects on the Final Product. Curr. Opin. Food Sci. 2021, 40, 26–32. [Google Scholar] [CrossRef]
- Jiménez-González, C.; Agrasar, A.M.T.; Mallo, F.; Rúa, M.L.; Fuciños, C. Red Seaweed Proteins: Valuable Marine-Origin Compounds with Encouraging Applications. Algal Res. 2023, 75, 103262. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Mondragón-Portocarrero, A.C.; Rodríguez, J.A.; Lorenzo, J.M.; Santos, E.M. Algae as a Potential Source of Protein Meat Alternatives. Front. Nutr. 2023, 10, 1254300. [Google Scholar] [CrossRef]
- Samarakoon, K.; Jeon, Y.J. Bio-Functionalities of Proteins Derived from Marine Algae—A Review. Food Res. Int. 2012, 48, 948–960. [Google Scholar] [CrossRef]
- Matos, Â.P.; Novelli, E.; Tribuzi, G. Use of Algae as Food Ingredient: Sensory Acceptance and Commercial Products. Front. Food Sci. Technol. 2022, 2, 989801. [Google Scholar] [CrossRef]
- Bhuva, V.; Morya, S.; Borah, A. A Review on Meat Analogue: Is This Time to See the Algal Proteins as a Sustainable Substitute for the Meat Proteins? Pharma Innov. J. 2021, 10, 1160–1165. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, T.; Chen, S.H.Y.; Liu, B.; Sun, P.; Sun, H.; Chen, F. The Potentials and Challenges of Using Microalgae as an Ingredient to Produce Meat Analogues. Trends Food Sci. Technol. 2021, 112, 188–200. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Lech, F.; Wierenga, P.A.; Eppink, M.H.M.; Gruppen, H. Foam Properties of Algae Soluble Protein Isolate: Effect of PH and Ionic Strength. Food Hydrocoll. 2013, 33, 111–117. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Böcker, L.; Müssner, C.; Stirnemann, E.; Haberkorn, I.; Adelmann, H.; Handschin, S.; Windhab, E.J.; Mathys, A. Extruded Meat Analogues Based on Yellow, Heterotrophically Cultivated Auxenochlorella Protothecoides Microalgae. Innov. Food Sci. Emerg. Technol. 2020, 59, 102275. [Google Scholar] [CrossRef]
- Grahl, S.; Palanisamy, M.; Strack, M.; Meier-Dinkel, L.; Toepfl, S.; Mörlein, D. Towards More Sustainable Meat Alternatives: How Technical Parameters Affect the Sensory Properties of Extrusion Products Derived from Soy and Algae. J. Clean. Prod. 2018, 198, 962–971. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Larsson, E.; Filli, K.B.; Loupiac, C.; Assifaoui, A.; López-Rubio, A.; Lopez-Sanchez, P. Nano-/Microstructure of Extruded Spirulina/Starch Foams in Relation to Their Textural Properties. Food Hydrocoll. 2020, 103, 105697. [Google Scholar] [CrossRef]
- Palanisamy, M.; Töpfl, S.; Berger, R.G.; Hertel, C. Physico-Chemical and Nutritional Properties of Meat Analogues Based on Spirulina/Lupin Protein Mixtures. Eur. Food Res. Technol. 2019, 245, 1889–1898. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11, 6276. [Google Scholar] [CrossRef]
- Penna Franca, P.A.; Duque-Estrada, P.; da Fonseca e Sá, B.F.; van der Goot, A.J.; Pierucci, A.P.T.R. Meat Substitutes—Past, Present, and Future of Products Available in Brazil: Changes in the Nutritional Profile. Future Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F. Healthier Lipid Formulation Approaches in Meat-Based Functional Foods. Technological Options for Replacement of Meat Fats by Non-Meat Fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef]
- WHO Technical Report Series 916 (2003) Diet, Nutrition and the Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation, Geneva—References—Scientific Research Publishing. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2531650 (accessed on 24 October 2023).
