Droplet Contact Line Dynamics after Impact on Solid Surface: Future Perspectives in Healthcare and Medicine
Abstract
:1. Introduction
2. Applications: Healthcare and Medicine
2.1. Three-Dimensional (3D) Bioprinting
2.2. Wearable/Portable/Implantable Biosensors
3. Droplet Motion on a Solid Surface
3.1. Contact Line
3.2. Contact Angle: Static and Dynamic
3.3. Contact Angle Modes: Wenzel, Cassie–Baxter, and Mixed
3.4. Contact Line Dynamics
3.5. Physical Forces and Non-Dimensional Parameters
3.6. Maximum Spreading Parameter
4. Physical Models of Contact Line Dynamics
4.1. Molecular Kinetic Model
4.2. Hydrodynamics Model
4.3. Combined Model: Molecular Kinetic Model + Hydrodynamics Model
4.4. Precursor Film Model
4.5. Shikhmurzaev Model
4.6. Cahn–Hilliard–van der Waals Model
5. Future Directions
5.1. Future of Personalized Healthcare and Medicine by Wearable Biosensors
5.2. Nanodroplet Impact
5.3. Physical Models of the Moving Contact Line: Limitations
5.4. Evaporative Droplets
5.5. Heterogenous Biological Droplets
5.6. Future Perspective: Multi-Disciplinary Research
Funding
Data Availability Statement
Conflicts of Interest
References
- Bird, J.C.; Dhiman, R.; Kwon, H.M.; Varanasi, K.K. Reducing the contact time of a bouncing drop. Nature 2013, 503, 385. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Weinan, E. Contact Line Dynamics on Heterogeneous Surfaces. Phys. Fluids 2011, 23, 072103. [Google Scholar] [CrossRef]
- Blake, T.D. The Physics of Moving Wetting Lines. J. Colloid Interface Sci. 2006, 299, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Eggers, J.; Stone, H.A. Characteristic Lengths at Moving Contact Lines for a Perfectly Wetting Fluid: The Influence of Speed on The Dynamic Contact Angle. J. Fluid Mech. 2004, 505, 309–321. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Diaz, M.E.; Cerro, R.L. A General Solution of Dewetting Flow with a Moving Contact Line. Phys. Fluids 2021, 33, 103601. [Google Scholar] [CrossRef]
- Cox, R.G. The Dynamics of the Spreading of Liquids on a Solid Surface. Part 1. Viscous Flow. J. Fluid Mech. 1986, 168, 169–194. [Google Scholar] [CrossRef]
- Huh, C.; Scriven, J.L.E. Hydrodynamic Model of Steady Movement of a Solid/Liquid/Fluid Contact Line. J. Colloid Interface Sci. 1971, 35, 85–101. [Google Scholar] [CrossRef]
- Harikrishnan, A.R.; Dhar, P.; Agnihotri, P.K.; Gedupudi, S.; Das, S.K. Correlating Contact Line Capillarity and Dynamic Contact Angle Hysteresis in Surfactant-Nanoparticle Based Complex Fluids. Phys. Fluids 2018, 30, 042006. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.-P. Numerical Study on the Stick-Slip Motion of Contact Line Moving on Heterogeneous Surfaces. Phys. Fluids 2017, 29, 082102. [Google Scholar] [CrossRef]
- Villermaux, E.; Bossa, B. Drop fragmentation on impact. J. Fluid Mech. 2011, 668, 412–435. [Google Scholar] [CrossRef]
- Ding, H.; Spelt, P.D.M. Inertial Effects in Droplet Spreading: A Comparison between Diffuse-Interface and Level-Set Simulations. J. Fluid Mech. 2007, 576, 287–296. [Google Scholar] [CrossRef]
- Kavehpour, H.P.; Mohammad Karim, A.; Rothstein, J.P.; Davis, S. Laws of Spreading: When Hydrodynamic Equations Are Not Enough. In Proceedings of the 70th Annual Meeting of the Fluid Dynamics, Denver, CO, USA, 19–21 November 2017; Division of the American Physical Society: College Park, MD, USA, 2017; Volume 62. [Google Scholar]
- Biance, A.-L.; Clanet, C.; Quéré, D. First Steps in the Spreading of a Liquid Droplet. Phys. Rev. E 2004, 69, 016301. [Google Scholar] [CrossRef] [PubMed]
- Foister, R.T. The Kinetics of Displacement Wetting in Liquid/Liquid/Solid Systems. J. Colloid Interface Sci. 1990, 136, 266–282. [Google Scholar] [CrossRef]
- Marengo, M.; Antonini, C.; Roisman, I.V.; Tropea, C. Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 2011, 16, 292–302. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S.T. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef]
- Yarin, A.L.; Roisman, I.V.; Tropea, C. Collision Phenomena in Liquids and Solids; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Pierzyna, M.; Burzynski, D.A.; Bansmer, S.E.; Semaan, R. Data-driven splashing threshold model for drop impact on dry smooth surfaces. Phys. Fluids 2021, 33, 123317. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Rothstein, J.P.; Kavehpour, H.P. Dynamics of Spreading on Micro-Textured Surfaces. In Proceedings of the 68th Annual Meeting of the Fluid Dynamics, Boston, MA, USA, 22–24 November 2015; Division of the American Physical Society: College Park, MD, USA, 2015; Volume 60. [Google Scholar]
- Wijshoff, H. Drop dynamics in the inkjet printing process. Curr. Opin. Colloid Interface Sci. 2018, 36, 20–27. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Rothstein, J.P.; Kavehpour, H.P. Experimental Study of Dynamic Contact Angles on Rough Hydrophobic Surfaces. J. Colloid Interface Sci. 2018, 513, 658–665. [Google Scholar] [CrossRef]
- Voinov, O.V. Hydrodynamics of Wetting. Fluid Dyn. 1976, 11, 714–721. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Kavehpour, H.P. Dynamics of Spreading on Ultra-hydrophobic Surfaces. J. Coat. Technol. Res. 2015, 12, 959–964. [Google Scholar] [CrossRef]
- Wibowo, C.; Ng, K.M. Product-oriented process synthesis and development: Creams and pastes. AIChE J. 2001, 47, 2746–2767. [Google Scholar] [CrossRef]
- Skurtys, O.; Aguilera, J.M. Applications of microfluidic devices in food engineering. Food Biophys. 2008, 3, 1–15. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet printing process and its applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Roach, L.S.; Ismagilov, R.F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 2003, 125, 11170–11171. [Google Scholar] [CrossRef]
- Suea-Ngam, A.; Rattanarat, P.; Chailapakul, O.; Srisa-Art, M. Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal. Chim. Acta 2015, 883, 45–54. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Suszynski, W.J.; Griffith, W.B.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Effect of rheological properties of shear thinning liquids on curtain stability. J. Non-Newton. Fluid Mech. 2019, 263, 69–76. [Google Scholar] [CrossRef]
- Singh, R.; Bahga, S.S.; Gupta, A. Electrohydrodynamic droplet formation in a T-junction microfluidic device. J. Fluid Mech. 2020, 905, A29. [Google Scholar] [CrossRef]
- Spelt, P.D. A level-Set Approach for Simulations of Flows with Multiple Moving Contact Lines with Hysteresis. J. Comput. Phys. 2005, 207, 389–404. [Google Scholar] [CrossRef]
- Wang, H. From Contact Line Structures to Wetting Dynamics. Langmuir 2019, 35, 10233–10245. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Suszynski, W.J.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Delaying Breakup and Avoiding Air Entrainment in Curtain Coating Using a Two-Layer Liquid Structure. Chem. Eng. Sci. 2020, 213, 115376. [Google Scholar] [CrossRef]
- Brandon, S.; Marmur, A. Simulation of Contact Angle Hysteresis on Chemically Heterogeneous Surfaces. J. Colloid Interface Sci. 1996, 183, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Ng, A.H.; Fobel, R.; Wheeler, A.R. Digital microfluidics. Annu. Rev. Anal. Chem. 2012, 5, 413–440. [Google Scholar] [CrossRef]
