Formulation and In Vivo Pain Assessment of a Novel Niosomal Lidocaine and Prilocaine in an Emulsion Gel (Emulgel) of Semisolid Palm Oil Base for Topical Drug Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Niosome Encapsulation Efficiency (%EE)
2.2. Niosome Size, Zeta Potential, and Polydispersity Index (PDI)
2.3. In Vitro Permeability Test
2.4. NIO-HAMIN F1-C Emulgel Characterization
2.5. In Vivo Pain Assessment
Study Design and Subject Admission
- (1)
- Study 1
- (2)
- Study 2
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation and Evaluation of Niosome-Encapsulated Prilocaine and Lidocaine
4.2.2. Encapsulation Efficiency
- Total drug content = amount of drug obtained from HPLC analysis;
- Total drug added = amount of drug added into the formulation;
- df = dilution factor.
4.2.3. Development of High-Performance Liquid Chromatography (HLPC) for Lidocaine and Prilocaine Analysis
4.2.4. Niosome Particle Size, Zeta Potential, and Polydispersity Index (PDI)
4.2.5. Preparation of Niosome Encapsulated Lidocaine and Prilocaine NIO-HAMIN Emulgel
Preparation of NIO-HAMIN Emulgel by Hot Process
Preparation of NIO-HAMIN Emulgel by Cold Process
4.2.6. In Vitro Skin Permeation Test
- Q = cumulative amount of drug release;
- Cn = concentration of lidocaine/prilocaine in the receiver compartment (μg/mL);
- V = volume of the receiver compartment;
- A = surface area of the membrane in cm2.
4.2.7. Physicochemical Characterizations
4.2.8. Drug Uniformity Content
4.2.9. In Vivo Pain Assessment
4.2.10. Study Design and Subject Admission
The First Phase of the Clinical Study (Study 1)
The Second Phase of the Clinical Study (Study 2)
4.2.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shipton, E.A. New Formulations of Local Anaesthetics—Part 1. Anesthesiol. Res. Pract. 2012, 2012, 546409. [Google Scholar]
- Scott, M.B.; Valerie, R.; Jenny, B.; Kevin, W.; Stephen, W.D.; Joanna, B. A randomized, controlled trial to evaluate topical anesthetic for 15 min before venipuncture in pediatrics. Am. J. Emerg. Med. 2013, 31, 20–25. [Google Scholar]
- Pratik, G.; Nitin, M.; Sandhya, C.; Madhur, K.R. Comparison of topical anesthetics for radiofrequency ablation of achracordons: Eutectic mixture of lignocaine/prilocaine versus lidoacine/tetracaine. Int. Sch. Res. Not. 2014, 2014, 743027. [Google Scholar]
- Khamdiah Khodari, S.N.; Zamri, C.; Mohamed Ibrahim, N.; Lucy, C. In vitro and in vivo evaluation of new topical anaesthetic cream formulated with with palm-oil base. Curr. Drug Deliv. 2016, 14, 690–695. [Google Scholar]
- Tina, A. Review of lidoacine/tetracaine cream as a topical anesthetic for dermatologic laser procedures. Pain Ther. 2013, 2, 11–19. [Google Scholar]
- Kang, C.; Shin, S.C. Development of prilocaine gels for enhanced local anesthetic action. Arch. Pharm. Res. 2012, 35, 1197–1204. [Google Scholar]
- Alsharif, A.; Omar, E.; Badr Alolayan, A.; Bahabri, R.; Ghazal, G. 2% lidocaine versus 3% prilocaine for oral and maxillofacial surgery. Saudi J. Anaesth. 2018, 12, 571–577. [Google Scholar]
- Alireza, D.; Syyed, M.A.; Pedram, D.; Amin, D. The efficacy of eutectic mixture of local anesthetics as a topical anesthetic agent used for dental procedures: A brief review. Anesth. Essays Res. 2016, 10, 383–387. [Google Scholar]
- Mritunjay, K.; Ranjiv, C.; Manish, G. Topical anesthesia. J. Anaesthesiol. Clin. Pharmacol. 2015, 31, 450–456. [Google Scholar]
- Eneida, D.P.; Cintia, M.S.C.; Giovana, R.T.; Michelle, F.M.; Leonardo, F.F.; Daniele, R.D.A. Drug delivery systems for local anesthetics. Recent Pat. Drug Deliv. Formul. 2010, 4, 23–34. [Google Scholar]
- Ali, N.; Karikumar, S.L.; Kaur, A. Niosomes: An excellent tool for drug delivery. Int. J. Res. Pharm. Chem. 2012, 2, 479–487. [Google Scholar]
- Ali, B.; Boon-Seang, C.; Harisun, Y. Niosomal drug delivery systems: Formulations, preparation and applications. World Appl. Sci. J. 2014, 32, 1671–1685. [Google Scholar]
