Microalgae–Nanoparticle Systems as an Alternative for Biogas Upgrading: A Review
Abstract
:1. Introduction
2. Biogas: Composition, Characteristics and Applications
2.1. Composition and Characteristics
2.2. Typical Contaminants in Biogas
2.2.1. Carbon Dioxide
2.2.2. Sulfur Gases
2.2.3. Halogenated Compounds
2.2.4. Siloxanes
2.2.5. Ammonia
2.3. Biogas Applications
3. Biogas-Upgrading Technologies
3.1. Physicochemical Methods
3.2. Biological Methods
3.2.1. Chemolithotrophy
3.2.2. Photoautotrophy
4. Hybrid Systems (of Microalgae and Nanoparticles) in Biogas Upgrading
4.1. Nanoparticles in Biogas Upgrading
4.2. Microalgae–Nanoparticle Systems in Biogas Upgrading
5. Factors Affecting Biogas Upgrading in Microalgae–Nanoparticle Systems
5.1. Selection of the Microalgal Species
5.1.1. CO2 Tolerance
5.1.2. H2S Tolerance
5.1.3. pH Tolerance
5.2. Light Intensity
5.3. Temperature
5.4. Reactor Type
5.5. Type and Concentration of Nanoparticles
6. Perspectives and Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Wahaibi, A.; Osman, A.I.; Al-Muhtaseb, A.H.; Alqaisi, O.; Baawain, M.; Fawzy, S.; Rooney, D.W. Techno-Economic Evaluation of Biogas Production from Food Waste via Anaerobic Digestion. Sci. Rep. 2020, 10, 15719. [Google Scholar] [CrossRef] [PubMed]
- Dalpaz, R.; Konrad, O.; Cândido da Silva Cyrne, C.; Panis Barzotto, H.; Hasan, C.; Guerini Filho, M. Using Biogas for Energy Cogeneration: An Analysis of Electric and Thermal Energy Generation from Agro-Industrial Waste. Sustain. Energy Technol. Asses. 2020, 40, 100774. [Google Scholar] [CrossRef]
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A Review on the State-of-the-Art of Physical/Chemical and Biological Technologies for Biogas Upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef]
- Ullah Khan, I.; Hafiz Dzarfan Othman, M.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I. Biogas as a Renewable Energy Fuel—A Review of Biogas Upgrading, Utilisation and Storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Bahr, M.; Díaz, I.; Dominguez, A.; González Sánchez, A.; Muñoz, R. Microalgal-Biotechnology As a Platform for an Integral Biogas Upgrading and Nutrient Removal from Anaerobic Effluents. Environ. Sci. Technol. 2014, 48, 573–581. [Google Scholar] [CrossRef]
- Posadas, E.; Marín, D.; Blanco, S.; Lebrero, R.; Muñoz, R. Simultaneous Biogas Upgrading and Centrate Treatment in an Outdoors Pilot Scale High Rate Algal Pond. Bioresour. Technol. 2017, 232, 133–141. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Toledo-Cervantes, A.; González-Sánchez, A.; Lebrero, R.; Muñoz, R. Integral (VOCs, CO2, Mercaptans and H2S) Photosynthetic Biogas Upgrading Using Innovative Biogas and Digestate Supply Strategies. Chem. Eng. J. 2018, 354, 363–369. [Google Scholar] [CrossRef]
- Ye, W.; Xia, A.; Chen, C.; Liao, Q.; Huang, Y.; Zhu, X.; Zhu, X. Sustainable Carbon Capture via Halophilic and Alkaliphilic Cyanobacteria: The Role of Light and Bicarbonate. Biofuel Res. J. 2020, 7, 1195–1204. [Google Scholar] [CrossRef]
- Marín, D.; Carmona-Martínez, A.A.; Blanco, S.; Lebrero, R.; Muñoz, R. Innovative Operational Strategies in Photosynthetic Biogas Upgrading in an Outdoors Pilot Scale Algal-Bacterial Photobioreactor. Chemosphere 2021, 264, 128470. [Google Scholar] [CrossRef]
- Anwar, M.N.; Fayyaz, A.; Sohail, N.F.; Khokhar, M.F.; Baqar, M.; Khan, W.D.; Rasool, K.; Rehan, M.; Nizami, A.S. CO2 Capture and Storage: A Way Forward for Sustainable Environment. J. Environ. Manag. 2018, 226, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mangalapuri, R.; Ahmadi, M.H.; Vo, D.-V.N.; Solanki, R.; Kumar, P. The Role of Nanotechnology on Post-Combustion CO2 Absorption in Process Industries. Int. J. Low-Carbon Technol. 2020, 15, 361–367. [Google Scholar] [CrossRef]
- da Silva Vaz, B.; Alberto Vieira Costa, J.; Greque de Morais, M. Physical and Biological Fixation of CO2 with Polymeric Nanofibers in Outdoor Cultivations of Chlorella fusca LEB 111. Int. J. Biol. Macromol. 2020, 151, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-S.; Park, S.E.; Ahn, B.; Kim, Y.-K. Enhancement of Biodiesel Production in Chlorella vulgaris Cultivation Using Silica Nanoparticles. Biotechnol. Bioproc. Eng. 2017, 22, 136–141. [Google Scholar] [CrossRef]
- Kluytmans, J.H.J.; van Wachem, B.G.M.; Kuster, B.F.M.; Schouten, J.C. Mass Transfer in Sparged and Stirred Reactors: Influence of Carbon Particles and Electrolyte. Chem. Eng. Sci. 2003, 58, 4719–4728. [Google Scholar] [CrossRef]
- da Silva Vaz, B.; Costa, J.A.V.; de Morais, M.G. Innovative Nanofiber Technology to Improve Carbon Dioxide Biofixation in Microalgae Cultivation. Bioresour. Technol. 2019, 273, 592–598. [Google Scholar] [CrossRef]
- Vargas-Estrada, L.; Torres-Arellano, S.; Longoria, A.; Arias, D.M.; Okoye, P.U.; Sebastian, P.J. Role of Nanoparticles on Microalgal Cultivation: A Review. Fuel 2020, 280, 118598. [Google Scholar] [CrossRef]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A Critical Review of Pretreatment Technologies to Enhance Anaerobic Digestion and Energy Recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valor. 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- Chhetri, R.K.; Aryal, N.; Kharel, S.; Chandra Poudel, R.; Pant, D. Chapter 5—Agro-Based Industrial Wastes as Potent Sources of Alternative Energy and Organic Fertilizers. In Current Developments in Biotechnology and Bioengineering; Kataki, R., Pandey, A., Khanal, S.K., Pant, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–136. ISBN 978-0-444-64309-4. [Google Scholar]