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; van Oijen, A.M. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Suszynski, W.J.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Stability of Two-Layer Curtain Coating. In Proceedings of the ICR 2020—18th International Congress on Rheology, Rio de Janeiro, Brazil, 2–7 August 2020. [Google Scholar]
- De Gennes, P.G. Deposition of Langmuir-Blodgett Layers. Colloid Polym. Sci. 1986, 264, 463–465. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Hejazian, M.; Ooi, C.; Kashaninejad, N. Recent advances and future perspectives on microfluidic liquid handling. Micromachines 2017, 8, 186. [Google Scholar] [CrossRef]
- Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. Engl. 2006, 45, 7336–7356. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Weigl, B.H.; Bardell, R.L.; Cabrera, C.R. Lab-on-a-chip for drug development. Adv. Drug Deliv. Rev. 2003, 55, 349–377. [Google Scholar] [CrossRef]
- Tao, X.; Chakrabarty, K. Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 148–158. [Google Scholar]
- Mohammad Karim, A.; Suszynski, W.J.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Contact Line Dynamics in Curtain Coating of Non-Newtonian Liquids. Phys. Fluids 2021, 33, 103103. [Google Scholar] [CrossRef]
- Mohammad Karim, A. Experimental Dynamics of Newtonian Non-elastic and Viscoelastic Droplets Impacting Immiscible Liquid Surface. AIP Adv. 2019, 9, 125141. [Google Scholar] [CrossRef]
- Mohammad Karim, A. Experimental Dynamics of Newtonian and Non-Newtonian Droplets Impacting Liquid Surface with Different Rheology. Phys. Fluids 2020, 32, 043102. [Google Scholar] [CrossRef]
- Joung, Y.S.; Buie, C.R. Aerosol generation by raindrop impact on soil. Nat. Commun. 2015, 6, 6083. [Google Scholar] [CrossRef]
- Bourouiba, L. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 2021, 53, 473–508. [Google Scholar] [CrossRef]
- Pham, T.; Kumar, S. Imbibition and Evaporation of Droplets of Colloidal Suspensions on Permeable Substrates. Phys. Rev. Fluids 2019, 4, 034004. [Google Scholar] [CrossRef]
- Riboux, G.; Gordillo, J.M. Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing. Phys. Rev. Lett. 2014, 113, 024507. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.W.; Nagel, S.R. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 2005, 94, 184505. [Google Scholar] [CrossRef]
- Lee, M.; Chang, Y.S.; Kim, H.-Y. Drop impact on microwetting patterned surfaces. Phys. Fluids 2010, 22, 072101. [Google Scholar] [CrossRef]
- Burzynski, D.A.; Roisman, I.V.; Bansmer, S.E. On the splashing of high-speed drops impacting a dry surface. J. Fluid Mech. 2020, 892, A2. [Google Scholar] [CrossRef]
- Piskunov, M.; Semyonova, A.; Khomutov, N.; Ashikhmin, A.; Yanovsky, V. Effect of rheology and interfacial tension on spreading of emulsion drops impacting a solid surface. Phys. Fluids 2021, 33, 083309. [Google Scholar] [CrossRef]
- Pasandideh-Fard, M.; Qiao, Y.M.; Chandra, S.; Mostaghimi, J. Capillary effects during droplet impact on a solid surface. Phys. Fluids 1996, 8, 650–659. [Google Scholar] [CrossRef]
- Ukiwe, C.; Kwok, D. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 2005, 21, 666–673. [Google Scholar] [CrossRef] [PubMed]
- De la Paz, E.; Maganti, N.H.; Trifonov, A.; Jeerapan, I.; Mahato, K.; Yin, L.; Sonsa-Ard, T.; Ma, N.; Jung, W.; Burns, R.; et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 2022, 13, 7405. [Google Scholar] [CrossRef]
- Sharma, S.; Ramadi, K.B.; Poole, N.H.; Srinivasan, S.S.; Ishida, K.; Kuosmanen, J.; Jenkins, J.; Aghlmand, F.; Swift, M.B.; Shapiro, M.G.; et al. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. Nat. Electron. 2023, 6, 242–256. [Google Scholar] [CrossRef]
- Glasstone, S.; Laidler, K.J.; Eyring, H.J. The Theory of Rate Processes; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Jung, S.; Tiwari, M.K.; Doan, N.V.; Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 2012, 3, 615. [Google Scholar] [CrossRef]
- Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J.A.; Krupenkin, T.; Aizenberg, J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 2010, 4, 7699–7707. [Google Scholar] [CrossRef]
- Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Chen, L.; Wu, J.; Li, Z.; Yao, S. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 726–732. [Google Scholar] [CrossRef]
- Blossey, R. Self-cleaning surfaces_virtual realities. Nat. Mater. 2003, 2, 301–306. [Google Scholar] [CrossRef]
- Tuteja, A.; Choi, W.; Ma, M.; Mabry, J.M.; Mazzella, S.A.; Rutledge, G.C.; McKinley, G.H.; Cohen, R.E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Butt, H.J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; ÓMahony, A.P.; Barber, T.J. Effect of 3D-bioprinted droplet impact dynamics on a pre-printed soft hydrogel matrix. Exp. Fluids 2023, 64, 60. [Google Scholar] [CrossRef]
- Song, Y.; Tay, R.Y.; Li, J.; Xu, C.; Min, J.; Sani, E.S.; Kim, G.; Heng, W.; Kim, I.; Gao, W. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 2023, 9, eadi6492. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Solomon, S.A.; Min, J.; Tu, J.; Guo, W.; Xu, C.; Song, Y.; Gao, W. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495. [Google Scholar] [CrossRef] [PubMed]
- Bariya, M.; Shahpar, Z.; Park, H.; Sun, J.; Jung, Y.; Gao, W.; Nyein, H.Y.Y.; Liaw, T.S.; Tai, L.-C.; Ngo, Q.P.; et al. Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 2018, 12, 6978–6987. [Google Scholar] [CrossRef] [PubMed]
- Ota, H.; Chao, M.; Gao, Y.; Wu, E.; Tai, L.-C.; Chen, K.; Matsuoka, Y.; Iwai, K.; Fahad, H.M.; Gao, W.; et al. 3D printed earable smart devices for real-time detection of core body temperature. ACS Sens. 2017, 2, 990. [Google Scholar] [CrossRef]
- Fang, A.; Dujardin, E.; Ondarçuhu, T. Control of droplet size in liquid nanodispensing. Nano Lett. 2006, 6, 2368–2374. [Google Scholar] [CrossRef]
- Slattery, J.C.; Sagis, L.; Oh, E.S. Interfacial Transport Phenomena; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Laan, N.; de Bruin, K.G.; Bartolo, D.; Josserand, C.; Bonn, D. Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2014, 2, 044018. [Google Scholar] [CrossRef]
- Yilmaz, B.; Al Rashid, A.; Mou, Y.A.; Evis, Z.; Koç, M. Bioprinting: A review of processes, materials and applications. Bioprinting 2021, 23, 00148. [Google Scholar] [CrossRef]
- Yang, S.; Hou, Y.; Shang, Y.; Zhong, X. BPNN and CNN-based AI modeling of spreading and icing pattern of a water droplet impact on a supercooled surface. AIP Adv. 2022, 12, 045209. [Google Scholar] [CrossRef]
- Ng, W.L.; Lee, J.M.; Zhou, M.; Chen, Y.W.; Lee, K.X.A.; Yeong, W.Y.; Shen, Y.F. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 2020, 12, 022001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kumar, P.; Lv, S.; Xiong, D.; Zhao, H.; Cai, Z.; Zhao, X. Recent advances in 3D bioprinting of vascularized tissues. Mater. Des. 2021, 199, 109398. [Google Scholar] [CrossRef]
- Sun, L.; Pan, J.; Wang, X.; Jing, D. Molecular dynamics study of nanoscale droplets impacting on textured substrates of variable wettability. Phys. Fluids 2022, 34, 012005. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, C.; Feng, J.J. Sharp-Interface Limit of the Cahn–Hilliard Model for Moving Contact Lines. J. Fluid Mech. 2010, 645, 279–294. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, C.; Feng, J.J.; Ollivier-Gooch, C.F.; Hu, H.H. Phase-Field Simulations of Interfacial Dynamics in Viscoelastic Fluids Using Finite Elements with Adaptive Meshing. J. Comput. Phys. 2006, 219, 47–67. [Google Scholar] [CrossRef]