- Appel, L.J.; Brands, M.W.; Daniels, S.R.; Karanja, N.; Elmer, P.J.; Sacks, F.M. Dietary Approaches to Prevent and Treat Hypertension. Hypertension 2006, 47, 296–308. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Guo, Z.; Teng, F.; Huang, Z.; Lv, B.; Lv, X.; Babich, O.; Yu, W.; Li, Y.; Wang, Z.; Jiang, L. Effects of Material Characteristics on the Structural Characteristics and Flavor Substances Retention of Meat Analogs. Food Hydrocoll. 2020, 105, 105752. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 24 October 2023).
- López-Pedrouso, M.; Lorenzo, J.M.; Gullón, B.; Campagnol, P.C.B.; Franco, D. Novel Strategy for Developing Healthy Meat Products Replacing Saturated Fat with Oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. [Google Scholar] [CrossRef]
- Lusk, J.L. Consumer Beliefs about Healthy Foods and Diets. PLoS ONE 2019, 14, e0223098. [Google Scholar] [CrossRef] [PubMed]
- Hjelm, L.; Mielby, L.A.; Gregersen, S.; Eggers, N.; Bertram, H.C. Partial Substitution of Fat with Rye Bran Fibre in Frankfurter Sausages—Bridging Technological and Sensory Attributes through Inclusion of Collagenous Protein. LWT 2019, 101, 607–617. [Google Scholar] [CrossRef]
- Câmara, A.K.F.I.; Okuro, P.K.; da Cunha, R.L.; Herrero, A.M.; Ruiz-Capillas, C.; Pollonio, M.A.R. Chia (Salvia hispanica L.) Mucilage as a New Fat Substitute in Emulsified Meat Products: Technological, Physicochemical, and Rheological Characterization. LWT 2020, 125, 109193. [Google Scholar] [CrossRef]
- Espert, M.; Salvador, A.; Sanz, T. Cellulose Ether Oleogels Obtained by Emulsion-Templated Approach without Additional Thickeners. Food Hydrocoll. 2020, 109, 106085. [Google Scholar] [CrossRef]
- Paximada, P.; Howarth, M.; Dubey, B.N. Double Emulsions Fortified with Plant and Milk Proteins as Fat Replacers in Cheese. J. Food Eng. 2021, 288, 110229. [Google Scholar] [CrossRef]
- Schmiele, M.; Nucci Mascarenhas, M.C.C.; da Silva Barretto, A.C.; Rodrigues Pollonio, M.A. Dietary Fiber as Fat Substitute in Emulsified and Cooked Meat Model System. LWT—Food Sci. Technol. 2015, 1, 105–111. [Google Scholar] [CrossRef]
- Dos Santos, M.; Ozaki, M.M.; Ribeiro, W.O.; Paglarini, C.d.S.; Vidal, V.A.S.; Campagnol, P.C.B.; Pollonio, M.A.R. Emulsion Gels Based on Pork Skin and Dietary Fibers as Animal Fat Replacers in Meat Emulsions: An Adding Value Strategy to Byproducts. LWT 2020, 120, 108895. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Jin, W.; Zhou, B.; Li, B. Application of Micronized Konjac Gel for Fat Analogue in Mayonnaise. Food Hydrocoll. 2014, 35, 375–382. [Google Scholar] [CrossRef]
- Zhang, J.; Griffin, J.; Li, Y.; Wang, D.; Wang, W. Antioxidant Properties of Hemp Proteins: From Functional Food to Phytotherapy and Beyond. Molecules 2022, 27, 7924. [Google Scholar] [CrossRef] [PubMed]
- Saavedra Isusi, G.I.; Pietsch, V.; Beutler, P.; Hoehne, S.; Leister, N. Influence of Rapeseed Oil on Extruded Plant-Based Meat Analogues: Assessing Mechanical and Rheological Properties. Processes 2023, 11, 1871. [Google Scholar] [CrossRef]
- Isusi, G.I.S.; Puga, D.P.; Van Der Schaaf, U.S. Texturing Fermented Emulsion Gels from Soy Protein: Influence of the Emulsifying Agent—Soy Protein vs. Pectin Microgels—On Gel Microstructure, Rheology and Tribology. Foods 2022, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, D.; McClements, D.J.; Decker, E.A. Oxidative Stability of Whey Protein-Stabilized Oil-in-Water Emulsions at PH 3: Potential ω-3 Fatty Acid Delivery Systems (Part B). J. Food Sci. 2004, 69, C356–C362. [Google Scholar] [CrossRef]
