Fermentation Process Effects on Fermented McIntosh Apple Ciders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apples and Apple Treatment
2.2. Fermentation
2.3. Chemical and Chromatic Properties of Ciders
2.4. Total Phenolics Concentrations and Antioxidant Activities of Cider Musts and Final Ciders
2.5. Monomeric Phenolic Compounds Concentrations
2.6. Statistical Analysis
3. Results and Discussion
3.1. Pre-Fermentation Must Components
3.2. Fermentation Sugar Dynamic Changes
3.3. Chromatic Dynamics during Fermentation
3.4. Final Cider Characteristics
3.5. Cider Monomeric Phenolics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piyasena, P.; Rayner, M.; Bartlett, F.M.; Lu, X.; McKellar, R.C. Characterization of Apples and Apple Cider Produced by a Guelph Area Orchard. LWT—Food Sci. Technol. 2002, 35, 622–627. [Google Scholar] [CrossRef]
- Ferree, D.C.; Warrington, I.J. Apples: Botany, Production, and Uses; CABI Pub.: Wallingford, UK, 2003; ISBN 978-0-85199-592-2. [Google Scholar]
- Noiton, D.A.M.; Alspach, P.A. Founding Clones, Inbreeding, Coancestry, and Status Number of Modern Apple Cultivars. J. Am. Soc. Hortic. Sci. 1996, 121, 773–782. [Google Scholar] [CrossRef]
- Khanizadeh, S.; Groleau, Y.; Tsao, R.; Yang, R.; Alli, I.; Prange, R.; Demoy, R. ‘Diva’ Apple. HortScience 2009, 44, 1478–1480. [Google Scholar] [CrossRef]
- Basaran-Akgul, N.; Churey, J.J.; Basaran, P.; Worobo, R.W. Inactivation of Different Strains of Escherichia coli O157:H7 in Various Apple Ciders Treated with Dimethyl Dicarbonate (DMDC) and Sulfur Dioxide (SO2) as an Alternative Method. Food Microbiol. 2009, 26, 8–15. [Google Scholar] [CrossRef]
- Dingman, D.W. Growth of Escherichia coli O157:H7 in Bruised Apple (Malus domestica) Tissue as Influenced by Cultivar, Date of Harvest, and Source. Appl. Environ. Microbiol. 2000, 66, 1077–1083. [Google Scholar] [CrossRef]
- Gerard, K.A.; Roberts, J.S. Microwave Heating of Apple Mash to Improve Juice Yield and Quality. LWT—Food Sci. Technol. 2004, 37, 551–557. [Google Scholar] [CrossRef]
- Marrazzo, W.N.; Heinemann, P.H.; Crassweller, R.E.; LeBlanc, E. Electronic nose chemical sensor feasibility study for the differentiation of apple cultivars. Trans. ASAE 2005, 48, 1995–2002. [Google Scholar] [CrossRef]
- Lagassey, J.B. Eastern US Wine and Yeast Study; Kinetics and Composition. 2014. Available online: https://www.semanticscholar.org/paper/Eastern-US-Wine-and-Yeast-Study%3B-Kinetics-and-Lagassey/eb8d3d9a7d28072eb09b549567702463bf303deb (accessed on 5 December 2023).
