A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Handling of the Bio-Adhesive Mesh System
2.2. In Vivo Animal Model
2.3. Mesh Slippage and Contraction
2.4. Mesh Fixation
2.5. Mesh Biocompatibility
3. Conclusions
4. Materials and Methods
4.1. Materials
4.1.1. Polymer Mesh
4.1.2. Polymer Surface Modification
4.1.3. Hydrogel Adhesive
4.1.4. Fibrin Sealant
4.1.5. Animal Model
4.1.6. Biocompatibility
4.2. Methods
4.2.1. Polymer Mesh
4.2.2. Preparation of PGMA/HSA Grafted Polypropylene Mesh
4.2.3. Infrared Spectroscopy of PGMA/HSA Bonding Strength
4.2.4. Gel Permeation Chromatography (GPC) of the PGMA (Figure 9)
4.2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy of the PGMA
4.2.6. Overview of Hydrogel Adhesive Preparation
4.2.7. Proton NMR Spectroscopy of the Hydrogel Adhesive
4.2.8. Preparation of Hydrogels and Adhesives
4.2.9. In Vivo Animal Model
4.2.10. Mesh Slippage and Contraction
4.2.11. Mesh Fixation
4.2.12. Mesh Biocompatibility
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cassar, K.; Munro, A. Surgical treatment of incisional hernia. Br. J. Surg. 2002, 89, 534–545. [Google Scholar] [CrossRef]
- Köckerling, F.; Koch, A.; Lorenz, R. Groin Hernias in Women—A Review of the Literature. Front. Surg. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Rutkow, I.M. Demographic and socioeconomic aspects of hernia repair in the United States in 2003. Surg. Clin. NA 2003, 83, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Funk, L.M.; Perry, K.A.; Narula, V.K.; Mikami, D.J.; Melvin, W.S. Current national practice patterns for inpatient management of ventral abdominal wall hernia in the United States. Surg. Endosc. 2013, 27, 4104–4112. [Google Scholar] [CrossRef]
- Poulose, B.K.; Shelton, J.; Phillips, S.; Moore, D.; Nealon, W.; Penson, D.; Beck, W.; Holzman, M.D. Epidemiology and cost of ventral hernia repair: Making the case for hernia research. Hernia 2012, 16, 179–183. [Google Scholar] [CrossRef]
- HerniaSurge Group. International guidelines for groin hernia management. Hernia 2018, 22, 1–165. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.L.; Kingsnorth, A.N. Prosthetic mesh materials used in hernia surgery. Expert. Rev. Med. Devices 2012, 9, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.S.; Ladwa, N.; Kalra, L.; McFall, M.; Baig, M.K.; Sains, P. A meta-analysis examining the use of tacker mesh fixation versus glue mesh fixation in laparoscopic inguinal hernia repair. Am. J. Surg. 2013, 206, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, V.; Ringuette, V.; Desrochers, M.; Sirois, M.; Vermette, P. Composition, host responses and clinical applications of bioadhesives. J. Biomed. Mater. Res. 2022, 110, 2779–2797. [Google Scholar] [CrossRef]
- Campanelli, G.; Cavalli, M.; Sfeclan, C.J.; Biondi, A. Reducing postoperative pain: The use of Tisseel for mesh fixation in inguinal hernia repair. Surg. Technol. Int. 2012, 22, 134–139. [Google Scholar]
- Fortelny, R.H.; Petter-Puchner, A.H.; Glaser, K.S.; Redl, H. Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: A systematic review. Surg. Endosc. 2012, 26, 1803–1812. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; Ward, P.J. Tissue adhesives for hernia mesh fixation: A literature review. Cureus 2020, 12, e10494. [Google Scholar] [CrossRef]