- Keerthana Devi, M.; Manikandan, S.; Oviyapriya, M.; Selvaraj, M.; Assiri, M.A.; Vickram, S.; Subbaiya, R.; Karmegam, N.; Ravindran, B.; Chang, S.W.; et al. Recent Advances in Biogas Production Using Agro-Industrial Waste: A Comprehensive Review Outlook of Techno-Economic Analysis. Bioresour. Technol. 2022, 363, 127871. [Google Scholar] [CrossRef]
- Huertas, J.I.; Giraldo, N.; Izquierdo, S. Removal of H2S and CO2 from Biogas by Amine Absorption. In Mass Transfer in Chemical Engineering Processes; IntechOpen: London, UK, 2011; ISBN 978-953-307-619-5. [Google Scholar]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Muntaha, N.; Rain, M.I.; Goni, L.K.M.O.; Shaikh, M.A.A.; Jamal, M.S.; Hossain, M. A Review on Carbon Dioxide Minimization in Biogas Upgradation Technology by Chemical Absorption Processes. ACS Omega 2022, 7, 33680–33698. [Google Scholar] [CrossRef] [PubMed]
- Rusanowska, P.; Zieliński, M.; Dębowski, M. Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. Int. J. Environ. Res. Public Health 2023, 20, 5687. [Google Scholar] [CrossRef]
- Vu, H.P.; Nguyen, L.N.; Wang, Q.; Ngo, H.H.; Liu, Q.; Zhang, X.; Nghiem, L.D. Hydrogen Sulphide Management in Anaerobic Digestion: A Critical Review on Input Control, Process Regulation, and Post-Treatment. Bioresour. Technol. 2022, 346, 126634. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor. 2017, 8, 267–283. [Google Scholar] [CrossRef]
- Ahmad, W.; Sethupathi, S.; Kanadasan, G.; Lau, L.C.; Kanthasamy, R. A Review on the Removal of Hydrogen Sulfide from Biogas by Adsorption Using Sorbents Derived from Waste. Rev. Chem. Eng. 2021, 37, 407–431. [Google Scholar] [CrossRef]
- Rücker, C.; Kümmerer, K. Environmental Chemistry of Organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef]
- Tansel, B.; Surita, S.C. Managing Siloxanes in Biogas-to-Energy Facilities: Economic Comparison of Pre- vs Post-Combustion Practices. Waste Manag. 2019, 96, 121–127. [Google Scholar] [CrossRef]
- Álvarez-Flórez, J.; Egusquiza, E. Analysis of Damage Caused by Siloxanes in Stationary Reciprocating Internal Combustion Engines Operating with Landfill Gas. Eng. Fail. Anal. 2015, 50, 29–38. [Google Scholar] [CrossRef]
- Mendiara, T.; Cabello, A.; Izquierdo, M.T.; Abad, A.; Mattisson, T.; Adánez, J. Effect of the Presence of Siloxanes in Biogas Chemical Looping Combustion. Energy Fuels 2021, 35, 14984–14994. [Google Scholar] [CrossRef]
- Eichler, C.M.A.; Wu, Y.; Cox, S.S.; Klaus, S.; Boardman, G.D. Evaluation of Sampling Techniques for Gas-Phase Siloxanes in Biogas. Biomass Bioenergy 2018, 108, 1–6. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of Appropriate Biogas Upgrading Technology-a Review of Biogas Cleaning, Upgrading and Utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Audrey Renewable Natural Gas Quality Specifications in North America; Biogas World: Québec City, QC, Canada, 2019.
- Petersson, A.; Wellinger, A. Biogas Upgrading Technologies e Developments and Innovations; IEA Bioenergy: Paris, France, 2009; p. 20. [Google Scholar]
- Khan, M.U.; Lee, J.T.E.; Bashir, M.A.; Dissanayake, P.D.; Ok, Y.S.; Tong, Y.W.; Shariati, M.A.; Wu, S.; Ahring, B.K. Current Status of Biogas Upgrading for Direct Biomethane Use: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111343. [Google Scholar] [CrossRef]
- Gkotsis, P.; Kougias, P.; Mitrakas, M.; Zouboulis, A. Biogas Upgrading Technologies—Recent Advances in Membrane-Based Processes. Int. J. Hydrogen Energy 2023, 48, 3965–3993. [Google Scholar] [CrossRef]
- Aghel, B.; Maleki, M.; Sahraie, S.; Heidaryan, E. Desorption of Carbon Dioxide from a Mixture of Monoethanolamine with Alcoholic Solvents in a Microreactor. Fuel 2021, 306, 121636. [Google Scholar] [CrossRef]
- Carranza-Abaid, A.; Wanderley, R.R.; Knuutila, H.K.; Jakobsen, J.P. Analysis and Selection of Optimal Solvent-Based Technologies for Biogas Upgrading. Fuel 2021, 303, 121327. [Google Scholar] [CrossRef]
- Aghel, B.; Sahraie, S.; Heidaryan, E.; Varmira, K. Experimental Study of Carbon Dioxide Absorption by Mixed Aqueous Solutions of Methyl Diethanolamine (MDEA) and Piperazine (PZ) in a Microreactor. Process Saf. Environ. Prot. 2019, 131, 152–159. [Google Scholar] [CrossRef]
- Leonzio, G. Upgrading of Biogas to Bio-Methane with Chemical Absorption Process: Simulation and Environmental Impact. J. Clean. Prod. 2016, 131, 364–375. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Denayer, J.F.M. Biogas Upgrading by Adsorption Processes: Mathematical Modeling, Simulation and Optimization Approach—A Review. J. Environ. Chem. Eng. 2022, 10, 107483. [Google Scholar] [CrossRef]
- Pudi, A.; Rezaei, M.; Signorini, V.; Andersson, M.P.; Baschetti, M.G.; Mansouri, S.S. Hydrogen Sulfide Capture and Removal Technologies: A Comprehensive Review of Recent Developments and Emerging Trends. Sep. Purif. Technol. 2022, 298, 121448. [Google Scholar] [CrossRef]
- Yousef, A.M.; El-Maghlany, W.M.; Eldrainy, Y.A.; Attia, A. Upgrading Biogas to Biomethane and Liquid CO2: A Novel Cryogenic Process. Fuel 2019, 251, 611–628. [Google Scholar] [CrossRef]
- Scholz, M.; Melin, T.; Wessling, M. Transforming Biogas into Biomethane Using Membrane Technology. Renew. Sustain. Energy Rev. 2013, 17, 199–212. [Google Scholar] [CrossRef]
- Xie, K.; Fu, Q.; Xu, C.; Lu, H.; Zhao, Q.; Curtain, R.; Gu, D.; Webley, P.A.; Qiao, G.G. Continuous Assembly of a Polymer on a Metal–Organic Framework (CAP on MOF): A 30 Nm Thick Polymeric Gas Separation Membrane. Energy Environ. Sci. 2018, 11, 544–550. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Tarannum, K.; Chowdhury, A.T.; Rafa, N.; Nuzhat, S.; Kumar, P.S.; Vo, D.-V.N.; Lichtfouse, E.; Mahlia, T.M.I. Biogas Upgrading, Economy and Utilization: A Review. Environ. Chem. Lett. 2021, 19, 4137–4164. [Google Scholar] [CrossRef]