- Calugar, P.C.; Coldea, T.E.; Salanță, L.C.; Pop, C.R.; Pasqualone, A.; Burja-Udrea, C.; Zhao, H.; Mudura, E. An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes 2021, 9, 502. [Google Scholar] [CrossRef]
- Al Daccache, M.; Koubaa, M.; Maroun, R.G.; Salameh, D.; Louka, N.; Vorobiev, E. Impact of the Physicochemical Composition and Microbial Diversity in Apple Juice Fermentation Process: A Review. Molecules 2020, 25, 3698. [Google Scholar] [CrossRef] [PubMed]
- Benvenutti, L.; Bortolini, D.G.; Fischer, T.E.; Zardo, D.M.; Nogueira, A.; Zielinski, A.A.F.; Alberti, A. Bioactive Compounds Recovered from Apple Pomace as Ingredient in Cider Processing: Monitoring of Compounds during Fermentation. J. Food Sci. Technol. 2022, 59, 3349–3358. [Google Scholar] [CrossRef]
- Shalini, R.; Gupta, D.K. Utilization of Pomace from Apple Processing Industries: A Review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of Apple Pomace for Bioactive Molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple Pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Llavata, B.; Picinelli, A.; Simal, S.; Cárcel, J.A. Cider Apple Pomace as a Source of Nutrients: Evaluation of the Polyphenolic Profile, Antioxidant and Fiber Properties after Drying Process at Different Temperatures. Food Chem. X 2022, 15, 100403. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A.; Alberti, A.; Zielinski, A.A.F. A New Approach to the Use of Apple Pomace in Cider Making for the Recovery of Phenolic Compounds. LWT 2020, 126, 109316. [Google Scholar] [CrossRef]
- Benvenutti, L.; Bortolini, D.G.; Nogueira, A.; Zielinski, A.A.F.; Alberti, A. Effect of Addition of Phenolic Compounds Recovered from Apple Pomace on Cider Quality. LWT 2019, 100, 348–354. [Google Scholar] [CrossRef]
- Kashyap, D.R.; Vohra, P.K.; Chopra, S.; Tewari, R. Applications of Pectinases in the Commercial Sector: A Review. Bioresour. Technol. 2001, 77, 215–227. [Google Scholar] [CrossRef] [PubMed]
- McLellan, M.R.; Kime, R.W.; Lind, L.R. Apple Juice Clarification With the Use of Honey and Pectinase. J. Food Sci. 1985, 50, 206–208. [Google Scholar] [CrossRef]
- Ma, S.; Neilson, A.; Lahne, J.; Peck, G.; O’Keefe, S.; Hurley, E.K.; Sandbrook, A.; Stewart, A. Juice Clarification with Pectinase Reduces Yeast Assimilable Nitrogen in Apple Juice without Affecting the Polyphenol Composition in Cider. J. Food Sci. 2018, 83, 2772–2781. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Jiang, Y.; Hu, X.; Yi, J. A Novel Strategy to Improve Cloud Stability of Orange-Based Juice: Combination of Natural Pectin Methylesterase Inhibitor and High-Pressure Processing. Foods 2023, 12, 581. [Google Scholar] [CrossRef]
- Błaszak, M.; Nowak, A.; Lachowicz-Wiśniewska, S.; Migdal, W.; Ochmian, I. E-Beam Irradiation and Ozonation as an Alternative to the Sulphuric Method of Wine Preservation. Molecules 2019, 24, 3406. [Google Scholar] [CrossRef]
- Farr, J.E.; Giusti, M.M. Investigating the Interaction of Ascorbic Acid with Anthocyanins and Pyranoanthocyanins. Molecules 2018, 23, 744. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC INTERNATIONAL, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Ritchey, J.G.; Waterhouse, A.L. A Standard Red Wine: Monomeric Phenolic Analysis of Commercial Cabernet Sauvignon Wines. Am. J. Enol. Vitic. 1999, 50, 91–100. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC Analysis of Diverse Grape and Wine Phenolics Using Direct Injection and Multidetection by DAD and Fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Badet-Murat, M.-L.; Waterhouse, A.L. Oak Barrel Tannin and Toasting Temperature: Effects on Red Wine Condensed Tannin Chemistry. LWT 2018, 91, 330–338. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Function for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 11 September 2023).
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am. Stat. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Ggplot2: Elegant Graphics for Data Analysis (3e). Available online: https://ggplot2-book.org/ (accessed on 5 December 2023).