- Munialo, C.D.; Vriesekoop, F. Plant-Based Foods as Meat and Fat Substitutes. Food Sci. Nutr. 2023, 11, 4898–4911. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.C.; Ferdaus, M.J.; Foguel, A.; da Silva, T.L.T. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Wi, G.; Bae, J.; Kim, H.; Cho, Y.; Choi, M.J. Evaluation of the Physicochemical and Structural Properties and the Sensory Characteristics of Meat Analogues Prepared with Various Non-Animal Based Liquid Additives. Foods 2020, 9, 461. [Google Scholar] [CrossRef]
- Wen, Y.; Cho, B.; Park, H.J.; Kim, H.W. Development of 3D-Printable Plant-Based Fat Analogs Utilizing Coconut Oil and Glucomannan Emulsion Gels. Food Biosci. 2023, 56, 103255. [Google Scholar] [CrossRef]
- Cho, Y.; Bae, J.; Choi, M.J. Physicochemical Characteristics of Meat Analogs Supplemented with Vegetable Oils. Foods 2023, 12, 312. [Google Scholar] [CrossRef]
- Zbikowska, A.; Onacik-Gür, S.; Kowalska, M.; Sowiński, M.; Szymańska, I.; Żbikowska, K.; Marciniak-Łukasiak, K.; Werpachowski, W. Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax. Gels 2022, 8, 448. [Google Scholar] [CrossRef] [PubMed]
- Yuliarti, O.; Ng, L.; Koh, W.M.; Abdullah Tan, M.F.B.M.F.; Dwi Sentana, A. Structural Properties of Meat Analogue with Added Konjac Gels. Food Hydrocoll. 2023, 142, 108716. [Google Scholar] [CrossRef]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of Sesame Oil Oleogels Based on Beeswax and Application as Partial Substitutes of Animal Fat in Beef Burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, Z.; Zhang, J.; Wang, Q.; Wang, Y. Application of Lipids and Their Potential Replacers in Plant-Based Meat Analogs. Trends Food Sci. Technol. 2023, 138, 645–654. [Google Scholar] [CrossRef]
- Birke Rune, C.J.; Song, Q.; Clausen, M.P.; Giacalone, D. Consumer Perception of Plant-Based Burger Recipes Studied by Projective Mapping. Future Foods 2022, 6, 100168. [Google Scholar] [CrossRef]
- Surya Ulhas, R.; Ravindran, R.; Malaviya, A.; Priyadarshini, A.; Tiwari, B.K.; Rajauria, G. A Review of Alternative Proteins for Vegan Diets: Sources, Physico-Chemical Properties, Nutritional Equivalency, and Consumer Acceptance. Food Res. Int. 2023, 173, 113479. [Google Scholar] [CrossRef]
- Mattice, K.D.; Marangoni, A.G. Evaluating the Use of Zein in Structuring Plant-Based Products. Curr. Res. Food Sci. 2020, 3, 59–66. [Google Scholar] [CrossRef]
- Rajpurohit, B.; Li, Y. Overview on Pulse Proteins for Future Foods: Ingredient Development and Novel Applications. J. Future Foods 2023, 3, 340–356. [Google Scholar] [CrossRef]
- Ahmad, M.; Qureshi, S.; Akbar, M.H.; Siddiqui, S.A.; Gani, A.; Mushtaq, M.; Hassan, I.; Dhull, S.B. Plant-Based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Appl. Food Res. 2022, 2, 100154. [Google Scholar] [CrossRef]
- Baune, M.C.; Terjung, N.; Tülbek, M.Ç.; Boukid, F. Textured Vegetable Proteins (TVP): Future Foods Standing on Their Merits as Meat Alternatives. Future Foods 2022, 6, 100181. [Google Scholar] [CrossRef]
- Van der Sman, R.G.M.; van der Goot, A.J. Hypotheses Concerning Structuring of Extruded Meat Analogs. Curr. Res. Food Sci. 2023, 6, 100510. [Google Scholar] [CrossRef]
