Real-Time Optimal Flow Setting and Respiratory Profile Evaluation in Infants Treated with High-Flow Nasal Cannula (HFNC) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. HFNC Delivery
2.2. Pph Monitoring
2.3. Pes Monitoring
2.4. Flow Detection
2.5. Respiratory Flow and Tidal Volume Calculation
2.6. Experimentals
2.6.1. Setup
2.6.2. Transducer Unit (TU)
2.6.3. Electronic Unit (EU)
2.6.4. Laptop Personal Computer Unit (LAP)
2.7. Procedures
2.7.1. Measurements and Errors
- (1)
- Fsyst, obtained from the DFT;
- (2)
- Fvent, obtained from the DPT_1 coupled with the PNT_1;
- (3)
- Fmask, obtained from the DPT_2 coupled with the PNT_2;
- (4)
- Pes, obtained from the DPT_3;
- (5)
- Pph, obtained from the DPT_4.
- (1)
- A time window of 10 s;
- (2)
- A sampling rate of 1500 samples/s, producing a total number of 15,000;
- (3)
- A low pass filter, with a cut-off frequency of 5 Hz, to reject any kind of noise affecting the data.
2.7.2. MATLAB Routines
- (1)
- Inspiratory resistive work (WOBres) is calculated as the area delimited by the Pes curve and the Pesst line;
- (2)
- Inspiratory elastic work related to lung expansion (WOBelas_lung) is calculated as the triangular area delimited by the Pesst lines and the horizontal line corresponding to the value that Pes assumes at Tins_O;
- (3)
- Inspiratory elastic work related to chest expansion (WOBelas_chest) is calculated as the triangular area delimited by the Pstcwr lines and the horizontal line corresponding to the value that Pes assumes at Tins_O;
- (4)
- Additional elastic work done by the patient if PEEPi occurs (WOB_PEEPi) is calculated as the area between the two Pstcwr lines spaced by PEEPi.
- (1)
- Inspiratory resistive PTP (PTPres) is calculated as the area delimited by the Pes and the Pesst curves;
- (2)
- Inspiratory elastic PTP related to lung expansion (PTPelas_lung) is calculated as the area delimited by the Pesst curve and the horizontal line corresponding to the value that Pes assumes at Tins_O;
- (3)
- Inspiratory elastic PTP related to chest expansion (PTPelas_chest) is calculated as the area delimited by the Pstcwr curve and the horizontal line corresponding to the value that Pes assumes at Tins_O;
- (4)
- The additional elastic PTP done by the patient if PEEPi occurs (PTP_PEEPi) is calculated as the area between the two Pstcwr curves spaced by PEEPi.
2.7.3. Mathematical Model
2.8. Application of Pro_HFNC to Set HFNC Optimal Flow
3. Results
3.1. Optimal Flow Detection
3.2. Respiratory Profile Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dysart, K.; Miller, T.L.; Wolfson, M.R.; Shaffer, T.H. Research in high flow therapy: Mechanisms of action. Respir. Med. 2009, 103, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Rehder, K.J.; Williford, L.; Cheifetz, I.M.; Turner, D.A. Use of high flow nasal cannula in critically ill infants, children, and adults: A critical review of the literature. Intensive Care Med. 2013, 39, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.; Ghuman, A.; Deakers, T.; Khemani, R.; Ross, P.; Newth, C.J. Effort of breathing in children receiving high-flow nasal cannula. Pediatr. Crit. Care Med. 2014, 15, 1–6. [Google Scholar] [CrossRef]
- Papoff, P.; Caresta, E.; Luciani, S.; Pierangeli, A.; Scagnolari, C.; Giannini, L.; Midulla, F.; Montecchia, F. The starting rate for high-flow nasal cannula oxygen therapy in infants with bronchiolitis: Is clinical judgment enough? Pediatr. Pulmonol. 2021, 56, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.A.; Habib, R.H. Effects of flow rate and airleak at the nares and mouth opening on positive distending pressure delivery using commercially available high-flow nasal cannula systems: A lung model study. Pediatr. Crit. Care Med. 2011, 12, e29–e33. [Google Scholar] [CrossRef]