- Van Der Waals, J.D. The Thermodynamic Theory of Capillarity Under the Hypothesis of a Continuous Variation of Density. J. Stat. Phys. 1979, 20, 200–244. [Google Scholar] [CrossRef]
- Cahn, J.W. Critical Point Wetting. J. Chem. Phys. 1977, 66, 3667–3672. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Free Energy of a Non-Uniform System. Part I. Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar]
- Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71. [Google Scholar] [CrossRef]
- Howland, C.J.; Antkowiak, A.; Castrejón-Pita, J.R.; Howison, S.D.; Oliver, J.M.; Style, R.W.; Castrejón-Pita, A.A. It’s harder to splash on soft solids. Phys. Rev. Lett. 2016, 117, 184502. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Huang, X.; Shkolnikov, V.; Goh, G.L.; Suntornnond, R.; Yeong, W.Y. Controlling droplet impact velocity and droplet volume: Key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int. J. Bioprinting 2022, 8, 424. [Google Scholar] [CrossRef] [PubMed]
- Basso, B.C.; Bostwick, J.B. Splashing on soft elastic substrates. Langmuir 2020, 36, 15010–15017. [Google Scholar] [CrossRef] [PubMed]
- Saile, D.; Kühl, V.; Gülhan, A. On the subsonic near-wake of a space launcher configuration without exhaust jet. Exp. Fluids 2019, 60, 50. [Google Scholar] [CrossRef]
- Nilsson, M.A.; Rothstein, J.P. The effect of contact angle hysteresis on droplet coalescence and mixing. J. Colloid Interface Sci. 2011, 363, 646. [Google Scholar] [CrossRef]
- Makrygianni, M.; Milionis, A.; Kryou, C.; Trantakis, I. On-demand laser printing of picoliter-sized, highly viscous, adhesive fluids: Beyond inkjet limitations. Adv. Mater. Interfaces 2018, 5, 1800440. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1. [Google Scholar] [CrossRef]
- Unagolla, J.M.; Jayasuriya, A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today 2020, 18, 100479. [Google Scholar] [CrossRef]
- Catros, S.; Guillotin, B.; Bačáková, M.; Fricain, J.-C.; Guillemot, F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl. Surf. Sci. 2011, 257, 5142–5147. [Google Scholar] [CrossRef]
- Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat. Nanotechnol. 2010, 5, 429. [Google Scholar] [CrossRef]
- Srinivasan, S.; Choi, W.; Park, K.-C.; Chhatre, S.S.; Cohen, R.E.; McKinley, G.H. Drag reduction for viscous laminar flow on spray coated non-wetting surfaces. Soft Matter 2013, 9, 5691. [Google Scholar] [CrossRef]
- Quéré, E. Non-sticking drops. Rep. Prog. Phys. 2005, 68, 2495. [Google Scholar] [CrossRef]
- Rioboo, R.; Tropea, C.; Marengo, M. Outcomes from a drop impact on solid surfaces. At. Sprays 2001, 11, 155–165. [Google Scholar] [CrossRef]
- Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 1993, 12, 61. [Google Scholar] [CrossRef]
- Li, J.; Rossignol, F.; Macdonald, J. Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab Chip 2015, 15, 2538–2558. [Google Scholar] [CrossRef]
- Bange, P.G.; Patil, N.D.; Bhardwaj, R. Impact Dynamics of a Droplet on a Heated Surface. In Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT‘18), Niagara Falls, ON, Canada, 7–9 June 2018; Volume 190, pp. 232–247. [Google Scholar]
- Guo, Y.; Shen, S.; Yang, Y.; Liang, G.; Zhen, N. Rebound and spreading during a drop impact on wetted cylinders. Exp. Therm. Fluid Sci. 2013, 52, 97–103. [Google Scholar]
- Malla, L.K.; Patil, N.D.; Bhardwaj, R.; Neild, A. Droplet bouncing and breakup during impact on a microgrooved surface. Langmuir 2017, 33, 9620–9631. [Google Scholar] [CrossRef]
- Hamazaki, T.; Morita, N. Ejection characteristics and drop modulation of acoustic inkjet printing using fresnel lens. J. Fluid Sci. Technol. 2009, 4, 25–36. [Google Scholar] [CrossRef]
- Derjaguin, B.; Churaev, N. Structural Component of Disjoining Pressure. J. Colloid Interface Sci. 1974, 49, 249–255. [Google Scholar] [CrossRef]
- Andreotti, B.; Baumchen, O.; Boulogne, F.; Daniels, K.E.; Dufresne, E.R.; Perrin, H.; Salez, T.; Snoeijer, J.H.; Style, R.W. Solid capillarity: When and how does surface tension deform soft solids? Soft Matter 2016, 12, 2993. [Google Scholar] [CrossRef]
- Boyer, F.; Sandoval-Nava, E.; Snoeijer, J.H.; Dijksman, J.F.; Lohse, D. Drop impact of shear thickening liquids. Phys. Rev. Fluids 2016, 1, 013901. [Google Scholar] [CrossRef]
- Aytouna, M.; Bartolo, D.; Wegdam, G.; Bonn, D.; Rafaï, S. Impact dynamics of surfactant laden drops: Dynamic surface tension effects. Exp. Fluids 2010, 48, 49–57. [Google Scholar] [CrossRef]
- Izbassarov, D.; Muradoglu, M. Effects of viscoelasticity on drop impact and spreading on a solid surface. Phys. Rev. Fluids 2016, 1, 023302. [Google Scholar] [CrossRef]
- Utama, R.H.; Tan, V.T.G.; Tjandra, K.C.; Sexton, A.; Nguyen, D.H.T.; O’Mahony, A.P.; Du, E.Y.; Tian, P.; Ribeiro, J.C.C.; Kavallaris, M.; et al. A covalently crosslinked ink for multimaterials drop-on-demand 3D bioprinting of 3D cell cultures. Macromol. Biosci. 2021, 21, 2100125. [Google Scholar] [CrossRef] [PubMed]
- Utama, R.H.; Atapattu, L.; O’Mahony, A.P.; Fife, C.M.; Baek, J.; Allard, T.; O’Mahony, K.J.; Ribeiro, J.; Gaus, K.; Kavallaris, M.; et al. Precise, high-throughput production of multicellular spheroids with a bespoke 3D bioprinter. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dussan, V.E.B. On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines. Annu. Rev. Fluid Mech. 1979, 11, 371–400. [Google Scholar] [CrossRef]
- Blake, T.D.; Berg, J.C. Wettability: Dynamic Contact Angles and Wetting Kinetics; Marcel Dekker: New York, NY, USA, 1993; Volume 49, pp. 251–309. [Google Scholar]
- Blake, T.D.; Haynes, J.M. Kinetics of Liquid/Liquid Displacement. J. Colloid Interf. Sci. 1969, 30, 421–423. [Google Scholar] [CrossRef]
- Wu, Z.; Cao, Y. Dynamics of initial drop splashing on a dry smooth surface. PLoS ONE 2017, 12, e0177390. [Google Scholar] [CrossRef]
- Huh, C.; Mason, S.G. The Steady Movement of a Liquid Meniscus in a Capillary Tube. J. Fluid Mech. 1977, 81, 401–419. [Google Scholar] [CrossRef]
- Dussan, V.E.B. The Moving Contact Line: The Slip Boundary Condition. J. Fluid Mech. 1976, 77, 665–684. [Google Scholar] [CrossRef]
- Ngan, C.G.; Dussan, V.E.B. On the Dynamics of Liquid Spreading on Solid Surfaces. J. Fluid Mech. 1989, 209, 191–226. [Google Scholar] [CrossRef]
- Schroll, R.D.; Josserand, C.; Zaleski, S.; Zhang, W.W. Impact of a viscous liquid drop. Phys. Rev. Lett. 2010, 104, 034504. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Rocco, G.; de Luca, L. Insights on the impact of a plane drop on a thin liquid film. Phys. Fluids 2011, 23, 022105. [Google Scholar] [CrossRef]
- Josserand, C.; Ray, P.; Zaleski, S. Droplet impact on a thin liquid film: Anatomy of the splash. arXiv 2015, 1511, 09395. [Google Scholar] [CrossRef]
- Mahady, K.; Afkhami, S.; Kondic, L. A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries. J. Comput. Phys. 2015, 294, 243–257. [Google Scholar] [CrossRef]
- Couder, Y.; Protière, S.; Fort, E.; Boudaoud, A. Walking and orbiting droplets. Nature 2005, 437, 208. [Google Scholar] [CrossRef]
- Couder, Y.; Fort, E.; Gautier, C.-H.; Boudaoud, A. From bouncing to floating: Nanocoalescence of drops on a fluid bath. Phys. Rev. Lett. 2005, 94, 177801. [Google Scholar] [CrossRef]
- Lee, A.; Jin, H.; Dang, H.-W.; Choi, K.-H.; Ahn, K.H. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 2013, 29, 13630–13639. [Google Scholar] [CrossRef]