- Day, L. Proteins from Land Plants—Potential Resources for Human Nutrition and Food Security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Giacalone, D.; Clausen, M.P.; Jaeger, S.R. Understanding Barriers to Consumption of Plant-Based Foods and Beverages: Insights from Sensory and Consumer Science. Curr. Opin. Food Sci. 2022, 48, 100919. [Google Scholar] [CrossRef]
- Floury, J.; Desrumaux, A.; Axelos, M.A.V.; Legrand, J. Degradation of Methylcellulose during Ultra-High Pressure Homogenisation. Food Hydrocoll. 2002, 16, 47–53. [Google Scholar] [CrossRef]
- Moll, P.; Salminen, H.; Schmitt, C.; Weiss, J. Pea Protein–Sugar Beet Pectin Binders Can Provide Cohesiveness in Burger Type Meat Analogues. Eur. Food Res. Technol. 2023, 249, 1089–1096. [Google Scholar] [CrossRef]
- Moll, P.; Salminen, H.; Stadtmueller, L.; Schmitt, C.; Weiss, J. Comparison of Binding Properties of a Laccase-Treated Pea Protein–Sugar Beet Pectin Mixture with Methylcellulose in a Bacon-Type Meat Analogue. Foods 2022, 12, 85. [Google Scholar] [CrossRef]
- Taghian Dinani, S.; Broekema, N.L.; Boom, R.; van der Goot, A.J. Investigation Potential of Hydrocolloids in Meat Analogue Preparation. Food Hydrocoll. 2023, 135, 108199. [Google Scholar] [CrossRef]
- Nyaguthii, K.C.; Omwamba, M.; Nduko, J.M. Gum Arabic and Soy Protein Concentrate as Binding Agents on Quality and Nutritional Properties of Mushroom-Based Sausage Analogues. Food Humanit. 2023; in press. [Google Scholar] [CrossRef]
- Arora, B.; Kamal, S.; Sharma, V.P. Effect of Binding Agents on Quality Characteristics of Mushroom Based Sausage Analogue. J. Food Process. Preserv. 2017, 41, e13134. [Google Scholar] [CrossRef]
- Gasparre, N.; van den Berg, M.; Oosterlinck, F.; Sein, A. High-Moisture Shear Processes: Molecular Changes of Wheat Gluten and Potential Plant-Based Proteins for Its Replacement. Molecules 2022, 27, 5855. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, B.D.; Kumar, R.R. Optimization of the Level of Mushroom in Analogue Meat Nuggets. J. Meat Sci. 2011, 7, 53–55. [Google Scholar]
- Nanta, P.; Skolpap, W.; Kasemwong, K. Influence of Hydrocolloids on the Rheological and Textural Attributes of a Gluten-Free Meat Analog Based on Soy Protein Isolate. J. Food Process. Preserv. 2021, 45, e15244. [Google Scholar] [CrossRef]
- Wibowo, K.F.; Swasti, Y.R.; Pranata, F.S. Low Fat and High Protein Meat Analogue of Cowpea (Vigna unguiculata) with Stabilizer Cocoa Pod Husk Extract (Theobroma cacao L.). Food Res. 2023, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Maina, W.J. Analysis of the Factors That Determine Food Acceptability. Pharma Innov. J. 2018, 7, 253–257. [Google Scholar]
- Li, X.; Li, J. The Flavor of Plant-Based Meat Analogues. Cereal Foods World 2020, 65, 0040. [Google Scholar] [CrossRef]
- Bleicher, J.; Ebner, E.E.; Bak, K.H. Formation and Analysis of Volatile and Odor Compounds in Meat—A Review. Molecules 2022, 27, 6703. [Google Scholar] [CrossRef]
- Kale, P.; Mishra, A.; Annapure, U.S. Development of Vegan Meat Flavour: A Review on Sources and Techniques. Future Foods 2022, 5, 100149. [Google Scholar] [CrossRef]
- Chiang, J.H.; Tay, W.; Ong, D.S.M.; Liebl, D.; Ng, C.P.; Henry, C.J. Physicochemical, Textural and Structural Characteristics of Wheat Gluten-Soy Protein Composited Meat Analogues Prepared with the Mechanical Elongation Method. Food Struct. 2021, 28, 100183. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62, 111. [Google Scholar] [CrossRef]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 11, 2227. [Google Scholar] [CrossRef]