- Milési, C.; Requirand, A.; Douillard, A.; Baleine, J.; Nogué, E.; Matecki, S.; Amedro, P.; Pons-Odena, M.; Cambonie, G. Assessment of Peak Inspiratory Flow in Young Infants with Acute Viral Bronchiolitis: Physiological Basis for Initial Flow Setting in Patients Supported with High-Flow Nasal Cannula. J. Pediatr. 2021, 231, 239–245.e1. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Deng, N.; He, W.J.A.; Yang, C.; Liu, P.; Albuainain, F.A.; Ring, B.J.; Miller, A.G.; Rotta, A.T.; Guglielmo, R.D.; et al. The effects of flow settings during high-flow nasal cannula oxygen therapy for neonates and young children. Eur. Respir. Rev. 2024, 33, 230223. [Google Scholar] [CrossRef] [PubMed]
- Armarego, M.; Forde, H.; Wills, K.; Beggs, S.A. High-flow nasal cannula therapy for infants with bronchiolitis. Cochrane Database Syst. Rev. 2024, 3, CD009609. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.R.; Ellington, L.E.; Gray, A.J.; Stanberry, L.I.; Smith, L.S.; DiBlasi, R.M. Effect of High-Flow Nasal Cannula on Expiratory Pressure and Ventilation in Infant, Pediatric, and Adult Models. Respir. Care 2018, 63, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.J.; Nielsen, K.R.; Ellington, L.E.; Earley, M.; Johnson, K.; Smith, L.S.; DiBlasi, R.M. Tracheal pressure generated by high-flow nasal cannula in 3D-Printed pediatric airway models. Int. J. Pediatr. Otorhinolaryngol. 2021, 145, 110719. [Google Scholar] [CrossRef] [PubMed]
- Montecchia, F.; Luciani, S.; Cicchetti, R.; Grossi, R.; Midulla, F.; Moretti, C.; Papoff, P. Pharyngeal and esophageal pressure measurements to evaluate respiratory mechanics in infants on high flow nasal cannula: A feasibility study. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Turin, Italy, 7–9 May 2015; pp. 234–239. [Google Scholar] [CrossRef]
- Simbruner, G.; Coradello, H.; Lubec, G.; Pollak, A.; Salzer, H. Respiratory compliance of newborns after birth and its prognostic value for the course and outcome of respiratory disease. Respiration 1982, 43, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Montecchia, F.; Midulla, F.; Papoff, P. A flow-leak correction algorithm for pneumotachographic work-of-breathing measurement during high-flow nasal cannula oxygen therapy. Med. Eng. Phys. 2018, 54, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Mayaud, L.; Lejaille, M.; Prigent, H.; Louis, B.; Fauroux, B.; Lofaso, F. An open-source software for automatic calculation of respiratory parameters based on esophageal pressure. Respir. Physiol. Neurobiol. 2014, 192, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Koumoundouros, E.; Santamaria, J.; Patterson, J. The comparison of work of breathing methodologies on a patient model. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Istanbul, Turkey, 25–28 October 2001. [Google Scholar] [CrossRef]
- Silberberg, A.R.; Sanberg, K. Direct measurements of airways pressure in ventilated very low birth weight infants. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), New York, NY, USA, 30 August–3 September 2006; pp. 2868–2870. [Google Scholar] [CrossRef]
- Athanasiades, A.; Ghorbel, F.; Clark, J.W.; Niranjan, S.C.; Liu, C.H.; Zwischenberger, J.B.; Bidani, A. The work of breathing in nonlinear model of respiratory mechanics. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Chicago, IL, USA, 30 October–2 November 1997; pp. 2161–2164. [Google Scholar]