- Sahota, S.; Shah, G.; Ghosh, P.; Kapoor, R.; Sengupta, S.; Singh, P.; Vijay, V.; Sahay, A.; Vijay, V.K.; Thakur, I.S. Review of Trends in Biogas Upgradation Technologies and Future Perspectives. Bioresour. Technol. Rep. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Zabranska, J.; Pokorna, D. Bioconversion of Carbon Dioxide to Methane Using Hydrogen and Hydrogenotrophic Methanogens. Biotechnol. Adv. 2018, 36, 707–720. [Google Scholar] [CrossRef]
- Zhuang, R.; Wang, X.; Guo, M.; Zhao, Y.; El-Farra, N.H.; Palazoglu, A. Waste-to-Hydrogen: Recycling HCl to Produce H2 and Cl2. Appl. Energy 2020, 259, 114184. [Google Scholar] [CrossRef]
- López, A.; Lago Rodríguez, T.; Faraji Abdolmaleki, S.; Galera Martínez, M.; Bello Bugallo, P.M. From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. Appl. Sci. 2024, 14, 2342. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Serejo, M.L.; Blanco, S.; Pérez, R.; Lebrero, R.; Muñoz, R. Photosynthetic Biogas Upgrading to Bio-Methane: Boosting Nutrient Recovery via Biomass Productivity Control. Algal Res. 2016, 17, 46–52. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from Microalgae: Technologies, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Bose, A.; Lin, R.; Rajendran, K.; O’Shea, R.; Xia, A.; Murphy, J.D. How to Optimise Photosynthetic Biogas Upgrading: A Perspective on System Design and Microalgae Selection. Biotechnol. Adv. 2019, 37, 107444. [Google Scholar] [CrossRef] [PubMed]
- Alcántara, C.; García-Encina, P.A.; Muñoz, R. Evaluation of Mass and Energy Balances in the Integrated Microalgae Growth-Anaerobic Digestion Process. Chem. Eng. J. 2013, 221, 238–246. [Google Scholar] [CrossRef]
- Mussgnug, J.H.; Klassen, V.; Schlüter, A.; Kruse, O. Microalgae as Substrates for Fermentative Biogas Production in a Combined Biorefinery Concept. J. Biotechnol. 2010, 150, 51–56. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Integration of Anaerobic Digestion and Microalgal Cultivation for Digestate Bioremediation and Biogas Upgrading. Bioresour. Technol. 2019, 290, 121804. [Google Scholar] [CrossRef]
- Yang, W.; Li, S.; Qv, M.; Dai, D.; Liu, D.; Wang, W.; Tang, C.; Zhu, L. Microalgal Cultivation for the Upgraded Biogas by Removing CO2, Coupled with the Treatment of Slurry from Anaerobic Digestion: A Review. Bioresour. Technol. 2022, 364, 128118. [Google Scholar] [CrossRef]
- Meier, L.; Pérez, R.; Azócar, L.; Rivas, M.; Jeison, D. Photosynthetic CO2 Uptake by Microalgae: An Attractive Tool for Biogas Upgrading. Biomass Bioenergy 2015, 73, 102–109. [Google Scholar] [CrossRef]
- Serejo, M.L.; Posadas, E.; Boncz, M.A.; Blanco, S.; García-Encina, P.; Muñoz, R. Influence of Biogas Flow Rate on Biomass Composition During the Optimization of Biogas Upgrading in Microalgal-Bacterial Processes. Environ. Sci. Technol. 2015, 49, 3228–3236. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, S.; Hu, C.; Zhang, H.; Xu, J.; Ping, L. Performance of Three Microalgal Strains in Biogas Slurry Purification and Biogas Upgrade in Response to Various Mixed Light-Emitting Diode Light Wavelengths. Bioresour. Technol. 2015, 187, 338–345. [Google Scholar] [CrossRef]
- Prandini, J.M.; da Silva, M.L.B.; Mezzari, M.P.; Pirolli, M.; Michelon, W.; Soares, H.M. Enhancement of Nutrient Removal from Swine Wastewater Digestate Coupled to Biogas Purification by Microalgae Scenedesmus spp. Bioresour. Technol. 2016, 202, 67–75. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Madrid-Chirinos, C.; Cantera, S.; Lebrero, R.; Muñoz, R. Influence of the Gas-Liquid Flow Configuration in the Absorption Column on Photosynthetic Biogas Upgrading in Algal-Bacterial Photobioreactors. Bioresour. Technol. 2017, 225, 336–342. [Google Scholar] [CrossRef]
- Abdelwahab, T.A.M.; Mohanty, M.K.; Sahoo, P.K.; Behera, D. Metal Nanoparticle Mixtures to Improve the Biogas Yield of Cattle Manure. Biomass Conv. Bioref. 2023, 13, 2243–2254. [Google Scholar] [CrossRef]
- Ganzoury, M.A.; Allam, N.K. Impact of Nanotechnology on Biogas Production: A Mini-Review. Renew. Sustain. Energy Rev. 2015, 50, 1392–1404. [Google Scholar] [CrossRef]
- da Cruz Ferraz Dutra, J.; Passos, M.F.; García, G.J.Y.; Gomes, R.F.; Magalhães, T.A.; dos Santos Freitas, A.; Laguna, J.G.; da Costa, F.M.R.; da Silva, T.F.; Rodrigues, L.S.; et al. Anaerobic Digestion Using Cocoa Residues as Substrate: Systematic Review and Meta-Analysis. Energy Sustain. Dev. 2023, 72, 265–277. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Ma, X.; Guan, W.; Gao, M.; Li, Y.-Y.; Wang, Q.; Wu, C. Effect of Zero-Valent Iron Addition on the Biogas Fermentation of Food Waste after Anaerobic Preservation. J. Environ. Chem. Eng. 2021, 9, 106013. [Google Scholar] [CrossRef]
- Al Bkoor Alrawashdeh, K.; Al-Zboon, K.K.; Rabadi, S.A.; Gul, E.; AL-Samrraie, L.A.; Ali, R.; Al-Tabbal, J.A. Impact of Iron Oxide Nanoparticles on Sustainable Production of Biogas through Anaerobic Co-Digestion of Chicken Waste and Wastewater. Front. Chem. Eng. 2022, 4, 974546. [Google Scholar] [CrossRef]
- Joo, S.H.; Delicio, L.; Muniz, J.; Baek, S. Perspective: Catalytic Increase of Biogas Production in an Anaerobic Co-Digestion System. Int. J. Nanoparticles Nanotech. 2018, 4, 1–6. [Google Scholar]