- Šikalo, Š.; Wilhelm, H.-D.; Roisman, I.V.; Jakirlić, S.; Tropea, C. Dynamic contact angle of spreading droplets: Experiments and simulations. Phys. Fluids 2005, 17, 062103. [Google Scholar] [CrossRef]
- Gunjal, P.R.; Ranade, V.V.; Chaudhari, R.V. Dynamics of drop impact on solid surface: Experiments and VOF simulations. AIChE J. 2005, 51, 59–78. [Google Scholar] [CrossRef]
- Sahoo, N.; Khurana, G.; Harikrishnan, A.R.; Samanta, D.; Dhar, P. Post impact droplet hydrodynamics on inclined planes of variant wettabilities. Eur. J. Mech. B Fluids 2020, 79, 27–37. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, Y.; Hou, Y.; Bai, B.; Zhong, X. Effects of surface subcooling on the spreading dynamics of an impact water droplet. Phys. Fluids 2020, 32, 123309. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, W.; Guo, L.; Liu, Z.; Cai, P.; Cui, Y.; Wang, T.; Wang, C.; Zhu, M.; Zhou, Y.; et al. Haptically quantifying Young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv. Mater. 2021, 34, 2104078. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Karim, A.; Davis, S.H.; Kavehpour, H.P. Forced versus Spontaneous Spreading of Liquids. Langmuir 2016, 32, 10153–10158. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Karim, A.; Suszynski, W.J.; Francis, L.F.; Carvalho, M.S. Effect of Viscosity on Liquid Curtain Stability. AIChE J. 2018, 64, 1448–1457. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Kavehpour, H.P. Effect of Viscous Force on Dynamic Contact Angle Measurement Using Wilhelmy Plate Method. Colloids Surf. A 2018, 548, 54–60. [Google Scholar] [CrossRef]
- Li, E.Q.; Thoroddsen, S.T. Time-resolved imaging of a compressible air-disc under a drop impacting on a solid surface. J. Fluid Mech. 2015, 780, 636–648. [Google Scholar] [CrossRef]
- Driscoll, M.M.; Stevens, C.S.; Nagel, S.R. Thin film formation during splashing of viscous liquids. Phys. Rev. E 2010, 83, 036302. [Google Scholar] [CrossRef]
- Thoroddsen, S.T.; Takehara, K.; Etoh, T.G. Micro-splashing by drop impacts. J. Fluid Mech. 2012, 706, 560–570. [Google Scholar] [CrossRef]
- Thoroddsen, S.T.; Sakakibara, J. Evolution of the fingering pattern of an impacting drop. Phys. Fluids 1998, 10, 1359–1374. [Google Scholar] [CrossRef]
- Bischofberger, I.; Mauser, K.W.; Nagel, S.R. Seeing the invisible-air vortices around a splashing drop. Phys. Fluids 2013, 25, 091110. [Google Scholar] [CrossRef]
- Abouelsoud, M.; Bai, B. Bouncing and coalescence dynamics during the impact of a falling drop with a sessile drop on different solid surfaces. Phys. Fluids 2021, 33, 063309. [Google Scholar] [CrossRef]
- Dalgamoni, H.N.; Yong, X. Numerical and theoretical modeling of droplet impact on spherical surfaces. Phys. Fluids 2021, 33, 052112. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Su, J.; Jing, D.; Mohamad, A.A. Impact on mechanical robustness of water droplet due to hydrophilic nanoparticles. Phys. Fluids 2020, 32, 122110. [Google Scholar] [CrossRef]
- Yee, J.; Yamanaka, A.; Tagawa, Y. Image features of a splashing drop on a solid surface extracted using a feedforward neural network. Phys. Fluids 2022, 34, 013317. [Google Scholar] [CrossRef]
- Vadillo, D.; Soucemarianadin, A.; Delattre, C.; Roux, D. Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 2009, 21, 122002. [Google Scholar] [CrossRef]
- Mongruel, A.; Daru, V.; Feuillebois, F.; Tabakova, S. Early post-impact time dynamics of viscous drops onto a solid dry surface. Phys. Fluids 2009, 21, 032101. [Google Scholar] [CrossRef]
- Stevens, C.S.; Latka, A.; Nagel, S.R. Comparison of splashing in high- and low-viscosity liquids. Phys. Rev. E 2014, 89, 063006. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, P.; Xu, L. Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. Proc. Natl. Acad. Sci. USA 2015, 112, 3280–3284. [Google Scholar] [CrossRef]
- Mishra, N.K.; Zhang, Y.; Ratner, A. Effect of chamber pressure on spreading and splashing of liquid drops upon impact on a dry smooth stationary surface. Exp. Fluids 2011, 51, 483–491. [Google Scholar] [CrossRef]
- Fabmann, B.W.; Bansmer, S.E.; Möller, T.J.; Radespiel, R.; Hartmann, M. High velocity impingement of single droplets on a dry smooth surface. Exp. Fluids 2013, 54, 1516. [Google Scholar]
- Palacios, J.; Hernández, J.; Gómez, P.; Zanzi, C.; López, J. On the impact of viscous drops onto dry smooth surfaces. Exp. Fluids 2012, 52, 1449–1463. [Google Scholar] [CrossRef]
- Kittel, H.M.; Roisman, I.V.; Tropea, C. Splash of a drop impacting onto a solid substrate wetted by a thin film of another liquid. Phys. Rev. Fluids 2018, 3, 073601. [Google Scholar] [CrossRef]
- Reiser, A.; Lindén, M.; Rohner, P.; Marchand, A.; Galinski, H.; Sologubenko, A.S.; Wheeler, J.M.; Zenobi, R.; Poulikakos, D. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat. Commun. 2019, 10, 1853. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Kim, J.; Rothstein, J.P.; Kavehpour, H.P. Dynamics of Wetting of Ultra-hydrophobic Surfaces. In Proceedings of the 66th Annual Meeting of the Fluid Dynamics, Pittsburgh, PA, USA, 24–26 November 2013; Division of the American Physical Society: College Park, MD, USA, 2013; Volume 58. [Google Scholar]
- Mohammad Karim, A.; Kavehpour, H.P. Spreading of Emulsions on Glass Substrates. In Proceedings of the 65th Annual Meeting of the Fluid Dynamics, San Diego, CA, USA, 18–20 November 2012; Division of the American Physical Society: College Park, MD, USA, 2012; Volume 57. [Google Scholar]
- Yuan, Q.; Zhao, Y.-P. Precursor Film in Dynamic Wetting, Electrowetting, and Electro-Elasto-Capillarity. Phys. Rev. Lett. 2010, 104, 246101. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Kavehpour, H.P. Laws of spreading: Why Tanner, Hoffman, Voinov, Cox and de Gennes were wrong, generally speaking. In Proceedings of the 67th Annual Meeting of the Fluid Dynamics, San Francisco, CA, USA, 23–25 November 2014; Division of the American Physical Society: College Park, MD, USA, 2014; Volume 59. [Google Scholar]
- Mohammad Karim, A.; Kavehpour, H.P. Spreading of Emulsions on a Solid Substrate. J. Coat. Technol. Res. 2014, 11, 103–108. [Google Scholar] [CrossRef]
- Vanaei, S.; Parizi, M.S.; Vanaei, S.; Salemizadehparizi, F.; Vanaei, H.R. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng. Regen. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Rao, D.N. The concept, characterization, concerns and consequences of contact angles in solid-liquid-liquid systems. In Proceedings of the 3rd International Symposium on Contact Angle, Wettability and Adhesion, Providence, RI, USA, 20–23 May 2002; Volume 3, pp. 191–210. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Contact angles. Discuss Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Gee, M.L. Contact angles on chemically heterogeneous surfaces. Langmuir 1989, 5, 288–289. [Google Scholar] [CrossRef]
- Gao, L.C.; McCarthy, T.J. How Wenzel and Cassie were wrong? Langmuir 2007, 23, 3762–3765. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.T.; Taboryski, R.A. Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. Langmuir 2009, 25, 1282–1284. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Tuteja, A.; Mabry, J.M.; Cohen, R.E.; McKinley, G.H. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J. Colloid Interface Sci. 2009, 339, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Milne, A.J.B.; Amirfazli, A. The Cassie equation: How it is meant to be used. Adv. Colloid Interface Sci. 2012, 170, 48–55. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Suszynski, W.J.; Griffith, W.B.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Effect of Viscoelasticity on Stability of Liquid Curtain. J. Non-Newton. Fluid Mech. 2018, 257, 83–94. [Google Scholar] [CrossRef]
