Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Composites
3.3. Methods
3.3.1. H2S Breakthrough Capacity
3.3.2. Evaluation of Porosity
3.3.3. X-ray Diffraction (XRD)
3.3.4. Measurements of Electrical Resistance
3.3.5. Thermal Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of interest
References
- Zhu, J. A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ. 2000, 78, 93–106. [Google Scholar] [CrossRef]
- Sharpley, A.; Meisinger, J.J.; Breeuwsma, A.; Sims, J.T.; Daniel, T.C.; Schepers, J.S. Impacts of animal manure management on ground and surface water quality. In Anim. Waste Util; CRC Press: Boca Raton, FL, USA, 1998; pp. 173–242. [Google Scholar] [CrossRef]
- Reiffenstein, R.J.; Hulbert, W.C.; Roth, S.H. Toxicology of Hydrogen Sulfide. Annu. Rev. Pharmacol. Toxicol. 1992, 32, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, R.O.; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Andjelkovich, D.A.; Leber, P. A Critical Review of the Literature on Hydrogen Sulfide Toxicity. CRC Crit. Rev. Toxicol. 1984, 13, 25–97. [Google Scholar] [CrossRef] [PubMed]
- Legator, M.S.; Morris, D.L.; Philips, D.L.; Singleton, C.R. Health Effects from Chronic Low-Level Exposure to Hydrogen Sulfide. Arch. Environ. Health 2001, 56, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Adib, F.; Bagreev, A.; Bandosz, T. Effect of Surface Characteristics of Wood-Based Activated Carbons on Adsorption of Hydrogen Sulfide. J. Colloid Interface Sci. 1999, 214, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Le Leuch, L.M.; Subrenat, A.; Le Cloirec, P. Hydrogen sulfide adsorption and oxidation onto activated carbon cloths: Applications to odorous gaseous emission treatments. Langmuir 2003, 19, 10869–10877. [Google Scholar] [CrossRef]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Wood-Based Activated Carbons as Adsorbents of Hydrogen Sulfide: A Study of Adsorption and Water Regeneration Processes. Ind. Eng. Chem. Res. 2000, 39, 3849–3855. [Google Scholar] [CrossRef]
- Bandosz, T.J.; Le, Q. Evaluation of surface properties of exhausted carbons used as H2S adsorbents in sewage treatment plants. Carbon 1998, 36, 39–44. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L.; Sun, T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 2014, 111, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Azargohar, R.; Dalai, A.K. The direct oxidation of hydrogen sulphide over activated carbons prepared from lignite coal and biochar. Can. J. Chem. Eng. 2011, 89, 844–853. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kipkemoi Kirui, W.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, A.; Oleszczuk, P. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene. Bioresour. Technol. 2015, 192, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Kearns, J.P.; Wellborn, L.S.; Summers, R.S.; Knappe, D.R.U. 2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res. 2014, 62, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, M.; Kirbiyik, Ç.; Çepelioǧullar, Ö.; Pütün, A.E. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl. Surf. Sci. 2013, 283, 856–862. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Rod, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200–202, 673–680. [Google Scholar] [CrossRef]
- Adinata, D.; Wan Daud, W.M.A.; Aroua, M.K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour. Technol. 2007, 98, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Karagöz, S.; Tay, T.; Ucar, S.; Erdem, M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 2008, 99, 6214–6222. [Google Scholar] [CrossRef] [PubMed]
- Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Begreev, A.; Locke, D.C.; Bandosz, T.J. H2S adsorption/oxidation on adsorbents obtained from pyrolysis of sewage sludge-derived fertilizer using zinc chloride activation. Ind. Eng. Chem. Res. 2001, 40, 3502–3510. [Google Scholar] [CrossRef]