- Ko, J.H.; Wang, N.; Yuan, T.; Lü, F.; He, P.; Xu, Q. Effect of Nickel-Containing Activated Carbon on Food Waste Anaerobic Digestion. Bioresour. Technol. 2018, 266, 516–523. [Google Scholar] [CrossRef]
- Zaidi, A.A.; RuiZhe, F.; Shi, Y.; Khan, S.Z.; Mushtaq, K. Nanoparticles Augmentation on Biogas Yield from Microalgal Biomass Anaerobic Digestion. Int. J. Hydrogen Energy 2018, 43, 14202–14213. [Google Scholar] [CrossRef]
- François, M.; Lin, K.-S.; Rachmadona, N.; Khoo, K.S. Advancement of Nanotechnologies in Biogas Production and Contaminant Removal: A Review. Fuel 2023, 340, 127470. [Google Scholar] [CrossRef]
- Juntupally, S.; Begum, S.; Arelli, V.; Mamindlapelli, N.K.; Srinivasan, S.; Anupoju, G.R. Evaluating the Impact of Iron Oxide Nanoparticles (IO-NPs) and IO-NPs Doped Granular Activated Carbon on the Anaerobic Digestion of Food Waste at Mesophilic and Thermophilic Temperature. J. Environ. Chem. Eng. 2022, 10, 107388. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Effects of Co and Ni Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Slurry. Energy Convers. Manag. 2017, 141, 108–119. [Google Scholar] [CrossRef]
- Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamamoto, Y.; Iwasaki, M.; Yamashiro, T.; Umetsu, K. Prospects for Biogas Production and H2S Control from the Anaerobic Digestion of Cattle Manure: The Influence of Microscale Waste Iron Powder and Iron Oxide Nanoparticles. Waste Manag. 2020, 101, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, T.A.M.; Mohanty, M.K.; Sahoo, P.K.; Behera, D. Impact of Iron Nanoparticles on Biogas Production and Effluent Chemical Composition from Anaerobic Digestion of Cattle Manure. Biomass Conv. Bioref. 2022, 12, 5583–5595. [Google Scholar] [CrossRef]
- Hassanein, A.; Lansing, S.; Tikekar, R. Impact of Metal Nanoparticles on Biogas Production from Poultry Litter. Bioresour. Technol. 2019, 275, 200–206. [Google Scholar] [CrossRef]
- Abdelwahab, T.A.M.; Mohanty, M.K.; Sahoo, P.K.; Behera, D. Impact of Nickel Nanoparticles on Biogas Production from Cattle Manure. Biomass Conv. Bioref. 2023, 13, 5205–5218. [Google Scholar] [CrossRef]
- He, C.-S.; Ding, R.-R.; Wang, Y.-R.; Li, Q.; Wang, Y.-X.; Mu, Y. Insights into Short- and Long-Term Effects of Loading Nickel Nanoparticles on Anaerobic Digestion with Flocculent Sludge. Environ. Sci. Nano 2019, 6, 2820–2831. [Google Scholar] [CrossRef]
- Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Impacts of Iron Oxide and Titanium Dioxide Nanoparticles on Biogas Production: Hydrogen Sulfide Mitigation, Process Stability, and Prospective Challenges. J. Environ. Manag. 2019, 240, 160–167. [Google Scholar] [CrossRef]
- Méndez, L.; García, D.; Perez, E.; Blanco, S.; Muñoz, R. Photosynthetic Upgrading of Biogas from Anaerobic Digestion of Mixed Sludge in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. J. Water Process Eng. 2022, 48, 102891. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Lebrero, R.; Serrano, E.; Lara, E.; Arbib, Z.; García-Encina, P.A.; Muñoz, R. Technology Validation of Photosynthetic Biogas Upgrading in a Semi-Industrial Scale Algal-Bacterial Photobioreactor. Bioresour. Technol. 2019, 279, 43–49. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Posadas, E.; Toledo-Cervantes, A.; Lebrero, R.; Muñoz, R. Influence of Alkalinity and Temperature on Photosynthetic Biogas Upgrading Efficiency in High Rate Algal Ponds. Algal Res. 2018, 33, 284–290. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Carvajal, A.; Castro, V.; Navia, D.; de Prada, C.; Lebrero, R.; Muñoz, R. Development of a Control Strategy to Cope with Biogas Flowrate Variations during Photosynthetic Biogas Upgrading. Biomass Bioenergy 2019, 131, 105414. [Google Scholar] [CrossRef]
- Ángeles, R.; Arnaiz, E.; Gutiérrez, J.; Sepúlveda-Muñoz, C.A.; Fernández-Ramos, O.; Muñoz, R.; Lebrero, R. Optimization of Photosynthetic Biogas Upgrading in Closed Photobioreactors Combined with Algal Biomass Production. J. Water Process Eng. 2020, 38, 101554. [Google Scholar] [CrossRef]
- Guenka Scarcelli, P.; Ruas, G.; Lopez-Serna, R.; Leite Serejo, M.; Blanco, S.; Árpád Boncz, M.; Muñoz, R. Integration of Algae-Based Sewage Treatment with Anaerobic Digestion of the Bacterial-Algal Biomass and Biogas Upgrading. Bioresour. Technol. 2021, 340, 125552. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Alcántara, C.; Noyola, A.; Muñoz, R.; González-Sánchez, A. A Study of Photosynthetic Biogas Upgrading Based on a High Rate Algal Pond under Alkaline Conditions: Influence of the Illumination Regime. Sci. Total Environ. 2017, 592, 419–425. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Severi, C.A.; Rocher-Rivas, R.; Quijano, G.; Muñoz, R. Long-Term Influence of High Alkalinity on the Performance of Photosynthetic Biogas Upgrading. Fuel 2020, 281, 118804. [Google Scholar] [CrossRef]
- Marín, D.; Posadas, E.; Cano, P.; Pérez, V.; Lebrero, R.; Muñoz, R. Influence of the Seasonal Variation of Environmental Conditions on Biogas Upgrading in an Outdoors Pilot Scale High Rate Algal Pond. Bioresour. Technol. 2018, 255, 354–358. [Google Scholar] [CrossRef]
- Marín, D.; Posadas, E.; Cano, P.; Pérez, V.; Blanco, S.; Lebrero, R.; Muñoz, R. Seasonal Variation of Biogas Upgrading Coupled with Digestate Treatment in an Outdoors Pilot Scale Algal-Bacterial Photobioreactor. Bioresour. Technol. 2018, 263, 58–66. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Carvajal, A.; Arbib, Z.; Lara, E.; de Prada, C.; Lebrero, R.; Muñoz, R. Performance Evaluation of a Control Strategy for Photosynthetic Biogas Upgrading in a Semi-Industrial Scale Photobioreactor. Bioresour. Technol. 2020, 307, 123207. [Google Scholar] [CrossRef]