- Wang, X.; Xu, B.; Chen, Z.; Yang, Y.; Cao, Q. Effects of gravitational force and surface orientation on the jumping velocity and energy conversion efficiency of coalesced droplets. Microgravity Sci. Tec. 2020, 32, 1185–1197. [Google Scholar] [CrossRef]
- Hail, C.U.; Höller, C.; Matsuzaki, K.; Rohner, P.; Renger, J.; Sandoghdar, V.; Poulikakos, D.; Eghlidi, H. Nanoprinting organic molecules at the quantum level. Nat. Commun. 2019, 10, 1880. [Google Scholar] [CrossRef]
- Eggers, J.; Lister, J.R.; Stone, H.A. Coalescence of liquid drops. J. Fluid Mech. 1999, 401, 293–310. [Google Scholar] [CrossRef]
- Joseph, D.P.; Justin, C.B.; Sidney, R.N.; Santosh, A.; Michael, T.H.; Osman, A.B. The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc. Natl. Acad. Sci. USA 2012, 109, 6857–6861. [Google Scholar]
- Wang, X.Y.; Jia, L. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants. J. Therm. Sci. 2016, 25, 449–453. [Google Scholar] [CrossRef]
- Wiedenheft, K.F.; Guo, H.A.; Qu, X.P.; Boreyko, J.B.; Liu, F.J.; Zhang, K.G.; Eid, F.; Choudhury, A.; Li, Z.H.; Chen, C.H. Hotspot cooling with jumping-drop vapor chambers. Appl. Phys. Lett. 2017, 110, 141601. [Google Scholar] [CrossRef]
- McNeil, D.A.; Burnside, B.M.; Cuthbertson, G. Dropwise condensation of steam on a small tube bundle at turbine condenser conditions. Exp. Heat Transf. 2000, 13, 89–105. [Google Scholar]
- Song, K.; Kim, G.; Oh, S.; Lim, H. Enhanced water collection through a periodic array of tiny holes in dropwise condensation. Appl. Phys. Lett. 2018, 112, 071602. [Google Scholar] [CrossRef]
- Humplik, T.; Lee, J.; O’Hern, S.C.; Fellman, B.A.; Baig, M.A.; Hassan, S.F.; Atieh, M.A.; Rahman, F.; Laoui, T.; Karnik, R.; et al. Nanostructured materials for water desalination. Nanotechnology 2011, 22, 292001. [Google Scholar] [CrossRef] [PubMed]
- Delrot, P.; Modestino, M.A.; Gallaire, F.; Psaltis, D.; Moser, C. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing. Phys. Rev. Appl. 2016, 6, 24003. [Google Scholar] [CrossRef]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef]
- Petrov, P.G.; Petrov, J.G. A Combined Molecular-Hydrodynamic Approach to Wetting Kinetics. Langmuir 1992, 8, 1762–1767. [Google Scholar] [CrossRef]
- Ghosh, A.; Beaini, S.; Zhang, B.J.; Ganguly, R.; Megaridis, C.M. Enhancing dropwise condensation through bioinspired wettability patterning. Langmuir 2014, 30, 13103–13115. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Delannoy, J.; Malod, A.; Zheng, H.; Quéré, D.; Wang, Z. Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. Sci. Adv. 2020, 6, eabb4540. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yu, M.; Chen, X.; Wang, Z.; Yao, S. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 2015, 9, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, Z.; Frechette, J. Dynamic adhesion due to fluid infusion. Curr. Opin. Colloid Interface Sci. 2020, 50, 101397. [Google Scholar] [CrossRef]
- Klinger, M.; Laske, C.; Graeve, M.; Thoma, M.; Traube, A. A Sensor for the In-Flight Detection of Single Fluorescent Microbodies in Nanoliter Droplets. IEEE Sens. J. 2020, 20, 5809–5817. [Google Scholar] [CrossRef]
- Chen, X.; O’Mahony, A.P.; Barber, T. The characterization of particle number and distribution inside in-flight 3D printed droplets using a high speed droplet imaging system. J. Appl. Phys. 2021, 130, 044701. [Google Scholar] [CrossRef]
- Chen, X.; O’Mahony, A.P.; Barber, T. The assessment of average cell number inside in-flight 3D printed droplets in microvalvebased bioprinting. J. Appl. Phys. 2022, 131, 224701. [Google Scholar] [CrossRef]
- Engel, M.; Belfiore, L.; Aghaei, B.; Sutija, M. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow. SLAS Technol. 2022, 27, 32–38. [Google Scholar] [CrossRef]
- Mallinson, S.; Barber, T.; Yeoh, G.; McBain, G. Simulation of droplet impact and spreading using a simple dynamic contact angle model. Simulation 2018, 10, 13. [Google Scholar]
- Kang, S.H.; Kim, S.; Sohn, D.K.; Ko, H.S. Analysis of drop-ondemand piezo inkjet performance. Phys. Fluids 2020, 32, 022007. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, M.; Huang, Y.; Ogale, A.; Fu, J.; Markwald, R.R. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir 2014, 30, 9130–9138. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Yeong, W.Y.; Naing, M.W. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-ondemand printing. Materials 2017, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Torrente-Rodríguez, R.M.; Tu, J.; Yang, Y.; Min, J.; Wang, M.; Song, Y.; Yu, Y.; Xu, C.; Ye, C.; IsHak, W.W.; et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system. Matter 2020, 2, 921–937. [Google Scholar] [CrossRef]
- Cen, C.; Wu, H.; Lee, C.-F.; Fan, L.; Liu, F. Experimental investigation on the sputtering and micro-explosion of emulsion fuel droplets during impact on a heated surface. Int. J. Heat Mass Transf. 2019, 132, 130–137. [Google Scholar] [CrossRef]
- Mahmodi, H.; Piloni, A.; Utama, R.H.; Kabakova, I. Mechanical mapping of bioprinted hydrogel models by brillouin microscopy. Bioprinting 2021, 23, 00151. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, X.; Lin, Y.; Ma, J.; Xiao, J.; Wu, Y.; Wang, J. Effects of surface roughness on splashing characteristics of large droplets with digital inline holographic imaging. Cold Reg. Sci. Technol. 2021, 191, 103373. [Google Scholar] [CrossRef]
- Quetzeri-Santiago, M.A.; Castrejón-Pita, A.A.; Castrejón-Pita, J.R. The effect of surface roughness on the contact line and splashing dynamics of impacting droplets. Sci. Rep. 2019, 9, 15030. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Chen, N.; Chen, H.; Amirfazli, A. Drop impact onto a thin film: Miscibility effect. Phys. Fluids 2017, 29, 092106. [Google Scholar] [CrossRef]
- Yokoi, K. Numerical studies of droplet splashing on a dry surface: Triggering a splash with the dynamic contact angle. Soft Matter 2011, 7, 5120. [Google Scholar] [CrossRef]
- Mundo, C.; Sommerfeld, M.; Tropea, C. Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 1995, 21, 151–173. [Google Scholar] [CrossRef]
- Gudapati, H.; Dey, M.; Ozbolat, I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials 2016, 102, 20–42. [Google Scholar] [CrossRef] [PubMed]
- Saygili, E.; Dogan-Gurbuz, A.A.; Yesil-Celiktas, O.; Draz, M.S. 3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems. Bioprinting 2020, 18, 00071. [Google Scholar] [CrossRef]
- Machekposhti, S.A.; Movahed, S.; Narayan, R.J. Physicochemical parameters that underlie inkjet printing for medical applications. Biophys. Rev. 2020, 1, 011301. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Pei, B.; Chen, J.; Zhou, D.; Peng, J.; Zhang, X.; Jia, W.; Xu, T. Inkjet bioprinting of biomaterials. Chem. Rev. 2020, 120, 10793–10833. [Google Scholar] [CrossRef]
- Bejoy, A.M.; Makkithaya, K.N.; Hunakunti, B.B.; Hegde, A.; Krishnamurthy, K.; Sarkar, A.; Lobo, C.F.; Keshav, D.V.S.; Dharshini, G.; Mascarenhas, S.; et al. An insight on advances and applications of 3d bioprinting: A review. Bioprinting 2021, 24, 00176. [Google Scholar] [CrossRef]
