Ten Years of Passion: I.S. Gromeka’s Contribution to Science
Abstract
:1. Introduction
- (a)
- Johannes von Kries (1853–1928), a German scientist who derived and validated the Joukowsky formula’ before Joukowsky did (Table A1—H1,H2).
- (b)
- Thomas Young (1773–1829), an English scientist and medical doctor who made significant discoveries in physics, medicine and linguistics. In the water-hammer area he derived the pressure wave speed in an incompressible liquid contained in an elastic tube and he made a study of hydraulic rams (Table A1—H3).
- (c)
- Adriaan Isebree Moens (1846–1891) and Diederik Johannes Korteweg (1848–1941), Dutch scientists known for the Moens–Korteweg formula for the wave propagation speed (Table A1—H4).
- (d)
- Victor Lyle Streeter (1909–2015), an American engineer and scientist, was a major contributor to the early application of digital computers for solving water-hammer problems in a wide range of engineering disciplines, from unsteady flow in pipe networks to blood flow in arteries (Table A1—H5).
- (e)
- John A Fox (1923–2012), UK’s pioneer in modern approaches to the numerical analysis of unsteady flows in pipelines and blood vessels (Table A1—H6).
- (f)
- Piotr Szymański (1900–1965), a Polish scientist who developed an analytical solution describing the instantaneous acceleration of a viscous fluid from rest (Table A1—H7).
- (g)
- Leonhard Euler (1707–1783), a Swiss genius who developed a one-dimensional model of blood flow driven through an artery by a piston pump representing the human heart. He arrived in 1775 at the system of hyperbolic partial differential equations that governs the phenomenon of water-hammer (Table A1—H8).
- (h)
- Vladimir Jordan (1913–1986), a Slovenian industrial water-hammer engineer and researcher who ‘fell in love’ with the graphical method (taking into account: distributed vaporous cavitation) which he used in conjunction with analytical methods for water-hammer investigations of a range of industrial problems (Table A1—H9).
2. Early Years and Biographical Facts
3. First Works
4. The Father of Helical Flow
- (a)
- Blood flows in animals and humans where helical flows take place in the complex curved and non-planar geometry of vasculatures like the aorta and many large arteries (pulmonary arteries, iliac, and femoral vein), see Figure 3 [4]. This flow (see Figure 4) plays a major role in the ‘healthy’ physiology of a vessel. It facilitates the transport of both micro- and macromolecules (e.g., oxygen) in the arterial lumen. It reduces the uptake of low density lipoprotein and the adhesion of blood cells on the vessel wall. Also, it can stabilize blood flow by preventing flow disturbances and reducing the exposure of endothelial cells to oscillatory and/or low wall shear-stress and recirculating flow [5].
- (b)
- The helical flow of water plays an important role in the formation of meanders, especially in developing of river cliffs and slip-off slopes. Thorp and Covich write [6] “Riffles, runs, and pools within a reach result from the helical flow of water along the surface toward an undercutting bank where the deepest pool is usually located and then passes along the bottom toward a point or alternate sediment bar on the opposite bank from the pool”. (see Figure 5 and Figure 6).
- (c)
- Other examples of natural phenomena related to concentrated vortices include whirlpools (taking place in lakes and rivers), a “dust devil” (sucking up dirt and debris into the air), tornados, and atmospheric cyclones/anticyclones (their description is a particularly special subject as their scale is comparative (or larger) to the thickness of the layer of the atmosphere/ocean).
- (d)
- -
- “The young lecturer immediately attracted sympathy to his companions, he was characterized by love and respect for the audience, clearly outlining one of the basic sciences of the mathematics department. He is a teacher who is always ready to help in all difficulties and who attracts people with the simplicity of learning”.
- -
- “Thanks to perfectly conducted courses and maintaining constant attention, he encouraged the listeners to work independently”.
- -
- “The beneficial effect of I.S. as a teacher is that he was greatly facilitated by his rare delicacy in manner and humanity in dealing with the audience. He was the same with regard to his duties and all others who in the effect of fate (doom) came into contact with him … he was always afraid that he could unintentionally hurt someone”.