- Gannu, P.K.; Pogaku, R. Nonionic surfactant vesicular systems for effective drug delivery—An overview. Acta Pharm. Sin. B 2011, 1, 208–219. [Google Scholar]
- Sritharan, N.; Zamri, C.; Mohamed Ibrahim, N. In vitro characteristic of an insulin suppository developed using palm oil base (Hamin) and its hypoglycaemic effect on rabbits. Front. Life Sci. 2015, 8, 256–263. [Google Scholar]
- Avinash, S.; Gowda, D.V.; Suresh, J.; Avarind, R.A.S.; Atul, S.; Riyaz, A.M.O. Formulation and evaluation of topical gel using Eupatorium glandulosum michx. for wound healing activity. Der. Pharm. Lett. 2016, 8, 52–63. [Google Scholar]
- Rajalakhsmi, S.V.; Vinaya, O.G. Formulation development, evaluation and optimization of medicated lip rouge containing niosomal acyclovir for the management of recurrent herpes labialis. Int. J. Appl. Pharm. 2017, 9, 21–27. [Google Scholar]
- Kandasamy, R.; Veinthramuthu, S. Formulation and optimization of zidovudine niosomes. AAPS Pharm. Sci. Tech. 2010, 11, 1119–1127. [Google Scholar]
- Delly, R.; Glodie, A.W.; Effionora, A. Novel transdermal ethosomal gel containing green tea (camellia sinensis L. kuntze) leaves extract: Formulation and in-vitro penetration study. J. Young Pharma. 2017, 9, 336–340. [Google Scholar]
- Xuemei, G.; Minyan, W.; Suna, H.; Wei-En, Y. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019, 11, 55. [Google Scholar]
- Khan, D.; Bashir, S.; Figueiredo, P.; Santos, H.; Khan, M.; Peltonen, L. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J. Drug Deliv. Sci. Technol. 2019, 50, 27–33. [Google Scholar]
- Ameerah, A.D. Benazepril hydrochloride loaded niosomal formulation for oral delivery: Formulation and characterization. Int. J. Appl. Pharm. 2018, 10, 66–70. [Google Scholar]
- Ya’akob, H.; Siew Chin, C.; Abd Aziz, A.; Ware, I.; Fauzi, M.A.J.; Rashidah, N.A.; Sabtu, R. Effect of span 60, labrasol, and cholestrol on labisia pumila loaded niosomes quality. Int. Sch. Sci. Res. Innov. 2017, 10, 521–524. [Google Scholar]
- Seleci, D.A.; Seleci, M.; Walter, J.G.; Stahl, F.; Scheper, T. Niosomes as nanoparticle drug carriers: Fundamentals and recent applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar]
- Sezgin-Bayindir, Z.; Antep, N.M.; Yuksel, N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. Am. Assoc. Pharm. Sci. 2014, 16, 108–117. [Google Scholar]
- Kumar, A.; Chandra, K.D. Methods for characterization of nanoparticles [editorial]. Adv. Nanomed. Deliv. Ther. Nucleic 2017, 43–58. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzedah, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, A.; Mozafari, M.R. Impact of praticle size and polydispersity index on the clinical application of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar]
- Katharotiya, K.; Shinde, G.; Katharotiya, D.; Shelke, S.; Patel, R.; Kulkarni, D. Development, evaluation and biodistribution of stealth liposomes of 5-fluorouracil for effective treatment of breast cancer. J. Liposome Res. 2022, 32, 146–158. [Google Scholar]
- De Silva, L.; Fu, J.Y.; Htar, T.T.; Muniyandy, S.; Kasbollah, A.; Wan Kamal, W.H.B.; Chuah, L.H. Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes. Int. J. Nanomed. 2019, 14, 1101–1117. [Google Scholar]
- Yusuf, M.; Sharma, V.; Pathak, K. Nanovesicles for transdermal delivery of felodipine. Development, characterization, and pharmacokinetics. Int. J. Pharm. Investig. 2014, 4, 119–130. [Google Scholar]
- Georgette, O.; Spencer, B.; Jeffrey, K. Comparison of five commonly-available, lidocaine-containing topical anesthetics and their effct on serum levels of lidocaine and its metabolite monoethylglycinexylidide (MEGX). Aesthet. Surg. J. 2011, 32, 495–503. [Google Scholar]
- Lubrizol. Viscosity of Carbopol Polymers in Aqueous Systems; Lubrizol Advanced Materials, Inc.: Cleveland, OH, USA, 2010. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Perceptual difference in L* a* b* color space as the bae for object colour identification. In Proceedings of the 1st International Conference on Image Processing & Communications, Athens, Greece, 25 September 2009; ResearchGate: Olsztyn, Poland, 2009; pp. 1–8. [Google Scholar]