- Marín, D.; Méndez, L.; Suero, I.; Díaz, I.; Blanco, S.; Fdz-Polanco, M.; Muñoz, R. Anaerobic Digestion of Food Waste Coupled with Biogas Upgrading in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. Fuel 2022, 324, 124554. [Google Scholar] [CrossRef]
- Ángeles, R.; Vega-Quiel, M.J.; Batista, A.; Fernández-Ramos, O.; Lebrero, R.; Muñoz, R. Influence of Biogas Supply Regime on Photosynthetic Biogas Upgrading Performance in an Enclosed Algal-Bacterial Photobioreactor. Algal Res. 2021, 57, 102350. [Google Scholar] [CrossRef]
- da Silva Vaz, B.; Mastrantonio, D.J.D.S.; Costa, J.A.V.; de Morais, M.G. Green Alga Cultivation with Nanofibers as Physical Adsorbents of Carbon Dioxide: Evaluation of Gas Biofixation and Macromolecule Production. Bioresour. Technol. 2019, 287, 121406. [Google Scholar] [CrossRef]
- He, M.; Yan, Y.; Pei, F.; Wu, M.; Gebreluel, T.; Zou, S.; Wang, C. Improvement on Lipid Production by Scenedesmus Obliquus Triggered by Low Dose Exposure to Nanoparticles. Sci. Rep. 2017, 7, 15526. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.S.; Bhushan, S.; Sudhakar, D.R.; Prajapati, S.K. Effect of Iron Oxide Nanoparticles on Growth and Biofuel Potential of Chlorella spp. Algal Res. 2020, 49, 101942. [Google Scholar] [CrossRef]
- Bibi, M.; Zhu, X.; Munir, M.; Angelidaki, I. Bioavailability and Effect of α-Fe2O3 Nanoparticles on Growth, Fatty Acid Composition and Morphological Indices of Chlorella vulgaris. Chemosphere 2021, 282, 131044. [Google Scholar] [CrossRef]
- Sarma, S.J.; Das, R.K.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Verma, M.; Soccol, C.R. Application of Magnesium Sulfate and Its Nanoparticles for Enhanced Lipid Production by Mixotrophic Cultivation of Algae Using Biodiesel Waste. Energy 2014, 78, 16–22. [Google Scholar] [CrossRef]
- Vargas-Estrada, L.; Hoyos, E.G.; Méndez, L.; Sebastian, P.J.; Muñoz, R. Boosting Photosynthetic Biogas Upgrading via Carbon-Coated Zero-Valent Iron Nanoparticle Addition: A Pilot Proof of Concept Study. Sustain. Chem. Pharm. 2023, 31, 100952. [Google Scholar] [CrossRef]
- Vargas-Estrada, L.; Hoyos, E.G.; Sebastian, P.J.; Muñoz, R. Elucidating the Role of Nanoparticles on Photosynthetic Biogas Upgrading: Influence of Biogas Type, Nanoparticle Concentration and Light Source. Algal Res. 2022, 68, 102899. [Google Scholar] [CrossRef]
- Hoyos, E.G.; Amo-Duodu, G.; Gulsum Kiral, U.; Vargas-Estrada, L.; Lebrero, R.; Muñoz, R. Influence of Carbon-Coated Zero-Valent Iron-Based Nanoparticle Concentration on Continuous Photosynthetic Biogas Upgrading. Fuel 2024, 356, 129610. [Google Scholar] [CrossRef]
- Hoyos, E.G.; Kuri, R.; Toda, T.; Muñoz, R. Innovative Design and Operational Strategies to Improve CO2 Mass Transfer during Photosynthetic Biogas Upgrading. Bioresour. Technol. 2024, 391, 129955. [Google Scholar] [CrossRef]
- Kong, W.; Kong, J.; Feng, S.; Yang, T.; Xu, L.; Shen, B.; Bi, Y.; Lyu, H. Cultivation of Microalgae–Bacteria Consortium by Waste Gas–Waste Water to Achieve CO2 Fixation, Wastewater Purification and Bioproducts Production. Biotechnol. Biofuels Bioprod. 2024, 17, 26. [Google Scholar] [CrossRef]
- Ortiz Tena, F.; Bickel, V.; Steinweg, C.; Posten, C. Continuous Microalgae Cultivation for Wastewater Treatment—Development of a Process Strategy during Day and Night. Sci. Total Environ. 2024, 912, 169082. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kumar, A.; Pathak, A.K.; Guria, C. Carbon Dioxide Assisted Spirulina Platensis Cultivation Using NPK-10:26:26 Complex Fertilizer in Sintered Disk Chromatographic Glass Bubble Column. J. CO2 Util. 2014, 8, 49–59. [Google Scholar] [CrossRef]
- Thomas, D.J.; Sullivan, S.L.; Price, A.L.; Zimmerman, S.M. Common Freshwater Cyanobacteria Grow in 100% CO2. Astrobiology 2005, 5, 66–74. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Effect of Carbon Source towards the Growth of Chlorella vulgaris for CO2 Bio-Mitigation and Biodiesel Production. Int. J. Greenh. Gas Control 2013, 14, 169–176. [Google Scholar] [CrossRef]
- Solovchenko, A.; Khozin-Goldberg, I. High-CO2 Tolerance in Microalgae: Possible Mechanisms and Implications for Biotechnology and Bioremediation. Biotechnol. Lett. 2013, 35, 1745–1752. [Google Scholar] [CrossRef]
- Yue, L.; Chen, W. Isolation and Determination of Cultural Characteristics of a New Highly CO2 Tolerant Fresh Water Microalgae. Energy Convers. Manag. 2005, 46, 1868–1876. [Google Scholar] [CrossRef]
- de Morais, M.G.; Costa, J.A.V. Carbon Dioxide Fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. Cultivated in Flasks and Vertical Tubular Photobioreactors. Biotechnol. Lett. 2007, 29, 1349–1352. [Google Scholar] [CrossRef]
- Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 Biofixation and Fatty Acid Composition of Scenedesmus obliquus and Chlorella pyrenoidosa in Response to Different CO2 Levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef]
- Meier, L.; Stará, D.; Bartacek, J.; Jeison, D. Removal of H2S by a Continuous Microalgae-Based Photosynthetic Biogas Upgrading Process. Process Saf. Environ. Prot. 2018, 119, 65–68. [Google Scholar] [CrossRef]
- Cattaneo, C.R.; Muñoz, R.; Korshin, G.V.; Naddeo, V.; Belgiorno, V.; Zarra, T. Biological Desulfurization of Biogas: A Comprehensive Review on Sulfide Microbial Metabolism and Treatment Biotechnologies. Sci. Total Environ. 2023, 893, 164689. [Google Scholar] [CrossRef]