- Jenkins, E.D.; Melman, L.; Desai, S.; Brown, S.R.; Frisella, M.M.; Deeken, C.R.; Matthews, B.D. Evaluation of intraperitoneal placement of absorbable and nonabsorbable barrier coated mesh secured with fibrin sealant in a New Zealand white rabbit model. Surg. Endosc. 2011, 25, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, X.; Gu, Y.; Guo, S. A meta-analysis examining the use of fibrin glue mesh fixation versus suture mesh fixation in open inguinal hernia repair. Dig. Surg. 2014, 31, 444–451. [Google Scholar] [CrossRef]
- Berney, C.R.; Descallar, J. Review of 1000 fibrin glue mesh fixation during endoscopic totally extraperitoneal (TEP) inguinal hernia repair. Surg Endosc. 2016, 30, 4544–4552. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, G.; Pascual, M.H.; Hoeferlin, A.; Rosenberg, J.; Champault, G.; Kingsnorth, A.; Miserez, M. Randomized, controlled, blinded trial of Tisseel/Tissucol for mesh fixation in patients undergoing Lichtenstein technique for primary inguinal hernia repair: Results of the TIMELI trial. Ann. Surg. 2012, 255, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Jindal, V.; Pathania, O.P.; Thomas, S. Novel technique for closure of defect in laparoscopic ventral hernia repair. J. Minim. Access Surg. 2010, 6, 86–88. [Google Scholar] [CrossRef]
- Eriksen, J.R.; Gögenur, I.; Rosenberg, J. Choice of mesh for laparoscopic ventral hernia repair. Hernia 2007, 11, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Heymann, F.; von Trotha, K.T.; Preisinger, C.; Lynen-Jansen, P.; Roeth, A.A.; Geiger, M.; Geisler, L.J.; Frank, A.K.; Conze, J.; Luedde, T.; et al. Polypropylene mesh implantation for hernia repair causes myeloid cell-driven persistent inflammation. JCI Insight. 2019, 4, e123862. [Google Scholar] [CrossRef]
- Faulk, D.M.; Londono, R.; Wolf, M.T.; Ranallo, C.A.; Carruthers, C.A.; Wildemann, J.D.; Dearth, C.L.; Badylak, S.F. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 2014, 35, 8585–8595. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.T.; Carruthers, C.A.; Dearth, C.L.; Crapo, P.M.; Huber, A.; Burnsed, O.A.; Londono, R.; Johnson, S.A.; Daly, K.A.; Stahl, E.C.; et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. J. Biomed. Mater. Res. A 2014, 102, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Hachim, D.; LoPresti, S.T.; Yates, C.C.; Brown, B.N. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials 2017, 112, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Mv, R.; Burger, J.W.A.; Bonthuis, F.; Jeekel, J.; Bonjer, H.J. Prevention of adhesion formation to polypropylene mesh by collagen coating: A randomized controlled study in a rat model of ventral hernia repair. Surg. Endosc. 2004, 18, 681–685. [Google Scholar]
- Poppas, D.P.; Sung, J.J.; Magro, C.M.; Chen, J.; Toyohara, J.P.; Ramshaw, B.J.; Felsen, D. Hydrogel coated mesh decreases tissue reaction resulting from polypropylene mesh implant: Implication in hernia repair. Hernia 2016, 20, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Xu, Z.; Niu, H.; Gao, N.; Guan, Y.; Li, C.; Dang, Y.; Cui, X.; Liu, X.L.; Duan, Y.; et al. An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Sci. Rep. 2018, 8, 1–22. [Google Scholar] [CrossRef]
- Fan, Z.; Fu, M.; Xu, Z.; Zhang, B.; Li, Z.; Li, H.; Zhou, X.; Liu, X.; Duan, Y.; Lin, P.H.; et al. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules 2017, 18, 2820–2829. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Alejos, M.F. Controlling Thermal Gelation Properties of Novel Tetronic® Hydrogel-Based Tissue Adhesive. All Theses. 2016, 2492. Available online: https://tigerprints.clemson.edu/all_theses/2492 (accessed on 7 April 2023).