- Jeyaseelan, S.; Qing, L.G. Development of adsorbent/catalyst from municipal wastewater sludge. Water Sci. Technol. 1996, 34, 499–505. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, F.S.; Feng, Y. An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution. J. Hazard. Mater. 2008, 159, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Bandosz, T.J.; Block, K. Municipal sludge-industrial sludge composite desulfurization adsorbents: Synergy enhancing the catalytic properties. Environ. Sci. Technol. 2006, 40, 3378–3383. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Gupta, V.K.; Bhatnagar, A.; Suhas. Utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater. 2003, 101, 31–42. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Jain, A.K. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 2005, 281, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-T.; Chen, H.-R. Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int. J. Environ. Sci. Technol. 2013, 10, 1349–1356. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Feng, X.; Dai, Z.; Liu, X.; Wu, J.; Xu, J. Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure. Environ. Sci. Pollut. Res. 2014, 21, 7035–7046. [Google Scholar] [CrossRef] [PubMed]
- Ros, A.; Lillo-Ródenas, M.A.; Fuente, E.; Montes-Morán, M.A.; Martín, M.J.; Linares-Solano, A. High surface area materials prepared from sewage sludge-based precursors. Chemosphere 2006, 65, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.; Seredych, M.; Zhang, P.; Bandosz, T.J. Municipal waste conversion to hydrogen sulfide adsorbents: Investigation of the synergistic effects of sewage sludge/fish waste mixture. Chem. Eng. J. 2014, 237, 88–94. [Google Scholar] [CrossRef]
- Zhang, F.-S.; Nriagu, J.O.; Itoh, H. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res. 2005, 39, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Balaguer, M.D.; Rigolak, M. Feasibility of activated carbon production from biological sludge by chemical activation with ZnCl2 and H2SO4. Environ. Technol. 1996, 17, 667–671. [Google Scholar] [CrossRef]
- Bagreev, A.; Bashkova, S.; Locke, D.G.; Bandosz, T.J. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide. Environ. Sci. Technol. 2001, 35, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Lima, I.; Marshall, W.E. Utilization of turkey manure as granular activated carbon: Physical, chemical and adsorptive properties. Waste Manag. 2005, 25, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management: Science and Technology; Earthscans: London, UK, 2009; Volume 1, pp. 1–12. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; SooLee, S.; SikOk, Y. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnezhad, S.H.; Fini, E.H.; Sharma, B.K.; Basti, M.; Kunwar, B. Physiochemical characterization of synthetic bio-oils produced from bio-mass: A sustainable source for construction bio-adhesives. RSC Adv. 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Bandosz, T.J. On the adsorption/oxidation of hydrogen sulfide on unmodified activated carbons at ambient temperatures. J. Colloid Interface Sci. 2002, 246, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Adib, F.; Bagreev, A.; Bandosz, T.J. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons. Langmuir 2000, 16, 1980–1986. [Google Scholar] [CrossRef]
- Adib, F.; Bagreev, A.; Bandosz, T.J. Analysis of the relationship between H2S removal capacity and surface properties of unmodified activated carbons. Environ. Sci. Technol. 2000, 34, 686–692. [Google Scholar] [CrossRef]
- Bagreev, A.; Bandosz, T.J. On the Mechanism of Hydrogen Sulfide Removal from Moist Air on Catalytic Carbonaceous Adsorbents. Ind. Eng. Chem. Res. 2005, 44, 530–538. [Google Scholar] [CrossRef]
- Yan, R.; Liang, D.T.; Tsen, L.; Tay, J.H. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon. Environ. Sci. Technol. 2002, 36, 4460–4466. [Google Scholar] [CrossRef] [PubMed]
- Steijns, M.; Derks, F.; Verloop, A.; Mars, P. The mechanism of the catalytic oxidation of hydrogen sulfide. II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur. J. Catal. 1976, 42, 87–95. [Google Scholar] [CrossRef]