5. Achievements in Pipe Flows
- (a)
- The liquid adheres to the pipe walls.
- (b)
- The liquid moves freely along the wall.
- (c)
- General case
6. About Vortex Motions
7. Other Works
8. Discussion
9. Conclusions
- Fluid Mechanics:
- Gromeka’s work on helical flows and his contributions to solving the Navier–Stokes equations for specific cases laid the groundwork for further studies in fluid dynamics.
- Modern computational methods, such as computational fluid dynamics (CFD), allow researchers to simulate and analyse complex fluid flows, including those involving helical motion. These simulations contribute to our understanding of fluid behaviour in various applications, from engineering to environmental studies.
- Acoustics:
- Gromeka’s investigations into the impact of temperature on sound waves anticipated later studies in atmospheric acoustics.
- Contemporary research in acoustics involves a wide range of applications, including environmental noise control, medical imaging (ultrasound), and sonar systems. Advances in understanding sound propagation in different media, influenced by temperature and other factors, continue to be relevant.
- Interdisciplinary Applications:
- Gromeka’s diverse contributions to fluid mechanics, sound propagation, and mathematical problem-solving open avenues for interdisciplinary applications.
- Understanding fluid dynamics is crucial in various fields, including aeronautics, environmental science, and biomedical engineering. Gromeka’s theories could inspire researchers working on problems related to fluid–structure interactions, biomechanics, and more.
- Mathematical Problem-Solving:
- Gromeka’s mathematical approaches to solving differential equations and his critiques of existing models provide a foundation for contemporary mathematical modelling.
- Advances in mathematical techniques and numerical methods enable scientists to address complex problems in diverse areas, ranging from climate modelling to materials science.
- Education and Historical Perspectives:
- Gromeka’s works, though less known, can serve as educational resources and historical references in fluid mechanics and acoustics.
- Researchers and educators may revisit Gromeka’s theories to gain insights into the historical development of these fields, fostering a deeper appreciation for the evolution of scientific thought.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
List of Contributions Concerning the Work and Life of Scientists Dealing with Fluid Transients | |
H1 | Tijsseling, A.S.; Anderson, A. A precursor in waterhammer analysis—Rediscovering Johannes von Kries. In Proceedings of the 9th International Conference on Pressure Surges, Chester, UK, 24–26 March 2004; BHR Group: Chester, UK, 2004; Volume II, pp. 739–751. |
H2 | Tijsseling, A.S.; Anderson A. The human pulse: fundamental theory and laboratory experiment. In: “Studies on the Interdisciplinary Legacy of Johannes von Kries” (Editor G. Wagner, Goethe University Frankfurt), Harrassowitz Verlag, Wiesbaden, Germany, 2019; pp. 17–26. |
H3 | Tijsseling, A.S.; Anderson, A. Thomas Young’s research on fluid transients: 200 years on. In Proceedings of the 4th International Conference on Pressure Surges, Edinburgh, UK, 14–16 May 2008; BHR Group: Edinburgh, UK, 2008; pp. 21–33. |
H4 | Tijsseling, A.S.; Anderson, A.A.; Moens, I.; Korteweg, D.J. On the speed of propagation of waves in elastic tubes. In Proceedings of the 11th International Conference on Pressure Surges, Lisbon, Portugal, 24–26 October 2012; BHR Group: Lisbon, Portugal, 2012; pp. 227–245. |