- Hernandez, M.S.; Woerner, D.R.; Brooks, J.C.; Legako, J.F. Descriptive Sensory Attributes and Volatile Flavor Compounds of Plant-Based Meat Alternatives and Ground Beef. Molecules 2023, 28, 3151. [Google Scholar] [CrossRef]
- Vlaic, R.A.M.; Mureșan, V.; Mureșan, A.E.; Mureșan, C.C.; Tanislav, A.E.; Pușcaș, A.; Petruţ, G.S.M.; Ungur, R.A. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. Plants 2022, 11, 960. [Google Scholar] [CrossRef]
- Zioga, E.; Tøstesen, M.; Kjærulf Madsen, S.; Shetty, R.; Bang-Berthelsen, C.H. Bringing Plant-Based Cli-Meat Closer to Original Meat Experience: Insights in Flavor. Future Foods 2022, 5, 100138. [Google Scholar] [CrossRef]
- Xiong, Y.L. Meat and Meat Alternatives: Where Is the Gap in Scientific Knowledge and Technology? Ital. J. Anim. Sci. 2023, 22, 482–496. [Google Scholar] [CrossRef]
- Amyoony, J.; Moss, R.; Dabas, T.; Gorman, M.; Ritchie, C.; Leblanc, J.; Mcsweeney, M.B. An Investigation into Consumer Perception of the Aftertaste of Plant-Based Dairy Alternatives Using a Word Association Task. Appl. Food Res. 2023, 3, 100320. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Trindler, C.; Annika Kopf-Bolanz, K.; Denkel, C. Aroma of Peas, Its Constituents and Reduction Strategies—Effects from Breeding to Processing. Food Chem. 2022, 376, 131892. [Google Scholar] [CrossRef]
- Yuan, J.; Qin, F.; He, Z.; Zeng, M.; Wang, Z.; Chen, J. Influences of Spices on the Flavor of Meat Analogs and Their Potential Pathways. Foods 2023, 12, 1650. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, W.; Zhang, D.; Al, E. Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible. Foods 2022, 11, 52. [Google Scholar] [CrossRef]
- Ryu, K.K.; Kang, Y.K.; Jeong, E.W.; Baek, Y.; Lee, K.Y.; Lee, H.G. Applications of Various Natural Pigments to a Plant-Based Meat Analog. LWT 2023, 174, 114431. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A Review of Research on Plant-Based Meat Alternatives: Driving Forces, History, Manufacturing, and Consumer Attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Bakhsh, A.; Cho, C.; Baritugo, K.A.; Kim, B.; Ullah, Q.; Rahman, A.; Park, S. Production and Analytical Aspects of Natural Pigments to Enhance Alternative Meat Product Color. Foods 2023, 12, 1281. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, W.; Li, L.; Gao, Y.; Lai, K.H. Recent Advances in the Processing and Manufacturing of Plant-Based Meat. J. Agric. Food Chem. 2023, 71, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tian, Y.; Yang, B. Root Vegetable Side Streams as Sources of Functional Ingredients for Food, Nutraceutical and Pharmaceutical Applications: The Current Status and Future Prospects. Trends Food Sci. Technol. 2023, 137, 1–16. [Google Scholar] [CrossRef]
- Islam, M.M.; Naznin, S.; Naznin, A.; Uddin, M.N.; Amin, M.N.; Rahman, M.M.; Tipu, M.M.H.; Alsuhaibani, A.M.; Gaber, A.; Ahmed, S. Dry Matter, Starch Content, Reducing Sugar, Color and Crispiness Are Key Parameters of Potatoes Required for Chip Processing. Horticulturae 2022, 8, 362. [Google Scholar] [CrossRef]
- Renita, A.A.; Gajaria, T.K.; Sathish, S.; Kumar, J.A.; Lakshmi, D.S.; Kujawa, J.; Kujawski, W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023, 12, 1521. [Google Scholar] [CrossRef]
- FDA in Brief: FDA Approval of Soy Leghemoglobin as a Color Additive Is Now Effective|FDA. Available online: https://www.fda.gov/news-events/fda-brief/fda-brief-fda-approval-soy-leghemoglobin-color-additive-now-effective (accessed on 26 October 2023).