- González-Sánchez, A.; Posten, C. Fate of H2S during the Cultivation of Chlorella sp. Deployed for Biogas Upgrading. J. Environ. Manag. 2017, 191, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Marín, D.; Rodero, M.D.R.; Pascual, C.; González-Sanchez, A.; de Godos Crespo, I.; Lebrero, R.; Muñoz Torre, R. Biogas Treatment for H2S, CO2, and Other Contaminants Removal. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment; Soreanu, G., Dumont, É., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 153–176. ISBN 978-0-12-819064-7. [Google Scholar]
- Pepper, I.L.; Gerba, C.P.; Brendecke, J.W. Environmental Microbiology: A Laboratory Manual; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Starr, M.P.; Stolp, H.; Trüper, H.G.; Balows, A.; Schlegel, H.G. The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Janssen, A.J.H.; Lens, P.N.L.; Stams, A.J.M.; Plugge, C.M.; Sorokin, D.Y.; Muyzer, G.; Dijkman, H.; Van Zessen, E.; Luimes, P.; Buisman, C.J.N. Application of Bacteria Involved in the Biological Sulfur Cycle for Paper Mill Effluent Purification. Sci. Total Environ. 2009, 407, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and Its Potential Application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Kishi, M.; Toda, T. Carbon Fixation Properties of Three Alkalihalophilic Microalgal Strains under High Alkalinity. J. Appl. Phycol. 2018, 30, 401–410. [Google Scholar] [CrossRef]
- Klanchui, A.; Cheevadhanarak, S.; Prommeenate, P.; Meechai, A. Exploring Components of the CO2-Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis. Comput. Struct. Biotechnol. J. 2017, 15, 340–350. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Zhang, H.; Yan, C.; Zhang, Y. Effects of Various LED Light Wavelengths and Intensities on Microalgae-Based Simultaneous Biogas Upgrading and Digestate Nutrient Reduction Process. Bioresour. Technol. 2013, 136, 461–468. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhao, Y.; Sun, S.; Hu, C.; Ping, L. Effect of Light Intensity on the Capability of Different Microalgae Species for Simultaneous Biogas Upgrading and Biogas Slurry Nutrient Reduction. Int. Biodeter. Biodegr. 2015, 104, 157–163. [Google Scholar] [CrossRef]
- Yan, C.; Muñoz, R.; Zhu, L.; Wang, Y. The Effects of Various LED (Light Emitting Diode) Lighting Strategies on Simultaneous Biogas Upgrading and Biogas Slurry Nutrient Reduction by Using of Microalgae Chlorella sp. Energy 2016, 106, 554–561. [Google Scholar] [CrossRef]
- Yan, C.; Zhu, L.; Wang, Y. Photosynthetic CO2 Uptake by Microalgae for Biogas Upgrading and Simultaneously Biogas Slurry Decontamination by Using of Microalgae Photobioreactor under Various Light Wavelengths, Light Intensities, and Photoperiods. Appl. Energy 2016, 178, 9–18. [Google Scholar] [CrossRef]
- Hang, Y.; Bao, K.; Wang, J.; Zhao, Y.; Hu, C. Performance of Mixed LED Light Wavelengths on Nutrient Removal and Biogas Upgrading by Different Microalgal-Based Treatment Technologies. Energy 2017, 130, 392–401. [Google Scholar] [CrossRef]
- Wang, X.; Bao, K.; Cao, W.; Zhao, Y.; Hu, C.W. Screening of Microalgae for Integral Biogas Slurry Nutrient Removal and Biogas Upgrading by Different Microalgae Cultivation Technology. Sci. Rep. 2017, 7, 5426. [Google Scholar] [CrossRef] [PubMed]
- Choix, F.J.; Snell-Castro, R.; Arreola-Vargas, J.; Carbajal-López, A.; Méndez-Acosta, H.O. CO2 Removal from Biogas by Cyanobacterium Leptolyngbya sp. CChF1 Isolated from the Lake Chapala, Mexico: Optimization of the Temperature and Light Intensity. Appl. Biochem. Biotechnol. 2017, 183, 1304–1322. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; O’Shea, R.; Lin, R.; Murphy, J.D. A Comparative Evaluation of Design Factors on Bubble Column Operation in Photosynthetic Biogas Upgrading. Biofuel Res. J. 2021, 8, 1351–1373. [Google Scholar] [CrossRef]
- Bose, A.; O’Shea, R.; Lin, R.; Murphy, J.D. Design, Commissioning, and Performance Assessment of a Lab-Scale Bubble Column Reactor for Photosynthetic Biogas Upgrading with Spirulina platensis. Ind. Eng. Chem. Res. 2021, 60, 5688–5704. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, C.; Tan, L.; Wang, J. Toxicity of Co Nanoparticles on Three Species of Marine Microalgae. Environ. Pollut. 2018, 236, 454–461. [Google Scholar] [CrossRef]
- Franklin, N.M.; Rogers, N.J.; Apte, S.C.; Batley, G.E.; Gadd, G.E.; Casey, P.S. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environ. Sci. Technol. 2007, 41, 8484–8490. [Google Scholar] [CrossRef]
- Sendra, M.; Yeste, M.P.; Gatica, J.M.; Moreno-Garrido, I.; Blasco, J. Direct and Indirect Effects of Silver Nanoparticles on Freshwater and Marine Microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 2017, 179, 279–289. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Xu, G.; Li, F.; Li, X. A Review on Biodiesel Production from Microalgae: Influencing Parameters and Recent Advanced Technologies. Front. Microbiol. 2022, 13, 970028. [Google Scholar] [CrossRef]
- Lakatos, G.E.; Ranglová, K.; Manoel, J.C.; Grivalský, T.; Kopecký, J.; Masojídek, J. Bioethanol Production from Microalgae Polysaccharides. Folia Microbiol. 2019, 64, 627–644. [Google Scholar] [CrossRef]
- Barragán-Trinidad, M.; Buitrón, G. Hydrogen and Methane Production from Microalgal Biomass Hydrolyzed in a Discontinuous Reactor Inoculated with Ruminal Microorganisms. Biomass Bioenergy 2020, 143, 105825. [Google Scholar] [CrossRef]