H5 | Wylie, E.B.; Wiggert, D.C.; Victor, L. Streeter—This is your life. In Proceedings of the 11th International Conference on Pressure Surges, Lisbon, Portugal, 24–26 October 2012; BHR Group: Lisbon, Portugal, 2012; pp. 9–12. |
H6 | Vardy, A.E. John Fox—A tribute. In Proceedings of the 11th International Conference on Pressure Surges, Lisbon, Portugal, 24–26 October 2012; BHR Group: Lisbon, Portugal, 2012; pp. 7–8. |
H7 | Urbanowicz, K.; Tijsseling, A.S. Work and life of Piotr Szymański. In Proceedings of the 12th International Conference on Pressure Surges, Dublin, Ireland, 18–20 November 2015; BHR Group: Dublin, Ireland, 2015; pp. 311–326. |
H8 | Hamouda, O.; Tijsseling, A.S. Leonhard Euler’s derivation of the water-hammer equations in 1775. In Proceedings of the 14th International Conference on Pressure Surges, Eindhoven, The Netherlands, 12–14 April 2023; Eindhoven University of Technology: Eindhoven, The Netherlands, 2023; pp. 127–144. |
H9 | Bergant, A.; Kramar, J.; Tijsseling, A. Vladimir Jordan—Industrial water-hammer engineer and researcher. In Proceedings of the 14th International Conference on Pressure Surges, Eindhoven, The Netherlands, 12–14 April 2023; Eindhoven University of Technology: Eindhoven, The Netherlands, 2023; pp. 59–73. |
List of Gromeka’s works | |
G1 | Gromeka. I.S. Essay on the Theory of Capillary Phenomena. Theory of Surface Fluid Adhesion (Master’s Thesis). Mat. Sb. 1879, 9, 435–500. Available online: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=7096&option_lang=rus (accessed on 8 February 2024). Gromeka. I.S. Очерк теoрии капиллярных явлений. Теoрия пoверхнoстнoгo сцепления жидкoсти (магистерская диссертация). Математический сбoрник. М. 1879. т. 1Х‚ вып. 3. ›стр. 435–500. Тo же. Отд. изд. М. 1879. 68 стр. |
G2 | Gromeka. I.S. Some Cases of Incompressible Fluid Flow. Ph.D. Thesis, Kazan University, Kazan, Russia, 1882; pp. 1–107. Gromeka. I.S. Некoтoрые случаи движения несжимаемoй жидкoсти (дoктoрская диссертация). Отп. изд. Казань. 1881. 107 стр. Тo же. Ученые записки Казанскoгo ун-та. 1882. кн. 111. 107 стр |
G3 | Gromeka. I.S. On the Theory of Fluid Motion in Narrow Cylindrical Tubes; Scientific notes of Kazan University; Kazan University: Kazan, Russia, 1882; pp. 1–32. Gromeka. I.S. К теoрии движения жидкoсти в узких цилиндрических трубках. Ученые записки Казанскoгo уи-та. Отд. физмат. наук. 1882, ни. 1. стр. 41–72. Тo же. Отд. изд. Казань; 1882. 31 стр. |
G4 | Gromeka. I.S. On the Velocity of Propagation of Wave-Like Motion of Fluids in Elastic Tubes; Scientific notes of Kazan University; Kazan University: Kazan, Russia, 1883; pp. 1–19. Gromeka. I.S. Оскoрoсти распрoстранения вoлнooбразнoгo движения жидкoстей в упругих пдрубках. Сoбрание прoтoкoлoв заседаний Секции фин-мат. наук Об-ва естествoиспытателей при Казанскoм уиoте. 1883. т. 1. Тo же. Отд. изд. Казань. 1883. 19 стр. |
G5 | Gromeka. I.S. On the Vortex Motions of a Liquid on a Sphere; Scientific Notes of Kazan University; Kazan University: Kazan, Russia, 1885; pp. 1–35. Gromeka. I.S. О вихревых движениях жидкoсти на сфере. Сoбрание прoтoкoлoв заседаний Секции физ-мат. наук Об-ва естествoиспытатели при Казанскoм уи-те. 1885. т. 111. Тo же. Отд. нэп. Казань. 1885. 35 стр. |
G6 | Gromeka. I.S. On the motion of liquid drops. Bull. De La Société Mathématique De Kasan Kasan 1886, 5, 8–47. Gromeka. I.S. О движении жидких капель. Сoбрание прoтoкoлoв заседания Секции физ. мат. наук Об-ва естествoиспытателей при Казанскoм уи-те. 1886. т. Ч. Тo же пoдзап; К теoрии капиллярных явлений. О движении жидких капель. Отд. изд. Казань. 1886. 23 стр. |
