Improved Delayed Detached-Eddy Simulation of Turbulent Vortex Shedding in Inert Flow over a Triangular Bluff Body
Abstract
:1. Introduction
2. Numerical Methodology
2.1. Turbulence Modeling
2.2. Domain and Boundary Conditions
2.3. Computational Mesh
3. Results and Discussion
3.1. Effect of Turbulence Modeling
3.2. Effect of Computational Mesh
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
BC | Bounded Central |
DDES | Delayed Detached-Eddy Simulation |
DES | Detached-Eddy Simulation |
ERCOFTAC | European Research Community On Flow, Turbulence And Combustion |
GIS | Grid Induced Separation |
HBC | Hybrid Bounded Central |
HPC | High Performance Computing |
SAS | Scale-Adaptive Simulation |
IDDES | Improved Delayed Detached-Eddy Simulation |
LES | Large Eddy Simulation |
MSD | Modeled Stress Depletion |
PSD | Power Spectral Density |
RANS | Reynolds Averaged Naiver-Stokes |
URANS | Unsteady Reynolds Averaged Naiver-Stokes |
WALE | Wall-Adapting Local Eddy-viscosity |
WMLES | Wall-Modeled Large Eddy Simulation |
References
- Sjunnesson, A.; Olovsson, S.; Sjoblom, B. Validation Rig—A Tool for Flame Studies. In Proceedings of the International Society for Air-Breathing Engines Conference, ISABE-91-7038, Nottingham, UK, 1–6 September 1991. [Google Scholar]
- Sjunnesson, A.; Nelsson, C.; Max, E. LDA Measurements of Velocities and Turbulence in a Bluff Body Stabilized Flame. In Proceedings of the Fourth International Conference on Laser Anemometry—Advances and Application, Cleveland, OH, USA, 5–9 August 1991. [Google Scholar]
- Sjunnesson, A.; Henrikson, P.; Lofstrom, C. CARS Measurements and visualization of reacting flows in a bluff body stabilized flame. In Proceedings of the 28th Joint Propulsion Conference and Exhibit, AIAA 92-3650, Nashville, TN, USA, 6–8 July 1992. [Google Scholar] [CrossRef]
- Johansson, S.H.; Davidson, L.; Olsson, E. Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a k–ε turbulence model. Int. J. Numer. Methods Fluids 1993, 16, 859–878. [Google Scholar] [CrossRef]
- Hasse, C.; Sohm, V.; Wetzel, M.; Durst, B. Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder. Flow Turbul. Combust. 2009, 83, 1–20. [Google Scholar] [CrossRef]
- Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E. Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids 2013, 80, 408–422. [Google Scholar] [CrossRef]
- Lysenko, D.A.; Ertesvåg, I.S. Reynolds-Averaged, Scale-Adaptive and Large-Eddy Simulations of Premixed Bluff-Body Combustion Using the Eddy Dissipation Concept. Flow Turbul. Combust 2018, 100, 721–768. [Google Scholar] [CrossRef]
- Launder, B.; Spalding, D. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Menter, F.R.; Egorov, Y. Formulation of the Scale-Adaptive Simulation (SAS) model during the DESIDER Project. In Notes on Numerical Fluid Mechanics Multidisciplinary Design; Springer: Berlin/Heidelberg, Germany, 2009; Volume 103, Available online: https://link.springer.com/book/10.1007/978-3-540-92773-0 (accessed on 10 July 2024).
- Menter, F.R. Zonal two-equation k–ω turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasma dynamics, and Lasers Conference, AIAA Paper 1993-2906, Orlando, FL, USA, 6–9 July 1993. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. In Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 12–17 October 2003; Begell House Inc.: Redding, CT, USA, 2003; pp. 625–632. [Google Scholar]
- Menter, F.R.; Egorov, Y. The Scale-Adaptive Simulation method for unsteady turbulent flow predictions. Part 1, Theory and model description. Flow Turbul. Combust. 2010, 85, 113–138. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Yoshizawa, A. Statistical theory for compressible shear flows, with the application to subgrid modelling. Phys. Fluids 1986, 29, 1416–1429. [Google Scholar] [CrossRef]
- Smagorinsky, J.S. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Spalart, P.R.; Jou, W.-H.; Strelets, M.; Allmaras, S.R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA, USA, 4–8 August 1997. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows. La Recherche Aerospatiale 1994, 1, 5–21. Available online: https://turbmodels.larc.nasa.gov/Papers/RechAerosp_1994_SpalartAllmaras.pdf (accessed on 10 July 2024).