- Ferreira, J.; Braga, M.Q.; da Gama, R.C.N.; Magalhães, I.B.; Marangon, B.B.; Castro, J.d.S.; Lorentz, J.F.; Henriques, B.S.; Pereira, A.S.A.d.P.; Assemany, P.P.; et al. Carotenoids from Wastewater-Grown Microalgae Biomass: Life Cycle Assessment and Techno-Economical Analysis. J. Clean. Prod. 2024, 434, 140526. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Badawi, M.; Mohanakrishna, G.; Aminabhavi, T.M. Valorization of Micro-Algae Biomass for the Development of Green Biorefinery: Perspectives on Techno-Economic Analysis and the Way towards Sustainability. Chem. Eng. J. 2023, 453, 139754. [Google Scholar] [CrossRef]
- Castro, J.S.; Ferreira, J.; Magalhães, I.B.; Jesus Junior, M.M.; Marangon, B.B.; Pereira, A.S.A.P.; Lorentz, J.F.; Gama, R.C.N.; Rodrigues, F.A.; Calijuri, M.L. Life Cycle Assessment and Techno-Economic Analysis for Biofuel and Biofertilizer Recovery as by-Products from Microalgae. Renew. Sustain. Energy Rev. 2023, 187, 113781. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life Cycle Assessment of High Rate Algal Ponds for Wastewater Treatment and Resource Recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [Google Scholar] [CrossRef]
- Zhu, J.; Wakisaka, M.; Omura, T.; Yang, Z.; Yin, Y.; Fang, W. Advances in Industrial Harvesting Techniques for Edible Microalgae: Recent Insights into Sustainable, Efficient Methods and Future Directions. J. Clean. Prod. 2024, 436, 140626. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Arias-Estévez, M.; Rodríguez-Seijo, A.; Arenas-Lago, D. Use of Metal Nanoparticles in Agriculture. A Review on the Effects on Plant Germination. Environ. Pollut. 2023, 334, 122222. [Google Scholar] [CrossRef]
- Mgadi, K.; Ndaba, B.; Roopnarain, A.; Rama, H.; Adeleke, R. Nanoparticle Applications in Agriculture: Overview and Response of Plant-Associated Microorganisms. Front. Microbiol. 2024, 15, 1354440. [Google Scholar] [CrossRef]
- Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. Environ. Sci. Technol. 2018, 52, 1908–1918. [Google Scholar] [CrossRef]
- Wang, S.-K.; Stiles, A.R.; Guo, C.; Liu, C.-Z. Harvesting Microalgae by Magnetic Separation: A Review. Algal Res. 2015, 9, 178–185. [Google Scholar] [CrossRef]
- Coons, J.E.; Kalb, D.M.; Dale, T.; Marrone, B.L. Getting to Low-Cost Algal Biofuels: A Monograph on Conventional and Cutting-Edge Harvesting and Extraction Technologies. Algal Res. 2014, 6, 250–270. [Google Scholar] [CrossRef]
Component | Agricultural Waste | Landfills | Industrial Waste | Household Waste | Wastewater Treatment Plant Sludge |
---|---|---|---|---|---|
CH4 (%) | 50–80 | 50–80 | 50–70 | 50–60 | 60–75 |
CO2 (%) | 30–50 | 20–50 | 30–50 | 34–38 | 19–33 |
H2S (%) | 0.7 | 0.10 | 0.8 | 0.01–0.09 | 0.10–0.40 |
H2 (%) | 0–2 | 0–5 | 0–2 | - | - |
N2 (%) | 0–1 | 0–3 | 0–1 | 0–5 | 0–1 |
O2 (%) | 0–1 | 0–1 | 0–1 | 0–1 | <0.5 |
CO (%) | 0–1 | 0–1 | 0–1 | - | - |
NH3 (%) | Traces | Traces | Traces | - | - |
Siloxanes (%) | Traces | Traces | Traces | - | - |
H2O (%) | Saturation | Saturation | Traces | 6 (at 40 °C) | 6 (at 40 °C) |
Property | Value |
---|---|
Specific heat capacity | 2.165 kJ/kg K |
Molar mass | 16.04 g/g-mol |
Gas constant | 0.518 kJ/kg |
Normal density | 1.2 g/L |
Critical density | 320 g/L |
Relative density (to air) | 0.83 |
Caloric value of biogas | 22.6 MJ/m3 |
Critical temperature | −2.5 °C |
Critical pressure | 7.3–8.9 MPa |
Flammability limit content in air | 6–12% (v/v) |
Ignition temperature | 650–750 °C |
Compound | Unit | USA | France | Germany | Sweden | Switzerland | Austria | The Netherlands |
---|---|---|---|---|---|---|---|---|
CH4 | % (v/v) | 95–99 | >96 | >80 | ||||
CO2 | % (v/v) | <2 | <2 | <6 | <6 | <2 | ||
O2 | % (v/v) | <0.4 | <0.01 | <3 | <0.5 | <0.5 | <0.5 | |
H2 | % (v/v) | <6 | <5 | <4 c | <12 | |||
CO2 + O2 + N2 | % (v/v) | <5 | <5 | |||||
Relative humidity | <60% | |||||||
Sulfur | ppm | <100 a <75 b | <30 | <23 | <30 | <5 | <45 | |
g/100 ft3 | 1 | |||||||
Total inert | % (mol) | 5 | ||||||
Siloxanes | ppm | 1 |
Technology | H2S | CO2 | H2O | Siloxanes |
---|---|---|---|---|
Boiler | <1000 ppm | No | No | No |
Stationary engine | 542–1742 ppm | No | No | 9–44 ppm |
Kitchen stove | <10 ppm | No | No | No |
Vehicle fuel | <5 ppm | Recommended | Yes | No |
Natural gas grid | <4 ppm | Yes | Yes | Yes |
Parameter | Water Scrubbing | Physical Scrubbing | Chemical Scrubbing | Pressure Swing Adsorption | Cryogenic Separation | Membrane Separation |
---|---|---|---|---|---|---|
Basis of operation | Physical absorption | Physical absorption | Chemical absorption | Adsorption | Multistage compression and condensation | Permeation |
Absorbent/adsorbent | Water | Organic solvents, polyethylene glycol | Amines, Alkali solutions | Molecular sieves | No requirement | Polymeric membrane |
CH4 recovery (%) | >97 | >99 | 99.5 | >96 | 97–98 | 96–98 |
CH4 losses (%) | <2 | <2 | <0.1% | <3, | <2 | <1.5 |
Desulfurization requirement | No | No | Yes | Yes | No | Yes |
H2S co-removal | Yes | Possible | Contaminant | Possible | Yes | Possible |
Energy consumption (kWh/Nm3) | 0.46 | 0.49–0.67 | 0.27 | 0.46 | 0.18–0.25 | 0.25–0.43 |
Cost investment (EUR) | 265,000 | 1,000,000 | 353,000 | 680,000 | - | 233,000 |
Cost maintenance (EUR) | 15,000 | 39,000 | 59,000 | 56,000 | - | 25,000 |
Advantages |
|
|
|
|
|
|
Disadvantages |
|
|
|
|
|
|
System | Species | CO2 Removal (%) | CH4 (%) | Ref. |
---|---|---|---|---|
HRAP | Chlorella vulgaris | 80 | [61] | |
Closed photobioreactor–bags | Chlorella vulgaris | 43.21–55.39 | 76.21–80.40 | [62] |
Scenedesmus obliquus | 49.95–62.31 | 78.53–82.79 | ||
Neochloris oleoabundans | 40.25–54.39 | 75.19–80.06 | ||
Open photobioreactor | Nannochloropsis gaditana | 81 | [60] | |
Closed photobioreactor | Scenedesmus spp. | 66.7 | 64.7 ± 6.9 | [63] |