- Sreenan, C.; Lemke, R.P.; Hudson-Mason, A.; Osiovich, H. High-flow nasal cannulae in the management of apnea of prematurity: A comparison with conventional nasal continuous positive airway pressure. Pediatrics 2001, 107, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Pepe, P.E.; Marini, J.J. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: The auto-PEEP effect. Am. Rev. Respir. Dis. 1982, 126, 166–170. [Google Scholar] [CrossRef] [PubMed]
Parameters [Units] | Signals Required | Parameters Required |
---|---|---|
Tins_O [s] | Fresp | |
Tins_E [s] | Fresp | |
Tins [s] | Tins_O; Tins_E | |
Texp [s] | Tins_E; Tins_O | |
Tins/Texp | Tins; Texp | |
RR [act/min] | Tins; Texp | |
VT [mL] | VTi | Tins_O; Tins_E |
VM [mL/min] | VT; RR | |
VT/Tins [mL/s] | VT; Tins | |
VT/Texp [mL/s] | VT; Texp | |
RR/VT [act/min/mL] | RR; VT | |
PIF [L/min] | Fresp | |
Tdrop_0 [s] | Pes | |
Tdelay [s] | Tdrop_0; Tins_O | |
PEEPi [cmH2O] | Pes | Tdrop_0; Tins_O |
∆Pesi [cmH2O] | Pes | Tins_O; Tins_E |
∆Pes_sw [cmH2O] | Pes | Tdrop_0 |
Ptpei [cmH2O] | Pes | Tins_E |
CLdyn [mL/cmH2O] | VT; ∆Pesi | |
RLtot [cmH2O/mL/s] | Pes; VTi; Fresp | Tins_O; Tins_E; CLdyn; VT |
PTPres [cmH2O∙s] | Pes; VTi | Tins_O; Tins_E; CLdyn |
PTPelas_lung [cmH2O∙s] | VTi | Tins_O; Tins_E; CLdyn |
PTPelas_chest [cmH2O∙s] | VTi | Tins_O; Tins_E; CLdyn |
PTPelas_PEEPi [cmH2O∙s] | VTi | Tins_O; Tins_E; CLdyn; PEEPi |
PTPelas_tot [cmH2O∙s] | PTP_PEEPi; PTPelast_lung; PTPelast_chest | |
PTPtot [cmH2O∙s] | PTPelas_tot; PTPres | |
PTPtot_min [cmH2O∙s/min] | PTPtot; RR | |
WOBres [cmH2O∙mL]; [joule] | Pes; VTi | Tins_O; Tins_E; CLdyn |
WOBelas_lung [cmH2O∙mL]; [joule] | VTi | Tins_O; Tins_E; CLdyn |
WOBelas_chest [cmH2O∙mL]; [joule] | VTi | Tins_O; Tins_E; CLdyn |
WOB_PEEPi [cmH2O∙mL]; [joule] | VTi | Tins_O; Tins_E; CLdyn; PEEPi |
WOBelas_tot [cmH2O∙mL]; [joule] | WOB_PEEPi; WOBelas_lung; WOBelas_chest | |
WOBtot [cmH2O∙mL]; [joule] | WOBelas_tot; WOBres | |
WOBtot_min [cmH2O∙mL/min]; [joule/min] | WOBtot; RR | |
WOBtot_lit [cmH2O∙mL/L]; [joule/L] | WOBtot; VT |
Pt | Spontaneous Breathing | HFNC Therapy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weight | Fven | PIF | ΔPes_sw | Fven_ kg | Fven_ PIF | ΔPes_sw_ HFNC_kg | ΔPes_sw_ HFNC_PIF | PIF_ HFNC_kg | PIF_ HFNC_PIF | |
kg | L/min | L/min | cmH2O | L/min | L/min | cmH2O | cmH2O | L/min | cmH2O | |
1 | 5.270 | 0 | 8.3 | 24 | 6 | 9 | 23 | 16 | 6.3 | 4.7 |
2 | 3.450 | 0 | 4.8 | 18 | 4.5 | 6 | 15 | 12 | 3.9 | 3.2 |
3 | 4.200 | 0 | 3.8 | 13 | 5 | 5 | 9 | 10 | 3.5 | 3.7 |
4 | 4.930 | 0 | 5.8 | 18 | 6 | 7 | 15 | 13 | 5.0 | 4.5 |
5 | 7.150 | 0 | 9.0 | 25 | 8 | 10 | 21 | 18 | 8.0 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montecchia, F.; Papoff, P. Real-Time Optimal Flow Setting and Respiratory Profile Evaluation in Infants Treated with High-Flow Nasal Cannula (HFNC). Fluids 2024, 9, 93. https://doi.org/10.3390/fluids9040093
Montecchia F, Papoff P. Real-Time Optimal Flow Setting and Respiratory Profile Evaluation in Infants Treated with High-Flow Nasal Cannula (HFNC). Fluids. 2024; 9(4):93. https://doi.org/10.3390/fluids9040093
Chicago/Turabian StyleMontecchia, Francesco, and Paola Papoff. 2024. "Real-Time Optimal Flow Setting and Respiratory Profile Evaluation in Infants Treated with High-Flow Nasal Cannula (HFNC)" Fluids 9, no. 4: 93. https://doi.org/10.3390/fluids9040093
APA StyleMontecchia, F., & Papoff, P. (2024). Real-Time Optimal Flow Setting and Respiratory Profile Evaluation in Infants Treated with High-Flow Nasal Cannula (HFNC). Fluids, 9(4), 93. https://doi.org/10.3390/fluids9040093