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2020, 247, 297–308. [Google Scholar] [CrossRef]
- Bakhsh, A. Traditional Plant-Based Meat Alternatives, Current, and Future Perspective: A Review. J. Agric. Life Sci. 2021, 55, 1–11. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, E.Y.; Bakry, A.M.; Rathnayake, D.; Son, Y.M.; Kim, S.W.; Hwang, Y.H.; Joo, S.T. Synergistic Effect of Lactoferrin and Red Yeast Rice on the Quality Characteristics of Novel Plant-Based Meat Analog Patties. LWT 2022, 171, 114095. [Google Scholar] [CrossRef]
- Akramzadeh, N.; Hosseini, H.; Pilevar, Z.; Karimian Khosroshahi, N.; Khosravi-Darani, K.; Komeyli, R.; Barba, F.J.; Pugliese, A.; Poojary, M.M.; Khaneghah, A.M. Physicochemical Properties of Novel Non-Meat Sausages Containing Natural Colorants and Preservatives. J. Food Process. Preserv. 2018, 42, e13660. [Google Scholar] [CrossRef]
Group | Compounds | Functionality | Reference |
---|---|---|---|
Proteins | β-conglycinin glycinin storage proteins lecithin Bowman–Birk (BBI) protease inhibitors | Cholesterol-lowering, body fat reduction, reducing the risk of coronary diseases; strong texture regulating properties | [21] |
Bioactive peptides | numerous | Usually inactive, activate during processing or ingestion, fast absorption in the GI tract, anti-diabetic, anti-hypertensive, anti-cancer | [22] |
Isoflavones | glycosides: genistin, diadzin, glycetin (inactive form); aglycones: genistein, diadzein and glycetein (bioactive form) | Inactive prior to digestion; heart disease, diabetes, menopausal symptoms, osteoporosis and prostate and breast cancer prevention | [20] |
Saponins | triterpenoic saponins | Anti-inflammatory, anti-carcinogenic, antimicrobial, hepato- and cardio-protective effects | [20,23] |
Protein | Process | Textural Properties | Reference |
---|---|---|---|
Pea protein isolate (PPI) + wheat gluten | High temperature shear, 95–140 °C | Fibrous structures at 120 °C, lower processing temperatures resulted in low tensile strength, temperatures higher than 120 °C gave a strong and layered product; matrix strength similar to chicken meat | [38] |
Pea protein isolate + amylose/amylopectin mixtures | High-moisture extrusion, 60–120 °C | Exploration of the interactions between starch and pea proteins—amylopectin contributes to viscosity and fibrousness, amylose does not | [41] |
Pea protein isolate + maize starch + soy lecithin + beef fat | Large volume extrusion (LVE) 3D printer, printing speed at 15 mm/s, 100% infill density, two nozzle sizes (1.54 and 2.16 mm) | PPI + starch paste showed weak gel behavior, increased viscosity due to starch addition; optimum printing nozzle with a 1.54 mm diameter and 15 mm/s printing speed | [42] |
Pea protein concentrate | Extrusion at 140 °C, 400 rpm screw speed, 3.6 kg/h water supply | Layered structures, chewiness higher in comparison to rice protein extrudates, pea protein forms intermolecular hydrogen bonds during extrusion | [35] |
Pea protein isolate dispersions (10–21% w/w) | Three-dimensional extrusion printing, nozzle diameter of 1.6 mm, room temperature | At higher PPI concentrations (>17% w/w), the paste strength increased and PPI produced stable 3D-printed shapes; however, too high PPI concentrations lead to uneven extrusion, an inhomogeneity in the surface structure of the 3D-printed object | [43] |
Pea protein concentrate | Extraction of globulin proteins responsible for forming fragile gels followed by high-moisture extrusion in a twin-screw extruder at 200 rpm, 30–125 °C, 42% dry matter, 12 kg/h of wet feed | Pea-soluble protein extracts had higher gelation capacity compared to powdered protein isolates. Purified protein isolates have an enhancing effect on gel elasticity and reduce brittleness | [44] |
Isolated pea protein | Intermediate moisture (50%) twin screw extrusion, 250 rpm, 100–150 °C | Sponge-like structure, rich in essential amino acids, good oil absorption and emulsion properties | [32] |