- Bagreev, A.; Menendez, J.A.; Dukhno, I.; Tarasenko, Y.; Bandosz, T.J. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 2004, 42, 469–476. [Google Scholar] [CrossRef]
- Arcibar-Orozco, J.A.; Wallace, R.; Mitchell, J.K.; Bandosz, T.J. Role of surface chemistry and morphology in the reactive adsorption of H2S on Iron (Hydr)oxide/graphite oxide composites. Langmuir 2015, 31, 2730–2742. [Google Scholar] [CrossRef] [PubMed]
- Bandosz, T.J. Desulfurization on activated carbons. In Activated Carbon Surfaces in Environmental Remediation; Bandosz, T.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 231–292. [Google Scholar]
- Haynes, W. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Bandosz, T.J.; Bagreev, A. Carbonaceous materials for gas phase desulfurization: Role of surface heterogeneity. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 2004, 49, 817–821. [Google Scholar]
- Seredych, M.; Mabayoje, O.; Koleśnik, M.M.; Krstić, V.; Bandosz, T.J. Zinc (hydr)oxide/graphite based-phase composites: Effect of the carbonaceous phase on surface properties and enhancement in electrical conductivity. J. Mater. Chem. 2012, 22, 7970. [Google Scholar] [CrossRef]
- Fini, E.H.; Kalberer, E.W.; Shahbazi, G.; Basti, M.; You, Z.; Ozer, H.; Aurangzeb, Q. Chemical characterization of Biobinder from swine manure: Sustainable modifier for asphalt binder. J. Mater. Civ. Eng. 2012, 23, 1506–1513. [Google Scholar] [CrossRef]
- Walters, R.; Begum, S.H.A.; Fini, E.; Abu-Lebdeh, T.M. Investigating bio-char as flow modifier and water treatment agent for sustainable pavement design. Am. J. Eng. Appl. Sci. 2014, 8, 138–146. [Google Scholar] [CrossRef]
- Jagiello, J.; Olivier, J.P. Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 2003, 19, 777–783. [Google Scholar] [CrossRef]
Sample | Ash Content (%) | pH | H2S Breakthrough Capacity (mg/g) | Water Uptake (mg H2O/g) |
---|---|---|---|---|
BM | 59 | 8.10 | 1 | 11 |
BM-E | - | 7.90 | - | - |
AB | 82 | 10.02 | 6 | 18 |
AB-E | - | 8.32 | - | - |
ABA-1 | 70 | 6.42 | 132 | 137 |
ABA-1-E | - | 4.32 | - | - |
ABA-2 | 66 | 7.30 | 144 | 150 |
ABA-2-E | - | 5.77 | - | - |
AB-NG | 70 | 9.16 | 13 | 44 |
AB-NG-E | - | 8.47 | - | - |
ABA-NG1 | 62 | 6.91 | 144 | 98 |
ABA-NG1-E | - | 3.63 | - | - |
ABA-NG2 | 55 | 7.05 | 127 | 92 |
ABA-NG2-E | - | 5.58 | - | - |
Sample | SBET (m2/g) | VT (cm3/g) | Vmic (cm3/g) | Vmes (cm3/g) | Vmic/VT |
---|---|---|---|---|---|
BM | 40 | 0.12 | 0 | 0.12 | - |
BM-E | 12 | 0.07 | 0 | 0.07 | - |
AB | 72 | 0.15 | 0 | 0.15 | - |
AB-E | 64 | 0.16 | 0 | 0.16 | - |
ABA-1 | 319 | 0.25 | 0.13 | 0.12 | 0.52 |
ABA-1-E | 177 | 0.27 | 0.02 | 0.25 | 0.07 |
ABA-2 | 331 | 0.33 | 0.10 | 0.23 | 0.30 |
ABA-2-E | 100 | 0.15 | 0.02 | 0.13 | 0.13 |
AB-NG | 105 | 0.24 | 0 | 0.24 | - |
AB-NG-E | 87 | 0.25 | 0.02 | 0.23 | 0.08 |
ABA-NG1 | 258 | 0.25 | 0.10 | 0.15 | 0.40 |
ABA-NG1-E | 86 | 0.14 | 0.01 | 0.13 | 0.07 |
ABA-NG2 | 350 | 0.27 | 0.17 | 0.10 | 0.63 |
ABA-NG2-E | 137 | 0.22 | 0.03 | 0.19 | 0.14 |
Sample | AB | ABA-2 | ABA-NG1 |
---|---|---|---|
Al2O3 | 2.67 | 2.96 | 2.88 |
CaO | 58.90 | 57.96 | 56.77 |
CuO | 0.81 | 1.047 | 1.21 |
Fe2O3 | 5.34 | 5.87 | 6.86 |
K2O | 1.35 | 0.24 | 0.27 |
MgO | 16.90 | 16.47 | 15.36 |
MnO2 | 0.68 | 0.59 | 0.62 |
Na2O | 0.92 | 0.54 | 0.46 |
SiO2 | 11.71 | 12.48 | 13.54 |
ZnO | 0.33 | 1.52 | 1.66 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, R.; Suresh, S.; Fini, E.H.; Bandosz, T.J. Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. C 2017, 3, 37. https://doi.org/10.3390/c3040037
Wallace R, Suresh S, Fini EH, Bandosz TJ. Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. C. 2017; 3(4):37. https://doi.org/10.3390/c3040037
Chicago/Turabian StyleWallace, Rajiv, Sundaramurthy Suresh, Elham H. Fini, and Teresa J. Bandosz. 2017. "Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char" C 3, no. 4: 37. https://doi.org/10.3390/c3040037
APA StyleWallace, R., Suresh, S., Fini, E. H., & Bandosz, T. J. (2017). Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. C, 3(4), 37. https://doi.org/10.3390/c3040037