G7 | Gromeka. I.S. Some cases of equilibrium of a perfect gas. Bull. De La Société Mathématique De Kasan Kasan 1886, 5, 66–82. Gromeka. I.S. Некoтoрые случаи равнoвесия сoвершеннoгo газа. Сoбрание прoтoкoлoв лассoдани! Секции фиги-мат. наук Об-ва естествoиспытателей при Казанскoм уи-те. 1886. т. Ч. Тo же. Отд. нац. Казань. 1886. 19 стр. |
G8 | Gromeka. I.S. Lectures on the Mechanics of Liquid Bodies; Kazan University Press: Kazan, Russia, 1887; pp. 1–174. Gromeka. I.S. Лекции пo механике жидких тел. Казанский ун-т. 1887. 174 стр. Изд. интo-ГРИБ. |
G9 | Gromeka. I.S. On infinite values of integrals of second-order linear differential equations. Bull. De La Société Mathématique De Kasan Kasan 1887, 6, 14–40. Gromeka. I.S. О бескoнечных значениях интегралoв линейных дифференциальных уравнений втoрoгo пoрядка. Сoбрание прoтoкoлoв заседании Секпн фил-мат. наук Об-ва естествoиспытателей при Казанскoм ун-те. 1887. т. И |
G10 | Gromeka. I.S. On the Effect of Temperature on Small Variations in Air Masses; Scientific Notes of Kazan University; Kazan University: Kazan, Russia, 1888; pp. 1–40. Gromeka. I.S. О влиянии температуры на малые кoлебания вoздушных масс. Ученые записки Казанскoгo уи-та пo фин-мат. фак-ту за 1886 г. 1887. Тo же. Отд. изд Казана. 1888. 40 стр. |
G11 | Gromeka. I.S. Influence of the Uneven Distribution of the Temperature on the Propagation of Sound. Mat. Sb. 1889, 14, 283–302. Available online: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=7202&option_lang=rus (accessed on 8 February 2024). Gromeka. I.S. О влиянии неравнoмернoгo распределения паемпературы на распрoстра-нение звука. Математически! сбoрник. М. 1889. т. ХШ. вып. 2. стр. 283–303. |
References
- Górak, A.; Latawiec, K. Russian Governors in the Kingdom of Poland (1867–1918); Krajka, J., Translator; Towarzystwo Nauki i Kultury “Libra”: Lublin, Poland, 2016. [Google Scholar]
- Vasiliev, O.F. The memory of the outstanding Russian hydromechanics I.S. Gromeka (on the 100th anniversary of his birthday). Priroda 1951, 9, 74–77. [Google Scholar]
- Gromeka, I.S. Collected Works; USSR Academy of Sciences Publication: Moscow, Russia, 1952. [Google Scholar]
- Baun, J. Emerging Technology: Ultrasound Vector Flow Imaging—A Novel Approach to Arterial Hemodynamic Quantification. J. Diagn. Med. Sonogr. 2021, 37, 599–606. [Google Scholar] [CrossRef]
- Baratchi, S.; Chen, Y.C.; Karlheinz, P. Helical flow: A means to identify unstable plaques and a new direction for the design of vascular grafts and stents. Atherosclerosis 2020, 300, 34–36. [Google Scholar] [CrossRef]
- Thorp, J.H.; Covich, A.P. Chapter 2—An Overview of Inland Aquatic Habitats. In Ecology and Classification of North American Freshwater Invertebrates, 3rd ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 25–47. [Google Scholar] [CrossRef]
- Park, S.W.; Ahn, J. Experimental and numerical investigations of primary flow patterns and mixing in laboratory meandering channel. Smart Water 2019, 4, 4. [Google Scholar] [CrossRef]
- Landman, M.J. Time-dependent helical waves in rotating pipe flow. J. Fluid Mech. 1990, 221, 289–310. [Google Scholar] [CrossRef]
- Dritschel, D.G. Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics. J. Fluid Mech. 1991, 222, 525–541. [Google Scholar] [CrossRef]
- van der Linden, B.J.; Ory, E.; Dam, J.; Tijsseling, A.S.; Pisarenco, M. Efficient computation of three-dimensional flow in helically corrugated hoses including swirl. In Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, Prague, Czech Republic, 26–30 July 2009; Paper PVP2009-77997. 2009; pp. 655–664. [Google Scholar] [CrossRef]
- Alekseenko, S.V.; Kuibin, P.A.; Okulov, V.L. Theory of Concentrated Vortices—An Introduction; Springer-Verlag: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Loitsyanskii, L.G. Mechanics of Liquids and Gases, 2nd ed.; Volume 6 in International Series of Monographs in Aeronautics and Astronautics; Pergamon Press Ltd.: Oxford, UK, 1966. [Google Scholar]