- Sanders, L.K. Development and Characterization of a Novel Hydrogel Adhesive for Soft Tissue Applications. ProQuest Dissertations and Theses. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2015. [Google Scholar]
- Sanders, L.; Stone, R.; Webb, K.; Mefford, T.; Nagatomi, J. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues. J. Biomed. Mater. Res. A 2015, 103, 861–868. [Google Scholar] [CrossRef]
- Cho, E.; Lee, J.S.; Webb, C.K. Formulation and characterization of poloxamine-based hydrogels as tissue sealants. Acta Biomater. 2012, 8, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Khanna, A.; Nagatomi, J.; Luzinov, I.; Harman, M. Surface modification of polypropylene surgical meshes for improving adhesion with poloxamine hydrogel adhesive. J. Biomed. Mater. Res. Part B 2019, 107, 1047–1055. [Google Scholar] [CrossRef]
- Cellesi, F.; Tirelli, N.; Hubbell, J.A. Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromol. Chem. Phys. 2002, 203, 1466–1472. [Google Scholar] [CrossRef]
- Whatley, B.R.; Wen, X.; Luzinov, I.; Sharma, S. 2013. Protein Based Materials, Plastic Albumin Devices and Related Methods. U.S. Patent 5 December 2013. [Google Scholar]
- Zdyrko, B.; Luzinov, I. Polymer brushes by the “grafting to” method. Macromol. Rapid. Commun. 2011, 32, 859–869. [Google Scholar] [CrossRef]
- Goli, K.; Rojas, O.; Ozcam, A.; Genzer, J. Generation of functional coatings on hydrophobic surfaces through deposition of denatured proteins followed by grafting from polymerization. Biomacromolecules 2012, 13, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Ionov, L.; Zdyrko, B.; Sidorenko, A.; Minko, S.; Klep, V.; Luzinov, I.; Stamm, M. Gradient polymer layers by “grafting to” approach. Macromol. Rapid Commun. 2004, 25, 360–365. [Google Scholar] [CrossRef]
- Khanna, A.; Luzinov, I.; Burtovvy, R.; Simionescu, A.; Langan, E.M., III; Laberge, M. Fabrication of human serum albumin films for enhanced hemocompatibility and vascular compatibility. In Proceedings of the 39th Annual Meeting SFB, Charlotte, NC, USA, 15–18 April 2015. [Google Scholar]
- Khanna, A. Fabrication of Human Serum Albumin Film for Enhanced Hemocompatibility and Mitigation of Intimal Hyperplasia Under Physiologically Relevant Flow Shear Conditions (2017). All Dissertations. 2060. Available online: https://tigerprints.clemson.edu/all_dissertations/2060 (accessed on 7 April 2023).
- Zdyrko, B.; Klep, V.; Luzinov, I. Synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Langmuir 2003, 19, 10179–10187. [Google Scholar] [CrossRef]
- Zdyrko, B.; Iyer, S.; Luzinov, I. Macromolecular anchoring layers for polymer grafting: Comparative study. Polymers 2006, 47, 272–279. [Google Scholar] [CrossRef]
- Sharma, S. Fabrication and Characterization of Polymer Blends and Composites Derived from Biopolymers (2008). All Dissertations. 290. Available online: https://tigerprints.clemson.edu/all_dissertations/290 (accessed on 7 April 2023).
- Guillaume, O.; Teuschl, A.H.; Gruber-Blum, S.; Fortelny, R.H.; Redl, H.; Petter-Puchner, A. Emerging Trends in Abdominal Wall Reinforcement: Bringing Bio-Functionality to Meshes. Adv. Healthc. Mater. 2015, 4, 1763–1789. [Google Scholar] [CrossRef] [PubMed]
- Kalaba, S.; Gerhard, E.; Winder, J.S.; Pauli, E.M.; Haluck, R.S.; Yang, J. Design strategies and applications of biomaterials and devices for hernia repair. Bioact. Mater. 2016, 1, 2–17. [Google Scholar] [CrossRef]
- Gao, Y.; Han, X.; Chen, J.; Pan, Y.; Yang, M.; Lu, L.; Yang, J.; Suo, Z.; Lu, T. Hydrogel-mesh composite for wound closure. Proc. Natl. Acad. Sci. USA 2021, 118, e2103457118. [Google Scholar] [CrossRef]
- Soares, B.M.; Guidoin, R.G.; Marois, Y.; Martin, L.; King, M.W.; Laroche, G.; Zhang, Z.; Charara, J.; Girard, J.F. In vivo characterization of a fluoropassivated gelatin-impregnated polyester mesh for hernia repair. J. Biomed. Mater. Res. 1996, 32, 293–305. [Google Scholar] [CrossRef]