- Kasuhita, B.; Thiagarajan, N.; Padma, T. Formulation optimization, rheological characterization and suitability studies of polyglucoside-based azadirachta indica a. juss emollient cream as a dermal base for sun protection application. Indian J. Pharm. Sci. 2017, 79, 914–922. [Google Scholar]
- Gupta, P.; Maqbool, T.; Sleemuddin, M. Oriented immobolization of stem bromelin via the lone histidine on metal affinity support. J. Mol. Cat B Enzym. 2007, 45, 78–83. [Google Scholar]
- Torchilin, V.P. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their fate. Adv. Drug Deliv. Rev. 2005, 57, 95–109. [Google Scholar]
- Sawyer, J.; Febbraro, S.; Masud, S.; Ashburn, M.A.; Campbell, J.C. Heated lidocaine/tetracaine patch (Synergy TM, Rapydan TM) compared with lidocaine/prilocaine cream (EMLA (R)) for topical anaesthesia before vascular access. BJA 2009, 102, 210–215. [Google Scholar]
- Gowekar, N.M.; Wadher, S.J. Development and validation of HPLC method for simultaneous determination of lidocaine and prilocaine in topical formulation. Asian J. Pharm. Clin. Res. 2017, 10, 179–182. [Google Scholar]
Formulation Code | Vesicular Size (nm) | PDI | Zeta-Potential | %EE | |
---|---|---|---|---|---|
LDC | PLC | ||||
F1 | 748.6 | 0.732 | −28.4 ± 18.2 | 53.74 ± 0.03 | 55.63 ± 0.03 |
F2 | 362.2 | 0.697 | −54.2 ± 12.3 | 34.36 ± 0.03 | 32.63 ± 0.03 |
F3 | 1206 | 1.000 | −66.3 ± 13.4 | 27.60 ± 0.04 | 29.51 ± 0.04 |
F4 | 1035 | 0.945 | −62.8 ± 12.4 | 24.36 ± 0.03 | 26.83 ± 0.03 |
F5 | 1902 | 0.956 | −50.3 ± 6.33 | 26.45 ± 0.08 | 28.23 ± 0.08 |
F6 | 4091 | 0.533 | −46.8 ± 8.29 | 50.26 ± 0.09 | 47.73 ± 0.08 |
F7 | 623.7 | 0.885 | −72.9 ± 24.9 | 8.94 ± 0.03 | 12.27 ± 0.03 |
Parameter | NIO-HAMIN F1-C Emulgel | Mean | ±SD | ||
---|---|---|---|---|---|
Day 0 | Month 1 | Month 2 | |||
pH | 9.36 | 8.53 | 8.67 | 8.86 | 0.44 |
Viscosity (P) | |||||
2.5 rpm | 406.67 | 1244.67 | 1529.33 | 1060.22 | 583.62 |
5 rpm | 242.67 | 675.33 | 833.33 | 583.78 | 305.79 |
10 rpm | 147.67 | 376.67 | 440.00 | 321.44 | 153.79 |
20 rpm | 91.83 | 217.00 | 244.18 | 184.34 | 81.26 |
50 rpm | 51.87 | 106.80 | 138.80 | 99.16 | 43.97 |
Color | |||||
L* | 85.52 | 86.00 | 85.49 | 85.67 | 0.29 |
a* | −0.70 | −0.95 | −1.24 | −0.96 | 0.27 |
b* | 5.02 | 5.54 | 4.62 | 5.06 | 0.46 |
Formulation Code | Lidocaine (g) | Prilocaine (g) | SURFACTANT (M) | Cholesterol (M) | Labrasol (%) | DCP (M) | |
---|---|---|---|---|---|---|---|
Span® 40 | Span® 60 | ||||||
F1 | 0.25 | 0.25 | 1 | - | 1 | 2 | 0.01 |
F2 | 0.25 | 0.25 | 1 | - | 1 | 2 | - |
F3 | 0.50 | 0.50 | 1 | - | 1 | 2 | 0.01 |
F4 | 0.25 | 0.25 | 1 | - | 1 | - | 0.01 |
F5 | 0.25 | 0.25 | - | 1 | 1 | - | 0.01 |
F6 | 0.25 | 0.25 | - | 1 | 1 | - | 0.01 |
F7 | 0.25 | 0.25 | - | 1 | 1 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabery, A.M.; Widodo, R.T.; Chik, Z. Formulation and In Vivo Pain Assessment of a Novel Niosomal Lidocaine and Prilocaine in an Emulsion Gel (Emulgel) of Semisolid Palm Oil Base for Topical Drug Delivery. Gels 2023, 9, 96. https://doi.org/10.3390/gels9020096
Shabery AM, Widodo RT, Chik Z. Formulation and In Vivo Pain Assessment of a Novel Niosomal Lidocaine and Prilocaine in an Emulsion Gel (Emulgel) of Semisolid Palm Oil Base for Topical Drug Delivery. Gels. 2023; 9(2):96. https://doi.org/10.3390/gels9020096
Chicago/Turabian StyleShabery, Aidawati Mohamed, Riyanto Teguh Widodo, and Zamri Chik. 2023. "Formulation and In Vivo Pain Assessment of a Novel Niosomal Lidocaine and Prilocaine in an Emulsion Gel (Emulgel) of Semisolid Palm Oil Base for Topical Drug Delivery" Gels 9, no. 2: 96. https://doi.org/10.3390/gels9020096
APA StyleShabery, A. M., Widodo, R. T., & Chik, Z. (2023). Formulation and In Vivo Pain Assessment of a Novel Niosomal Lidocaine and Prilocaine in an Emulsion Gel (Emulgel) of Semisolid Palm Oil Base for Topical Drug Delivery. Gels, 9(2), 96. https://doi.org/10.3390/gels9020096