- Kambe, T. Geometrical Theory of Dynamical Systems and Fluid Flows: Revised; World Scientific Publishing Company: Singapore, 2009. [Google Scholar]
- Arnold, V.I.; Khesin, B.A. Topological Methods in Hydrodynamics; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Zermelo, E.; Ebbinghaus, H.D.; Kanamori, A.; Kramer, D.P.; De Pellegrin, E. Collected Works/Gesammelte Werke II; Volume II/Band II—Calculus of Variations, Applied Mathematics, and Physics/Variationsrechnung, Klasse; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Majdalani, J. On the generalized Beltramian motion of the bidirectional vortex in a conical cyclone. Phys. Fluids 2022, 34, 036604. [Google Scholar] [CrossRef]
- Morgulis, A.; Yudovich, V.I.; Zaslavsky, G.M. Compressible Helical Flows. Commun. Pure Appl. Math. 1995, 48, 571–582. [Google Scholar] [CrossRef]
- Drazin, P.G.; Riley, N. The Navier–Stokes Equations: A Classification of Flows and Exact Solutions; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 2006; Volume 334. [Google Scholar]
- von Mises, R. Mathematical Theory of Compressible Fluid Flow (Applied Mathematics and Mechanics); Academic Press Inc.: Cambridge, MA, USA, 1958. [Google Scholar]
- Truesdell, C. The Kinematics of Vorticity; Indiana University Press: Bloomington, India, 1954. [Google Scholar]
- Gostintsev, Y.A.; Pokhil, P.F.; Uspenskii, O.A. Gromeka-beltrami flow in a semiinfinite cylindrical pipe. In Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1971; Volume 6, pp. 281–284. [Google Scholar]
- Chefranov, A.S.; Chefranov, S.G. Extrema of the Kinetic Energy and Its Dissipation Rate in Vortex Flows. Dokl. Phys. 2003, 48, 696–700. [Google Scholar] [CrossRef]
- Mitrofanova, O. Generation of deterministic eddy structure of the flow as an analogue of the phase transition of the second kind. Development of ideas of academician I. I. Novikov. MATEC Web Conf. 2017, 115, 04002. [Google Scholar] [CrossRef]
- Sinkevich, O.A.; Zinchenko, G.O. Stationary concentrated vortex with three velocity components above the water surface. Phys. Astron. Int. J. 2019, 3, 189–192. [Google Scholar] [CrossRef]
- Prosviryakov, E.Y. Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows. J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 2019, 23, 764–770. [Google Scholar] [CrossRef]
- Navruzov, K.; Turayev, M.; Shukurov, Z. Pulsating flows of viscous fluid in flat channel for given harmonic fluctuation of flow rate. E3S Web Conf. 2023, 401, 02010. [Google Scholar] [CrossRef]
- Chefranov, S.G. Helicity Generation in Uniform Helical Flows. J. Exp. Theor. Phys. 2004, 99, 987–997. [Google Scholar] [CrossRef]
- Bělík, P.; Su, X.; Dokken, D.P.; Scholz, K.; Shvartsman, M.M. On the Axisymmetric Steady Incompressible Beltrami Flows. Open J. Fluid Dyn. 2020, 10, 208–238. [Google Scholar] [CrossRef]
- Truesdell, C. Vorticity and the thermodynamic state in a gas flow. In Mémorial des Sciences Mathématiques, Fascicule; Gauthier-Villars: Paris, France, 1952; Volume 119. [Google Scholar]
- Meleshko, V.; Aref, H. Bibliography of Vortex Dynamics 1858–1956. Adv. Appl. Mech. 2007, 41, 197–292. [Google Scholar] [CrossRef]
- Beltrami, E. Considerazioni idrodinamiche. Nuovo Cim. 1889, 25, 212–222. [Google Scholar] [CrossRef]
- Navier, C.L.M.H. Mémoire sur les lois du Mouvement des Fluides. Mém. l’Acad. R. Sci. l’Inst. Fr. 1823, 6, 389–440. Available online: https://fr.wikisource.org/wiki/M%C3%A9moire_sur_les_lois_du_mouvement_des_fluides (accessed on 8 February 2024).