- Ouyang, L.; Yao, R.; Zhao, Y.; Sun, W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 2016, 8, 035020. [Google Scholar] [CrossRef]
- Ng, W.L.; Lee, J.M.; Yeong, W.Y.; Win Naing, M. Microvalvebased bioprinting-process, bio-inks and applications. Biomater. Sci. 2017, 5, 632–647. [Google Scholar] [CrossRef]
- Xu, H.; Casillas, J.; Xu, C. Effects of printing conditions on cell distribution within microspheres during inkjet-based bioprinting. AIP Adv. 2019, 9, 095055. [Google Scholar] [CrossRef]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Chameettachal, S.; Yeleswarapu, S.; Sasikumar, S.; Shukla, P.; Hibare, P.; Bera, A.K.; Bojedla, S.S.R.; Pati, F. 3D Bioprinting: Recent trends and challenges. J. Indian Inst. Sci. 2019, 99, 375–403. [Google Scholar] [CrossRef]
- Mobaraki, M.; Ghaffari, M.; Yazdanpanah, A.; Luo, Y.; Mills, D.K. Bioinks and bioprinting: A focused review. Bioprinting 2020, 18, e00080. [Google Scholar] [CrossRef]
- Tan, Y.-C.; Cristini, V.; Lee, A.P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens. Actuators B Chem. 2006, 114, 350–356. [Google Scholar] [CrossRef]
- Motornov, M.; Minko, S.; Eichhorn, K.-J.; Nitschke, M.; Simon, F.; Stamm, M. Reversible tuning of wetting behaviour of polymer surface with responsive polymer brushes. Langmuir 2003, 19, 8077–8085. [Google Scholar] [CrossRef]
- Galliker, P.; Schneider, J.; Eghlidi, H.; Kress, S.; Sandoghdar, V.; Poulikakos, D. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 2012, 3, 890. [Google Scholar] [CrossRef]
- Castrejon-Pita, J.R.; Baxter, W.R.S.; Morgan, J.; Temple, S.; Martin, G.D.; Hutchings, I.M. Future, opportunities and challenges of inkjet technologies. At. Sprays 2013, 23, 541–565. [Google Scholar] [CrossRef]
- Bormashenko, E. Wetting of Real Surfaces; De Gruyter: Berlin, Germany, 2013. [Google Scholar]
- Neumann, A.W.; Good, R.J. Thermodynamics of contact angles. I. Heterogeneous solid surfaces. J. Colloid Interface Sci. 1972, 38, 341–358. [Google Scholar] [CrossRef]
- Marmur, A. Soft contact: Measurement and interpretation of contact angles. Soft Matter 2006, 2, 12–17. [Google Scholar] [CrossRef]
- Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Gili, E.; Caironi, M.; Sirringhaus, H. Picoliter printing. In Handbook of Nanofabrication; Wiederrecht, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 183–196. [Google Scholar]
- Park, E.S. Application of Inkjet-Printing Technology to Micro-Electro-Mechanical Systems; University of California: Berkeley, CA, USA, 2014. [Google Scholar]
- Modak, C.D.; Kumar, A.; Tripathy, A.; Sen, P. Drop impact printing. Nat. Commun. 2020, 11, 4327. [Google Scholar] [CrossRef]
- Starly, B.; Shirwaiker, R. 3D bioprinting techniques. In 3D Bioprinting Nanotechnology in Tissue Engineering Regenerative Medicine; Zhang, L.G., Fisher, J.P., Leong, K.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 57–77. [Google Scholar]
- Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016, 34, 422. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, Q.; Black, L.D. A fresh slate for 3D bioprinting. Science 2019, 365, 446. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Dou, C.; Xu, B.; Li, J.; Rao, Z.; Tsin, A. Printing quality improvement for laser-induced forward transfer bioprinting: Numerical modeling and experimental validation. Phys. Fluids 2021, 33, 071906. [Google Scholar] [CrossRef]
- Shin, P.; Sung, J.; Lee, M.H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectron. Reliab. 2011, 51, 797–804. [Google Scholar] [CrossRef]
- Lorenceau, É.; Quéré, D. Drops impacting a sieve. J. Colloid Interface Sci. 2003, 263, 244–249. [Google Scholar] [CrossRef]
- Guo, Y.; Patanwala, H.S.; Bognet, B.; Ma, A.W.K. Inkjet and inkjet-based 3D printing: Connecting fluid properties and printing performance. Rapid Prototyp. J. 2017, 23, 562–576. [Google Scholar] [CrossRef]
- Gao, M.; Li, L.; Song, Y. Inkjet printing wearable electronic devices. J. Mater. Chem. C 2017, 5, 2971–2993. [Google Scholar] [CrossRef]
- Stadnytskyi, V.; Bax, C.E.; Bax, A.; Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 11875–11877. [Google Scholar] [CrossRef]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef]
- Melayil, K.R.; Mitra, S.K. Wetting, adhesion, and droplet impact on face masks. Langmuir 2021, 37, 2810–2815. [Google Scholar] [CrossRef]
- World Health Organization. Advice on the Use of Masks in the Context of COVID-19; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Katre, P.; Banerjee, S.; Balusamy, S.; Sahu, K.C. Fluid dynamics of respiratory droplets in the context of COVID-19: Airborne and surfaceborne transmissions. Phys. Fluids 2021, 33, 081302. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, R.; Hasan, A.B.M.T.; Khan, A.; Roy, D.; Salehin, M.; Wadud, Z. Exposure risk analysis of COVID-19 for a ride-sharing motorbike taxi. Phys. Fluids 2021, 33, 113319. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Agrawal, A. Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface. Phys. Fluids 2020, 32, 061704. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Chatterjee, S.; Agrawal, A.; Bhardwaj, R. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. Phys. Fluids 2021, 33, 111705. [Google Scholar] [CrossRef] [PubMed]
- Shafaghi, A.H.; Talabazar, F.R.; Kosar, A.; Ghorbani, M. On the effect of the respiratory droplet generation condition on COVID-19 transmission. Fluids 2020, 5, 113. [Google Scholar] [CrossRef]
- Mittal, R.; Ni, R.; Seo, J.-H. The flow physics of COVID-19. J. Fluid Mech. 2020, 894, F2. [Google Scholar] [CrossRef]
- Poon, W.C.K.; Brown, A.T.; Direito, S.O.L.; Hodgson, D.J.M.; Nagard, L.L.; Lips, A.; MacPhee, C.E.; Marenduzzo, D.; Royer, J.R.; Silva, A.F.; et al. Soft matter science and the COVID-19 pandemic. Soft Matter 2020, 16, 8310–8324. [Google Scholar] [CrossRef]
- Liao, M.; Liu, H.; Wang, X.; Hu, X.; Huang, Y.; Liu, X.; Brenan, K.; Mecha, J.; Nirmalan, M.; Lu, J.R. A technical review of face mask wearing in preventing respiratory COVID-19 transmission. Curr. Opin. Colloid Interface Sci. 2021, 52, 101417. [Google Scholar] [CrossRef]
- Meier, W.; Greune, G.; Meyboom, A.; Hofmann, K.P. Surface tension and viscosity of surfactant from the resonance of an oscillating drop. Eur. Biophys. J. 2000, 29, 113–124. [Google Scholar] [CrossRef]
- Wijshoff, H. The dynamics of the piezo inkjet printhead operation. Phys. Rep. 2010, 491, 77–177. [Google Scholar] [CrossRef]
- Bostwick, J.B.; Steen, P.H. Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 2014, 760, 5–38. [Google Scholar] [CrossRef]
- Mohammad Karim, A. Parametric Study of Liquid Contact Line Dynamics: Adhesion vs. Hydrodynamics. Ph.D. Thesis, UCLA, Los Angeles, CA, USA, 2015. [Google Scholar]
- Mohammad Karim, A.; Fujii, K.; Kavehpour, H.P. Contact line dynamics of gravity driven spreading of liquids. Fluid Dyn. Res. 2021, 53, 035503. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Suszynski, W.J.; Pujari, S. Liquid Film Stability and Contact Line Dynamics of Emulsion Liquid Films in Curtain Coating Process. J. Coat. Technol. Res. 2021, 18, 1531–1541. [Google Scholar] [CrossRef]