Pea protein isolates | High-moisture-extrusion cooking, 100–160 °C cooking temperature, 0.45 kg/h dry protein feed rate, water to regulate moisture of the mix at 55% | Fiber formation and texture properties can be controlled by the cooking temperature, feed powders with larger particles are easier to process | [45] |
Protein Source | Structural and Textural Characteristics | Reference |
---|---|---|
Chickpea | Low foaming capacity in comparison to soy, high foam stability, gelling ability similar to that of soy, high water and oil binding capacity, which is beneficial for use in meat analogues, can also be used as colorants | [48,49] |
Lentils | Gelling capability comparable to whey proteins, but highly pH dependent, oil holding and foaming capacity comparable to soy, excellent emulsifying characteristics, high gel strength | [50,51,52] |
Faba beans | Heat treatment and low-moisture extrusion cause a rise in water holding capacity, water solubility and gel strength, fibrous layered structure can be obtained with high-moisture extrusion | [53,54,55] |
Mung beans | Albumins have better textural stability, texturization properties are temperature dependent | [56,57] |
Peanuts | Arachin is the main protein that changes during extrusion forming layered structures, in combination with other ingredients (e.g., carrageenan, gellan gum, transglutaminase) giving increased gel strength, storage modulus and fracture stress | [58,59,60] |
Cereal | Protein Content (% Dry Matter) |
---|---|
Wheat (Triticum aestivum) | 8–17.5 |
Maize (Zea mays) | 8.8–11.9 |
Rice (Oryza sativa) | 7–10 |
Oats (Avena sativa) | 8.7–16 |
Oil Seed Protein Source | Structural and Textural Characteristics | Reference |
---|---|---|
Industrial hemp seed | Globulins and albumins with β-sheets give fibrous-like structures during extrusion, with a significant influence of process conditions (high moisture does not favor textural properties, while increased temperature does); low water solubility, good emulsifying and gelling properties, foaming, water and fat holding capacity similar to soy protein isolates | [95,96,97,98] |
Sunflower meal/cake | Pre-fermented sunflower extrudates form fibrous, layered structures during extrusion, it was found that de-fatting is required to obtain a fibrous structure of the extrudates | [99,100] |
Rapeseed | Rapeseed protein concentrate has better solubility in comparison to isolate, fibrous structure formation in a shear cell at 140 °C | [101] |
Fats/Oils | Specific Fatty Acid Composition | Textural Properties | Reference |
---|---|---|---|
Sunflower oil | Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) | Meat analogues based on sunflower protein concentrate (SP), fermented sunflower protein concentrate (fSP) and fSP with pH shifted to neutral (fSP7) prepared with high-moisture extrusion; fermentation, in combination with neutral pH shift, enabled formation of fibrillar structures. | [99,128] |
Canola oil | Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3) | Canola oil, together with textured vegetable protein (TVP), formed a compact protein gel network of TVP matrix; hydrophobic interactions between the oil globule and the amino acids in protein resulted in a firmer meat product. | [128,144] |
Coconut oil | Caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) | Development of 3D-printable emulsified fat analogues using konjac glucomannan and coconut oil: before cooking, the printed fat analogues showed acceptable shape stability and surface smoothness. Significant oil release of fat analogues occurred after cooking. Additionally, higher coconut oil content added to the fat analogues led to the release of a larger oil amount and lower hardness and tensile strength after cooking. | [128,145] |
Palm kernel oil | Lauric acid (C12:0), palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), palmitoleic acid (C16:1), eicosenoic acid (C20:1), linoleic acid (C18:2), linolenic acid (C18:3) | For partial replacement of hydrogenated fats, an increasing concern raised due to high content of saturated fatty acids. On the other hand, palm oil exhibits potential to improve retention and succulence of meat analogues. | [128,142,146] |