- Sestak, J.; Charles, M.E. An approximate solution for the start-up flow of a power-law fluid in a tube. Chem. Eng. Sci. 1968, 23, 1127–1137. [Google Scholar] [CrossRef]
- Ovsyannikov, V.M. Calculation of accelerated motion of fluid in a tube. Mekhanika Zhidkosti I Gaza 1981, 5, 158–160. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Kolyshkin, A.A. A quasi-steady approach to the instability of time-dependent flows in pipes. J. Fluids Mech. 2002, 465, 301–330. [Google Scholar] [CrossRef]
- Golovin, S.V.; Khe, A.K.; Gadylshina, K.A. Hydraulic model of cerebral arteriovenous malformations. J. Fluid Mech. 2016, 797, 110–129. [Google Scholar] [CrossRef]
- Roiti, A. Sul movimento dei liquidi. Ann. Della Sc. Norm. Super. Pisa Cl. Sci. 1871, 1, 193–240. [Google Scholar]
- Szymański, P. Quelques solutions exactes des équations de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique. J. De Mathématiques Pures Et Appliquées 1932, 11, 67–107. [Google Scholar]
- Tijsseling, A. Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review. J. Fluids Struct. 1996, 10, 109–146. [Google Scholar] [CrossRef]
- Komissarova, G.L. Propagation of Normal Waves Through a Fluid Contained in a Thin-Walled Cylinder. Int. Appl. Mech. 2002, 38, 103–112. [Google Scholar] [CrossRef]
- Meleshko, V.V.; Newton, P.K.; Ostrovs’kyi, V.V. Stability of the configurations of point vortices on a sphere. J. Math. Sci. 2010, 171, 603–619. [Google Scholar] [CrossRef]
- Alobaidi, G.; Mallier, R. Vortex Streets on a Sphere. J. Appl. Math. 2011, 2011, 712704. [Google Scholar] [CrossRef]
- Garcia-Azpeitia, C. Relative periodic solutions of the n-vortex problem on the sphere. J. Geom. Mech. Am. Inst. Math. Sci. 2019, 11, 427–438. [Google Scholar] [CrossRef]
- Kurakin, L.G. On nonlinear stability of the regular vortex systems on a sphere. Chaos 2004, 14, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Newton, P.K. The N-Vortex Problem. Analytical Techniques; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Résal, H. Physique Mathématique; Gauthier-Villars: Paris, France, 1884. [Google Scholar]
- Fuchs, L.I. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten. J. Für Die Reine Und Angew. Math. 1866, 66, 121–160. [Google Scholar] [CrossRef]
- Fuchs, L.I. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten (Ergänzungen zu der im 66sten Bande dieses Journals enthaltenen Abhandlung). J. Für Die Reine Und Angew. Math. 1868, 68, 354–385. [Google Scholar] [CrossRef]
- Gray, J.J. Fuchs and the Theory of Differential Equations. Bull. (New Ser.) Am. Math. Soc. 1984, 10, 1–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, K.; Tijsseling, A.S. Ten Years of Passion: I.S. Gromeka’s Contribution to Science. Fluids 2024, 9, 57. https://doi.org/10.3390/fluids9030057
Urbanowicz K, Tijsseling AS. Ten Years of Passion: I.S. Gromeka’s Contribution to Science. Fluids. 2024; 9(3):57. https://doi.org/10.3390/fluids9030057
Chicago/Turabian StyleUrbanowicz, Kamil, and Arris S. Tijsseling. 2024. "Ten Years of Passion: I.S. Gromeka’s Contribution to Science" Fluids 9, no. 3: 57. https://doi.org/10.3390/fluids9030057