- Abe, Y.; Zhang, B.; Gordillo, L.; Mohammad Karim, A.; Francis, L.F.; Cheng, X. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows. Soft Matter 2017, 13, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Almohammadi, H.; Amirfazli, A. Droplet impact: Viscosity and wettability effects on splashing. J. Colloid Interf. Sci. 2019, 553, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Kavehpour, H.P.; Mohammad Karim, A.; Davis, S.H. Inconsistencies in the experimental study of spontaneous spreading vs. forced spreading. In Proceedings of the Droplets 2015; University of Twente: Enschede, The Netherlands, 2015. [Google Scholar]
- Ebert, J.; Özkol, E.; Zeichner, A.; Uibel, K.B.; Weiss, Ö.; Koops, U.; Telle, R.; Fischer, H. Direct inkjet printing of dental prostheses made of zirconia. J. Dent. Res. 2009, 88, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Jonczyk, R.; Kurth, T.; Lavrentieva, A.; Walter, J.-G.; Scheper, T.; Stahl, F. Living cell microarrays: An overview of concepts. Microarrays 2016, 5, 11. [Google Scholar] [CrossRef]
- Liu, Y.; Derby, B. Experimental study of the parameters for stable drop-on-demand inkjet performance. Phys. Fluids 2019, 31, 032004. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Gong, Y.; Bi, Z.; Bian, X.; Ge, A.; He, J.; Li, W.; Shao, H.; Chen, G.; Zhang, X. Study on linear bio-structure print process based on alginate bio-ink in 3D bio-fabrication. Bio-Des. Manuf. 2020, 3, 109–121. [Google Scholar] [CrossRef]
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.; de Ávila, B.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.; Nguyen, P.; Gonzalez-Macia, L.; Morales-Narvez, E.; Güder, F.; Collins, J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
- Xu, C.; Yang, Y.; Gao, W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter 2020, 2, 1414–1445. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.; Gaitonde, S.; Begtrup, G.; Katchman, B. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 2019, 12, 1–22. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.; et al. Awearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef]
- Shikhmurzaev, Y. The Moving Contact Line on a Smooth Solid Surface. Int. J. Multiph. Flow 1993, 19, 589–610. [Google Scholar] [CrossRef]
- Shikhmurzaev, Y.D. Mathematical Modeling of Wetting Hydrodynamics. Fluid Dyn. Res. 1994, 13, 45–64. [Google Scholar] [CrossRef]
- Shikhmurzaev, Y.D. Moving Contact Lines in Liquid/Liquid/Solid Systems. J. Fluid Mech. 1997, 334, 211–249. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Lee, C.; Jadidi, M. An introduction of droplet impact dynamics to engineering students. Fluids 2020, 5, 107. [Google Scholar] [CrossRef]
- Thoroddsen, S.T.; Etoh, T.G.; Takehara, K. High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 2008, 40, 257–285. [Google Scholar] [CrossRef]
- Worthington, A.M. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. 1876, 25, 261–272. [Google Scholar]
- Cheng, X.; Sun, T.-P.; Gordillo, L. Drop impact dynamics: Impact force and stress distributions. Annu. Rev. Fluid Mech. 2022, 54, 57–81. [Google Scholar] [CrossRef]
- Chen, L.; Bonaccurso, E.; Deng, P.; Zhang, H. Droplet impact on soft viscoelastic surfaces. Phys. Rev. E 2016, 94, 063117. [Google Scholar] [CrossRef]
- Saiki, Y.; Prestidge, C.A.; Horn, R.G. Effects of droplet deformability on emulsion rheology. Colloids Surf. A 2006, 299, 65. [Google Scholar] [CrossRef]
- Lester, G.R. Contact angles of liquids at deformable solid surfaces. J. Colloid Sci. 1961, 16, 315. [Google Scholar] [CrossRef]
- Blanken, N.; Saleem, M.S.; Thoraval, M.-J.; Antonini, C. Impact of compound drops: A perspective. Curr. Opin. Colloid Interface Sci. 2021, 51, 101389. [Google Scholar] [CrossRef]
- Lee, J.B.; dos Santos, S.; Antonini, C. Water touch-and-bounce from a soft viscoelastic substrate: Wetting, dewetting, and rebound on bitumen. Langmuir 2016, 32, 8245–8254. [Google Scholar] [CrossRef] [PubMed]
- Langley, K.R.; Castrejón-Pita, A.A.; Thoroddsen, S.T. Droplet impacts onto soft solids entrap more air. Soft Matter 2020, 16, 5702–5710. [Google Scholar] [CrossRef]
- Chen, S.; Bertola, V. Drop impact on spherical soft surfaces. Phys. Fluids 2017, 29, 082106. [Google Scholar] [CrossRef]
- Poulain, S.; Carlson, A. Droplet settling on solids coated with a soft layer. J. Fluid Mech. 2022, 934, A25. [Google Scholar] [CrossRef]
- Skotheim, J.M.; Mahadevan, L. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 2005, 17, 092101. [Google Scholar] [CrossRef]
- Essink, M.H.; Pandey, A.; Karpitschka, S.; Venner, C.H.; Snoeijer, J.H. Regimes of soft lubrication. J. Fluid Mech. 2021, 915, A49. [Google Scholar] [CrossRef]
- Wang, Y.; Pilkington, G.A.; Dhong, C.; Frechette, J. Elastic deformation during dynamic force measurements in viscous fluids. Curr. Opin. Colloid Interface Sci. 2017, 27, 43–49. [Google Scholar] [CrossRef]
- Chan, T.S.; Carlson, A. Physics of adhesive organs in animals. Eur. Phys. J. Spec. Top. 2019, 227, 2501–2512. [Google Scholar] [CrossRef]
- Pepper, R.E.; Courbin, L.; Stone, H.A. Splashing on elastic membranes: The importance of early-time dynamics. Phys. Fluids 2008, 20, 082103. [Google Scholar] [CrossRef]
- Arai, K.; Iwanaga, S.; Toda, H.; Genci, C.; Nishiyama, Y.; Nakamura, M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 2011, 3, 34113. [Google Scholar] [CrossRef]
- Andreotti, B.; Snoeijer, J.H. Statics and dynamics of soft wetting. Annu. Rev. Fluid Mech. 2020, 52, 285–308. [Google Scholar] [CrossRef]
- Dervaux, J.; Roché, M.; Limat, L. Nonlinear theory of wetting on deformable substrates. Soft Matter 2020, 16, 5157–5176. [Google Scholar] [CrossRef] [PubMed]
- Rioboo, R.; Voue, M.; Adao, H.; Conti, J.; Vaillant, A.; Seveno, D.; De Coninck, J. Drop impact on soft surfaces: Beyond the static contact angles. Langmuir 2010, 26, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Brochard-Wyart, F.; de Gennes, P. Dynamics of Partial Wetting. Adv. Colloid Interface Sci. 1992, 39, 1–11. [Google Scholar] [CrossRef]
- Alizadeh, A.; Bahadur, V.; Shang, W.; Zhu, Y.; Buckley, D.; Dhinojwala, A.; Sohal, M. Influence of substrate elasticity on droplet impact dynamics. Langmuir 2013, 29, 4520–4524. [Google Scholar] [CrossRef]
- Mangili, S.; Antonini, C.; Marengo, M.; Amirfazli, A. Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter 2012, 8, 10045. [Google Scholar] [CrossRef]
- Pericet-Camara, R.; Auernhammer, G.K.; Koynov, K.; Lorenzoni, S.; Raiteri, R.; Bonnacurso, E. Solid-supported thin elastomer films deformed by microdrops. Soft Matter 2009, 5, 3611–3617. [Google Scholar] [CrossRef]
- Kern, R.; Müller, P. Deformation of an elastic thin solid induced by a liquid droplet. Surf. Sci. 1992, 264, 467–494. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, Y. Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet. J. Colloid Interface Sci. 2009, 339, 489–494. [Google Scholar] [CrossRef]
- Gerber, J.; Schutzius, T.M.; Poulikakos, D. Patterning of colloidal droplet deposits on soft materials. J. Fluid Mech. 2021, 907, A39. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Wang, W.; Kota, A.K.; Hu, H. An experimental study on soft PDMS materials for aircraft icing mitigation. Appl. Surf. Sci. 2018, 447, 599–609. [Google Scholar] [CrossRef]
- Dressaire, E.; Sauret, A.; Boulogne, F.; Stone, H.A. Drop impact on a flexible fiber. Soft Matter 2016, 12, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhou, Q.; Chen, X.; Xu, T.; Hui, S.; Zhang, D. Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact. Int. J. Mech. Sci. 2008, 50, 1526–1542. [Google Scholar] [CrossRef]