Peanut oil | Valeric acid (C4:0), caprylic acid (C8:0), decanoic acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), palmitoleic acid (C16:1), eicosenoic acid (C20:1), oleic acid (C18:1), erucic acid (C22:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidonic acid (C20:4), eicosapentaenoic acid (C20:5 n-3 EPA) | For the production of oleogels; addition of higher amounts of beeswax leads to increased elasticity, macroscopic viscosity and firmness values of oleogels. Formation of structured network was more pronounced. | [128,147] |
Rapeseed oil | Saturated (unknown), monounsaturated (unknown), polyunsaturated (unknown) | The presence of rapeseed oil, in combination with pea protein and soy protein, decreased gel strength, Young’s modulus and the length of the LVE region; rapeseed oil droplets were not bound to the protein matrix; higher amount of extracted oil decreased encapsulation efficiency of pea protein. | [128,139] |
Soybean oil | Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3) | Soybean is commonly used as a source of plant protein and lipids; soybean in combination with konjac glucomannan improves stickiness, cohesiveness and firmness of meat analogue. | [128,148] |
Sesame oil | Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), palmitoleic acid (C16:1), eicosenoic acid (C20:1), linoleic acid (C18:2), linolenic acid (C18:3) | Use of sesame oil for oleogel formation to replace animal fats in beef burger; the addition of higher beeswax amount reduced oleogel hardness and consequently decreased the hardness, gumminess and chewiness of the raw burgers. | [128,149] |
Cocoa butter | Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) | Three-dimensional printing fluidity and formability of the soy-protein- and wheat-gluten-based materials were promoted with the addition of thermosensitive cocoa butter. | [81,128] |
Facts | Veggie Fresh Bratwurst 1 | Bio Bratwurst 2 | Veggie Mini Bratwurst 3 |
---|---|---|---|
Ingredients | Tofu (soybeans, water, coagulant: magnesium, chloride (nigari)), water, wheat protein, sunflower oil, sea salt, spices, row cane sugar, celery, thickener: locust bean gum | Organic pork (98%), sea salt, spices, dextrose, antioxidant: ascorbic acid; herbs, natural casing (sheep) | Water, pea protein isolate, onion cubes, rapeseed oil, coconut fat, textured pea protein (pea protein, pea flour), brandy vinegar, wheat gluten, thickener: methyl cellulose, apple cider vinegar, citrus fiber, pea fiber, gluten-free full oat grain flour, spices, spice extracts, table salt, coloring vegetable concentrate (carrot, beetroot), yeast extract, natural flavor, stabilizers: sodium alginate, konjac, guar gum |
Allergens | Celery, gluten, soybeans | Gluten | |
Energy, kJ (kcal) | 979 (234) | 991 (237) | 799 (191) |
Fat (g) | 13 | 18 | 12 |
Saturated fat (g) | 1.6 | 6.9 | 5.4 |
Carbohydrates (g) | 2.9 | 0.5 | 2.1 |
Sugars (g) | 2.7 | 0.5 | 1 |
Proteins (g) | 26 | 18 | 16 |
Salt (g) | 1.9 | 1.6 | 1.6 |
Nutri-score * | D | D | D |
NOVA # | 4 | 4 | 4 |
Eco-Score $ | B | Unknown | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benković, M.; Jurinjak Tušek, A.; Sokač Cvetnić, T.; Jurina, T.; Valinger, D.; Gajdoš Kljusurić, J. An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product. Gels 2023, 9, 921. https://doi.org/10.3390/gels9120921
Benković M, Jurinjak Tušek A, Sokač Cvetnić T, Jurina T, Valinger D, Gajdoš Kljusurić J. An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product. Gels. 2023; 9(12):921. https://doi.org/10.3390/gels9120921
Chicago/Turabian StyleBenković, Maja, Ana Jurinjak Tušek, Tea Sokač Cvetnić, Tamara Jurina, Davor Valinger, and Jasenka Gajdoš Kljusurić. 2023. "An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product" Gels 9, no. 12: 921. https://doi.org/10.3390/gels9120921
APA StyleBenković, M., Jurinjak Tušek, A., Sokač Cvetnić, T., Jurina, T., Valinger, D., & Gajdoš Kljusurić, J. (2023). An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product. Gels, 9(12), 921. https://doi.org/10.3390/gels9120921