- Mockett, C.; Fuchs, M.; Thiele, F. Progress in DES for wall-modelled LES of complex internal flows. Comput. Fluids 2012, 65, 44–55. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M. Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles. In Lecture Notes in Applied and Computational Mechanics; Springer: Berlin/Heidelberg, Germany, 2004; pp. 339–352. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A.K. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- Nikitin, N.V.; Nicoud, F.; Wasistho, B.; Squires, K.D.; Spalart, P.R. An approach to wall modeling in large-eddy simulations. Phys. Fluids 2000, 12, 1629–1632. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Gritskevich, M.S.; Garbaruk, A.V.; Schütze, J.; Menter, F.R. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow Turbul. Combust. 2012, 88, 431–449. [Google Scholar] [CrossRef]
- Spalart, P. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Leonard, B.P. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comp. Methods Appl. Mech. Eng. 1991, 88, 17–74. [Google Scholar] [CrossRef]
- Travin, A.; Shur, M.; Strelets, M.; Spalart, P.R. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows. Fluid Mechanics and Its Applications; Friedrich, R., Rodi, W., Eds.; Springer: Dordrecht, The Netherlands, 2002; Volume 65. [Google Scholar] [CrossRef]
- Shur, M.; Spalart, P.; Strelets, M.; Travin, A. Detached-eddy simulation of an airfoil at high angle of attack. In Engineering Turbulence Modelling and Experiments; Elsevier: Amsterdam, The Netherlands, 1999; Volume 4, pp. 669–678. [Google Scholar] [CrossRef]
- Spalart, P.; Streett, C. Young-Person’s Guide to Detached-Eddy Simulation Grids; NASA Contractor Report 211032; NASA: Washington, DC, USA, 2001. Available online: https://ntrs.nasa.gov/api/citations/20010080473/downloads/20010080473.pdf (accessed on 10 July 2024).
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
Case Name | Numerical Scheme | Nx | Ny max | Nz | Ntotal (×106) | Lrc | % Difference |
---|---|---|---|---|---|---|---|
Experiment | - | - | - | - | - | 1.33 | - |
LES | BC | 450 | 150 | 45 | 2.70 | 1.14 | 19.00 |
DDES Fine | HBC | 450 | 150 | 45 | 2.70 | 1.20 | 13.26 |
IDDES Coarse | HBC | 270 | 60 | 45 | 0.62 | 1.20 | 12.94 |
IDDES Medium | HBC | 360 | 90 | 45 | 1.28 | 1.27 | 6.00 |
IDDES Fine | HBC | 450 | 150 | 45 | 2.70 | 1.16 | 17.23 |
Case Name | Solver Elapsed Time per Time Step (s) | Total Time (hrs) | % Difference to RANS |
---|---|---|---|
Typical RANS | 6.1 | 113 | - |
DDES | 6.4 | 119.5 | 5.4 |
IDDES | 6.6 | 123 | 8.1 |
LES | 4.6 | 86 | −31.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McConnell, M.R.; Knight, J.; Buick, J.M. Improved Delayed Detached-Eddy Simulation of Turbulent Vortex Shedding in Inert Flow over a Triangular Bluff Body. Fluids 2024, 9, 246. https://doi.org/10.3390/fluids9110246
McConnell MR, Knight J, Buick JM. Improved Delayed Detached-Eddy Simulation of Turbulent Vortex Shedding in Inert Flow over a Triangular Bluff Body. Fluids. 2024; 9(11):246. https://doi.org/10.3390/fluids9110246
Chicago/Turabian StyleMcConnell, Matthew R., Jason Knight, and James M. Buick. 2024. "Improved Delayed Detached-Eddy Simulation of Turbulent Vortex Shedding in Inert Flow over a Triangular Bluff Body" Fluids 9, no. 11: 246. https://doi.org/10.3390/fluids9110246
APA StyleMcConnell, M. R., Knight, J., & Buick, J. M. (2024). Improved Delayed Detached-Eddy Simulation of Turbulent Vortex Shedding in Inert Flow over a Triangular Bluff Body. Fluids, 9(11), 246. https://doi.org/10.3390/fluids9110246