HRAP | Mychonastes homosphaera | 98.8 | 96.2 | [64] |
HRAP | Geitlerinema sp. (61.5%), Staurosira sp. (1.5%) and Stigeoclonium tenue (37%) | 98.8 | 97.2 | [53] |
HRAP | Chlorella sp. | 95 | 94 | [7] |
NPs | Size (nm) | NPs Concentration | Substrate | HRT (Days) | Temperature (°C) | Observations | Ref. |
---|---|---|---|---|---|---|---|
Co Ni | 1 mg/L 2 mg/L | Cattle manure | 50 | 37 | NPs significantly increased the biogas volume (p < 0.05) by 1.64 and 1.74 times | [75] | |
Fe3O4 | 20–40 | 100 mg/L | Cattle manure | 30 | 38 | 19.74% increase in methane yield. | [76] |
Fe | 435.1 | 15–60 mg/L | Cattle manure | 30 | 37 | Increase in specific methane production (118.8%) with 30 mg/L of NPs. Additionally, it decreased the H2S production rate by 93%. | [77] |
Ni | 30–80 | 12 mg/L | Poultry litter | 69 | - | The addition of Ni increased methane production by 38.4%. | [78] |
Ni | 65–114 | 1–4 mg/L | Cattle manure | 30 | 37 | The methane yield increased (70.46%) and the H2S production decreased up to 90.47%. | [79] |
Co | - | 200 mg/g-SST | Synthetic wastewater | 12 | 35 | CH4 production decreased. | [80] |
Co | 70–104 | 1–3 mg/L | Cattle manure | 30 | 37 | It improved the hydrolysis rate from 66.66 to 144%. | [79] |
Fe2O3 TiO2 | 25 | 100 mg/L + 500 mg/L | Cattle manure | 30 | 38 | Biogas and CH4 production were 1.13 and 1.15 times higher than control. H2S reduction by 62%. | [81] |
Fe Ni Co | 200 mg/L Fe + 24 mg/L Ni + 10.8 mg/L Co | Poultry litter | 79 | 37 | Increases specific methane production by 8.6%. | [78] | |
Fe Ni Co | 103–116 65–114 70–104 | 30 mg/L + 2 mg/L + 1 mg/L | Cattle manure | 15 | 37 | NPs increased CH4 production by 19.30%. H2S production decreased by 35.10% | [65] |
HRAP Volume (L) | IC (mg/L) | pH HRAP | L/G Ratio in PC | CO2 Removal (%) | H2S Removal (%) | Biomass Concentration (g/L) | Biomass Productivity (g/m2/d) | Ref. |
---|---|---|---|---|---|---|---|---|
180 | 1500 | 10.2 | 1 | 99 | - | 2.6 | 15 | [64] |
180 | 1500 | 8.4–9.6 | 0.5 | 94 | 99 | NA | NA | [85] |
500 | 0.5 | 94 | 96 | NA | NA | |||
100 | 0.5 | 92 | 93 | NA | NA | |||
180 | 1500 | NA | 0.5 | 97–98 | 99–100 | NA | 14 | [86] |
9.2 | NA | 9.5 | 9 | 74 | 99 | 1.4 | 22.8 | [87] |
NA | 9.6 | 9 | 60 | 80 | 1.1 | 18.6 | ||
NA | 9.4 | 9 | 42 | 79 | 1.3 | 24.1 | ||
25 | 1200 | 9.5 | 5 | 89 | - | 1.23 | - | [84,88] |
1000 | 9.7–9.4 | 5 | 94 | - | 0.23 | - | ||
180 | 1500 | 11 | 0.5 | 99 | 99 | 0.43 | 7.5 | [84] |
1500 | 10.5 | 0.5 | 98 | 99 | 0.54 | 7.5 | ||
500 | 10.5 | 0.5 | 73 | 99 | 0.44 | 7.5 | ||
500 | 9.7 | 0.5 | 75 | 99 | 0.45 | 7.5 | ||
100 | 7.2 | 0.5 | 67 | 99 | 0.2 | 5–7 | ||
100 | 7.5 | 0.5 | 71 | 99 | 0.18 | 5–7 | ||
180 | 1430 | 10.6 | 0.5 | 99 | 1.21 | 15 | [8] | |
1430 | 10.1 | 0.5 | 97 | 0.82 | 15 | |||
1430 | 10.6 | 0.5 | 99 | - | 0.67 | 8.3 | ||
180 | 1200 | 9.7 | 0.5 | 93–97 | - | 0.8 | 15 | [89] |
2400 | 9.8 | 0.5 | 98–99 | - | 0.4 | 15 | ||
2400 | 9.7 | 0.5 | 98–99 | - | 1.38 | 0 | ||
180 | 500 | 8.3 | 0.5 | 65–87 | - | 0.66 | 15 | [7] |
2000 | 9.9 | 0.5 | 87–92 | - | 1.07 | 15 | ||
2000 | 9.4 | 1 | 95–97 | - | 0.66 | 15 | ||
2000 | 9.6 | 2 | 95–97 | - | 0.66 | 15 | ||
2000 | 9.8 | 5 | 95–97 | - | 0.66 | 15 | ||
180 | 1663 | 9.2–9.4 | 1 | 83–96 | - | 0.31–0.05 | 0 | [90] |
2238 | 9.3–9.6 | 1 | 89–98 | - | 0.58 | 7.5 | ||
2779 | 9.4–9.5 | 1 | 97–98 | - | 0.51–0.57 | 15 | ||
NA | 9.6–9.8 | 1 | 97–99 | - | 0.51–0.62 | 22.5 | ||
4138 | 9.6 | 1 | 97–98 | - | 0.42 | 15 | ||
180 | 1200 | 9.1 | 0.5 | 95 | - | NA | NA | [91] |
1200 | 9.1 | 1 | 95 | - | NA | NA | ||
1200 | 9.1 | 2 | 98 | - | NA | NA | ||
96,000 | 500 | 7.3 | 1.2 | 75 | 91–96 | 0.33 | NA | [83] |
2.1 | 84–85 | 95–98 | NA | |||||
3.5 | 91 | 99 | NA | |||||
500 | 7.1 | 1.2 | 78–81 | 99 | 0.37 | NA | ||
2.1 | 87–90 | 99 | NA | |||||
3.5 | 94 | - | NA | |||||
500 | 8.9 | 1.2 | 97–98 | 98–99 | 0.56 | NA | ||
2.1 | 97–98 | - | NA | |||||
3.5 | 99 | - | NA | |||||
96,000 | 1907 | 9.5 | 1.3 | 96 | - | NA | 30 | [92] |
1900 | 9.3 | 1.7 | 93 | - | NA | 30 | ||
1900 | 9.2 | 2.1 | 86 | - | NA | 30 | ||
1900 | 9 | 2.4 | 82 | - | NA | 30 | ||
180 | 1332 | 9.1 | 1 | 93–97 | - | 0.14–0.53 | 0 | [10] |
1332 | 9.1 | 1 | 91–96 | - | 0.3 | 7.5 | ||
1639 | 9.9 | 1 | 97–99 | - | 0.83 | 7.5 | ||
1952 | 9.9 | 1 | 99 | - | 1.34 | 15 | ||
2236 | 9.8 | 1 | 99 | - | 1.25 | 15 | ||
180 | 1600 | 9–8.3 | 2 | 93 | - | 1.39 | 22.5 | [82] |
600 | 7.1 | 2 | 90 | - | 1.58 | 22.5 | ||
1000 | 9.3–8.7 | 2 | 96 | - | 1.8 | 22.5 | ||
1000 | 9.2 | 2 | 97 | - | 1.13 | 22.5 | ||
180 | 672 | 8.6 | 2 | 76–80 | - | 0.55–0.68 | 22.5 | [93] |
658 | 8.9 | 2 | 80 | - | 0.60–0.48 | 22.5 | ||
521 | 8.4 | 5 | 91 | - | 0.39–0.49 | 22.5 | ||
1500 | 9.6 | 2 | 93–99 | - | 0.53 | 15 | ||
2100 | 9.5 | 2 | 90–99 | - | 0.31 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán-Trinidad, M.; Vargas-Estrada, L.; Torres-Arellano, S.; Arias, D.M.; Sebastian, P.J. Microalgae–Nanoparticle Systems as an Alternative for Biogas Upgrading: A Review. Fermentation 2024, 10, 551. https://doi.org/10.3390/fermentation10110551
Barragán-Trinidad M, Vargas-Estrada L, Torres-Arellano S, Arias DM, Sebastian PJ. Microalgae–Nanoparticle Systems as an Alternative for Biogas Upgrading: A Review. Fermentation. 2024; 10(11):551. https://doi.org/10.3390/fermentation10110551
Chicago/Turabian StyleBarragán-Trinidad, Martín, Laura Vargas-Estrada, S. Torres-Arellano, Dulce M. Arias, and P. J. Sebastian. 2024. "Microalgae–Nanoparticle Systems as an Alternative for Biogas Upgrading: A Review" Fermentation 10, no. 11: 551. https://doi.org/10.3390/fermentation10110551