- Adler, W.F. Waterdrop impact modeling. Wear 1995, 186–187, 341–351. [Google Scholar] [CrossRef]
- Bico, J.; Reyssat, É.; Roman, B. Elastocapillarity: When surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 2018, 50, 629–659. [Google Scholar] [CrossRef]
- de Goede, T.C.; Moqaddam, A.M.; Limpens, K.C.M.; Kooij, S.A.; Derome, D.; Carmeliet, J.; Shahidzadeh, N.; Bonn, D. Droplet impact of Newtonian fluids and blood on simple fabrics: Effect of fabric pore size and underlying substrate. Phys. Fluids 2021, 33, 033308. [Google Scholar] [CrossRef]
- Banitabaei, S.A.; Amirfazli, A. Droplet impact onto a solid sphere: Effect of wettability and impact velocity. Phys. Fluids 2017, 29, 062111. [Google Scholar] [CrossRef]
- Faulkner-Jones, A.; Greenhough, S.; A King, J.; Gardner, J.; Courtney, A.; Shu, W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 2013, 5, 15013. [Google Scholar] [CrossRef]
- Soto, D.; De Larivière, A.B.; Boutillon, X.; Clanet, C.; Quéré, D. The force of impacting rain. Soft Matter 2014, 10, 4929. [Google Scholar] [CrossRef]
- Gart, S.; Mates, J.E.; Megaridis, C.M.; Jung, S. Droplet impacting a cantilever: A leaf–raindrop system. Phys. Rev. Appl. 2015, 3, 044019. [Google Scholar] [CrossRef]
- Dong, X.; Huang, X.; Liu, J. Modeling and simulation of droplet impact on elastic beams based on SPH. Eur. J. Mech. A Solids 2019, 75, 237–257. [Google Scholar] [CrossRef]
- Huang, X.; Dong, X.; Li, J.; Liu, J. Droplet impact induced large deflection of a cantilever. Phys. Fluids 2019, 31, 062106. [Google Scholar] [CrossRef]
- Ray, T.; Choi, J.; Bandodkar, A.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J. Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 2019, 119, 5461–5533. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Song, J.; Lu, Y.; Huang, S.; Liu, X.; Sun, J.; Carmalt, C.J.; Parkin, I.P.; Xu, W. Creating robust superamphiphobic coatings for both hard and soft materials. J. Mater. Chem. A. 2015, 3, 20999–21008. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Bandodkar, A.J.; Vald´ es-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef]
- Jia, W.; Vald´ es-Ramírez, G.; Bandodkar, A.J.; Windmiller, J.R.; Wang, J. Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration. Angew. Chem. Int. Ed. 2013, 52, 7233–7236. [Google Scholar] [CrossRef]
- Lv, J.; Jeerapan, I.; Tehrani, F.; Yin, L.; Silva-Lopez, C.A.; Jang, J.H.; Joshuia, D.; Shah, R.; Liang, Y.; Xie, L.; et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 2018, 11, 3431–3442. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef]
- Pal, A.; Goswami, D.; Cuellar, H.E.; Castro, B.; Kuang, S.; Martinez, R.V. Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosens. Bioelectron. 2018, 117, 696–705. [Google Scholar] [CrossRef]
- Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.C.; Ota, H.; Wu, E.; et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 2016, 1, 866–874. [Google Scholar] [CrossRef]
- Yu, Y.; Nyein, H.Y.Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, eaaz7946. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.P.; Ratterman, M.; Griffin, D.K.; Hou, L.; Kelley-Loughnane, N.; Naik, R.K.; Hagen, J.A.; Papautsky, I.; Heikenfeld, J. System-level design of an RFID sweat electrolyte sensor patch. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4038–4041. [Google Scholar]
- Rose, D.P.; Ratterman, M.E.; Griffin, D.K.; Hou, L.; Kelley-Loughnane, N.; Naik, R.R.; Hagen, J.A.; Papautsky, I.; Heikenfeld, J.C. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 2015, 62, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.H.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Hung, V.W.S.; Jia, W.; Vald´ es-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 2013, 138, 123–128. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jia, W.; Yardimci, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015, 87, 394–398. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; O’Mahony, A.M.; Ramírez, J.; Samek, I.A.; Anderson, S.M.; Windmiller, J.R.; Wang, J. Solid-state forensic finger sensor for integrated sampling and detection of gunshot residue and explosives: Towards Lab-on-a-finger. Analyst 2013, 138, 5288–5295. [Google Scholar] [CrossRef]
- Kagie, A.; Bishop, D.K.; Burdick, J.; La Belle, J.T.; Dymond, R.; Felder, R.; Wanga, J. Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanalysis 2008, 20, 1610–1614. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Brazaca, L.C.; García-Carmona, L.; Bolat, G.; Campbell, A.S.; Martin, A.; Tang, G.; Shah, R.; Mishra, R.K.; Kim, J.; et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 2019, 137, 161–170. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Itthipon, I.; Krishnan, S.; Wang, J. Wearable chemical sensors: Emerging systems for on-body analytical chemistry. Anal. Chem. 2019, 92, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Sempionatto, J.R.; Khorshed, A.A.; Ahmed, A.; De Loyola E Silva, A.N.; Barfidokht, A.; Yin, L.; Goud, K.Y.; Mohamed, M.A.; Bailey, E.; May, J.; et al. Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition. ACS Sens. 2020, 5, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; De Araujo, W.R.; Samek, I.A.; Bandodkar, A.J.; Jia, W.; Brunetti, B.; Paixão, T.R.L.C.; Wang, J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015, 51, 41–45. [Google Scholar] [CrossRef]
- Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. [Google Scholar] [CrossRef]
- García-Carmona, L.; Martín, A.; Sempionatto, J.R.; Moreto, J.R.; González, M.C.; Wang, J.; Escarpa, A. Pacifier biosensor: Toward noninvasive saliva biomarker monitoring. Anal. Chem. 2019, 91, 13883–13891. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Mishra, R.K.; Martín, A.; Tang, G.; Nakagawa, T.; Lu, X.; Campbell, A.S.; Lyu, K.M.; Wang, J. Wearable ring-based sensing platform for detecting chemical threats. ACS Sens. 2017, 2, 1531–1538. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Nakagawa, T.; Pavinatto, A.; Mensah, S.T.; Imani, S.; Mercier, P.; Wang, J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 2017, 17, 1834–1842. [Google Scholar] [CrossRef]
- Ciui, B.; Martin, A.; Mishra, R.K.; Brunetti, B.; Nakagawa, T.; Dawkins, T.J.; Lyu, M.; Cristea, C.; Sandulescu, R.; Wang, J. Wearable wireless tyrosinase bandage and microneedle sensors: Toward melanoma screening. Adv. Healthc. Mater. 2018, 7, 1701264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad Karim, A. Droplet Contact Line Dynamics after Impact on Solid Surface: Future Perspectives in Healthcare and Medicine. Fluids 2024, 9, 223. https://doi.org/10.3390/fluids9100223
Mohammad Karim A. Droplet Contact Line Dynamics after Impact on Solid Surface: Future Perspectives in Healthcare and Medicine. Fluids. 2024; 9(10):223. https://doi.org/10.3390/fluids9100223
Chicago/Turabian StyleMohammad Karim, Alireza. 2024. "Droplet Contact Line Dynamics after Impact on Solid Surface: Future Perspectives in Healthcare and Medicine" Fluids 9, no. 10: 223. https://doi.org/10.3390/fluids9100223
APA StyleMohammad Karim, A. (2024). Droplet Contact Line Dynamics after Impact on Solid Surface: Future Perspectives in Healthcare and Medicine. Fluids, 9(10), 223. https://doi.org/10.3390/fluids9100223