- Gorgieva, S.; Modic, M.; Dovgan, B.; Kaisersberger-Vincek, M.; Kokol, V. Plasma activated polypropylene mesh-gelatin scaffold composite as potential implant for bioactive hernia treatment. Plasma Process. Polym. 2015, 12, 237–251. [Google Scholar] [CrossRef]
- Udpa, N.; Iyer, S.R.; Rajoria, R.; Breyer, K.E.; Valentine, H.; Singh, B.; McDonough, S.P.; Brown, B.N.; Bonassar, L.J.; Gao, Y. Effects of chitosan coatings on polypropylene mesh for implantation in a rat abdominal wall model. Tissue Eng. Part A 2013, 19, 2713–2723. [Google Scholar] [CrossRef]
- Sanders, L.; Nagatomi, J. Clinical applications of surgical adhesives and sealants. Crit. Rev. Biomed. Eng. 2014, 42, 271–292. [Google Scholar] [CrossRef]
- Junge, K.; Binnebösel, M.; von Trotha, K.T.; Rosch, R.; Klinge, U.; Neumann, U.P.; Lynen Jansen, P. Mesh biocompatibility: Effects of cellular inflammation and tissue remodelling. Langenbeck’s Arch. Surg. 2012, 397, 255–270. [Google Scholar] [CrossRef]
- Klinge, U.; Klosterhalfen, B.; Birkenhauer, V.; Junge, K.; Conze, J.; Schumpelick, V. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 2002, 103, 208–214. [Google Scholar] [CrossRef]
- Vogels, R.R.M.; Kaufmann, R.; van den Hil, L.C.L.; van Steensel, S.; Schreinemacher, M.H.F.; Lange, J.F.; Bouvy, N.D. Critical overview of all available animal models for abdominal wall hernia research. Hernia 2017, 21, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Rex, J.; Cobb, W.; Reukov, V.; Vertegel, A. Anti-inflammatory coatings of hernia repair meshes: A pilot study. J. Biomed. Mater. Res. Part B 2018, 106B, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Van Ee, C.A.; Chasse, A.L.; Myers, B.S. Quantifying skeletal muscle properties in cadaveric test specimens: Effects of mechanical loading, postmortem time, and freezer storage. J. Biomech. Eng. 2000, 122, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Xinyue, L. Experimental Characterization and Biological Assessments of Polymeric Mesh Implants (2020). All Dissertations. 2657. Available online: https://tigerprints.clemson.edu/all_dissertations/2657 (accessed on 7 April 2023).
Rabbits | Test | Fibrin | Bio-Adhesive | Tissue Margins without Mesh |
---|---|---|---|---|
R1–R3 | Lap Shear | 6.8 ± 1.1 N/cm2 | 7.7 ± 2.9 N/cm2 | 7.3 ± 2.2 N/cm2 |
R4–R5 | Peel Test | 1.6 ± 0.4 N/cm | 3.0 ± 1.8 N/cm | 2.3 ± 1.4 N/cm |
R6 (control) | Peel Test | 4.5 N/cm |
Stain | Tissue Type | Fibrin-Fixed | Bio-Adhesive | Control |
---|---|---|---|---|
Hematoxylin & Eosin | nuclei | 9.0% ± 1.8% | 11.3% ± 1.0% | 4.7% ± 2.5% |
Masson’s Trichrome | collagen | 41.3% ± 10.1% | 44.3% ± 10.5% | 28.3% ± 5.3% |
muscle | 20.3% ± 5.3% | 13.7% ± 6.6% | 26.7% ± 11.7% | |
Herovici | immature collagen | 13.4% ± 4.5% | 13.4% ± 4.1% | 11.9% ± 4.7% |
mature collagen | 17.2% ± 3.0% | 16.3% ± 3.6% | 16.8% ± 4.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harman, M.; Champaigne, K.; Cobb, W.; Lu, X.; Chawla, V.; Wei, L.; Luzinov, I.; Mefford, O.T.; Nagatomi, J. A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model. Gels 2023, 9, 372. https://doi.org/10.3390/gels9050372
Harman M, Champaigne K, Cobb W, Lu X, Chawla V, Wei L, Luzinov I, Mefford OT, Nagatomi J. A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model. Gels. 2023; 9(5):372. https://doi.org/10.3390/gels9050372
Chicago/Turabian StyleHarman, Melinda, Kevin Champaigne, William Cobb, Xinyue Lu, Varun Chawla, Liying Wei, Igor Luzinov, O. Thompson Mefford, and Jiro Nagatomi. 2023. "A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model" Gels 9, no. 5: 372. https://doi.org/10.3390/gels9050372
APA StyleHarman, M., Champaigne, K., Cobb, W., Lu, X., Chawla, V., Wei, L., Luzinov, I., Mefford, O. T., & Nagatomi, J. (2023). A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model. Gels, 9(5), 372. https://doi.org/10.3390/gels9050372