- Rosales, E.; Pazos, M.; Ángeles Sanromán, M. Chapter 15—Solid-State Fermentation for Food Applications. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 319–355. ISBN 978-0-444-63990-5. [Google Scholar]
- Chen, X.; Xu, Y.; Wu, J.; Yu, Y.; Zou, B.; Li, L. Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods 2023, 12, 330. [Google Scholar] [CrossRef]
- Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R. Microbial Pectinases: An Ecofriendly Tool of Nature for Industries. 3 Biotech 2016, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Yuan, Y.; Gao, M.; Li, C.; Ogutu, C.; Li, M.; Ma, F. Determination of Predominant Organic Acid Components in Malus Species: Correlation with Apple Domestication. Metabolites 2018, 8, 74. [Google Scholar] [CrossRef]
- Crépin, L.; Sanchez, I.; Nidelet, T.; Dequin, S.; Camarasa, C. Efficient Ammonium Uptake and Mobilization of Vacuolar Arginine by Saccharomyces Cerevisiae Wine Strains during Wine Fermentation. Microb. Cell Fact. 2014, 13, 109. [Google Scholar] [CrossRef]
- Song, Y.; Gibney, P.; Cheng, L.; Liu, S.; Peck, G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front. Microbiol. 2020, 11, 1264. [Google Scholar] [CrossRef] [PubMed]
- Kelanne, N.; Yang, B.; Liljenbäck, L.; Laaksonen, O. Phenolic Compound Profiles in Alcoholic Black Currant Beverages Produced by Fermentation with Saccharomyces and Non-Saccharomyces Yeasts. J. Agric. Food Chem. 2020, 68, 10128–10141. [Google Scholar] [CrossRef] [PubMed]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar Variation in Apple Peel and Whole Fruit Phenolic Composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Zielińska, D.; Turemko, M. Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS. Antioxidants 2020, 9, 1054. [Google Scholar] [CrossRef] [PubMed]
- Diñeiro García, Y.; Valles, B.S.; Picinelli Lobo, A. Phenolic and Antioxidant Composition of By-Products from the Cider Industry: Apple Pomace. Food Chem. 2009, 117, 731–738. [Google Scholar] [CrossRef]
- Hensel, M.; Scheiermann, M.; Fahrer, J.; Durner, D. New Insights into Wine Color Analysis: A Comparison of Analytical Methods to Sensory Perception for Red and White Varietal Wines. J. Agric. Food Chem. 2023, 72, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef]
- Sun, X.; Shokri, S.; Gao, B.; Xu, Z.; Li, B.; Zhu, T.; Wang, Y.; Zhu, J. Improving Effects of Three Selected Co-Pigments on Fermentation, Color Stability, and Anthocyanins Content of Blueberry Wine. LWT 2022, 156, 113070. [Google Scholar] [CrossRef]
- Le Deun, E.; Van der Werf, R.; Le Bail, G.; Le Quéré, J.-M.; Guyot, S. HPLC-DAD-MS Profiling of Polyphenols Responsible for the Yellow-Orange Color in Apple Juices of Different French Cider Apple Varieties. J. Agric. Food Chem. 2015, 63, 7675–7684. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.; Anderson, A.F.; Cohen, S.D. Analytical Methods to Assess Polyphenols, Tannin Concentration, and Astringency in Hard Apple Cider. Appl. Sci. 2022, 12, 9409. [Google Scholar] [CrossRef]
- Le Guernevé, C.; Sanoner, P.; Drilleau, J.-F.; Guyot, S. New Compounds Obtained by Enzymatic Oxidation of Phloridzin. Tetrahedron Lett. 2004, 45, 6673–6677. [Google Scholar] [CrossRef]
- Symoneaux, R.; Poupard, P.; Bauduin, R.; Guyot, S.; Le Quéré, J.-M. The Color of Cider: Cider Color Preference and Cider Consumption. In Proceedings of the 11th Pangborn Sensory Science Symposium, Gothenburg, Sweden, 23–27 August 2015. [Google Scholar]
- He, W.; Laaksonen, O.; Tian, Y.; Heinonen, M.; Bitz, L.; Yang, B. Phenolic Compound Profiles in Finnish Apple (Malus × domestica Borkh.) Juices and Ciders Fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe Strains. Food Chem. 2022, 373, 131437. [Google Scholar] [CrossRef] [PubMed]
- Hackman, R.M.; Polagruto, J.A.; Zhu, Q.Y.; Sun, B.; Fujii, H.; Keen, C.L. Flavanols: Digestion, Absorption and Bioactivity. Phytochem. Rev. 2008, 7, 195–208. [Google Scholar] [CrossRef]
- Zhao, Z.; Moghadasian, M.H. Bioavailability of Hydroxycinnamates: A Brief Review of in Vivo and in Vitro Studies. Phytochem. Rev. 2010, 9, 133–145. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J. Flavonols and Cardiovascular Disease. Mol. Asp. Med. 2010, 31, 478–494. [Google Scholar] [CrossRef]
- Pollastri, S.; Tattini, M. Flavonols: Old Compounds for Old Roles. Ann. Bot. 2011, 108, 1225–1233. [Google Scholar] [CrossRef]
Treatment | Pomace Weight (kg) | Water Added (kg) | Juice Weight (kg) | Mash Weight (kg) | Sugar Added (kg) |
---|---|---|---|---|---|
Pectinase | - | - | - | 3.5 | - |
Mash | - | - | - | 3.5 | - |
Pomace | 0.875 (25% × 3.5 kg) | Filled (~2 L) up to 3.5 kg | - | - | ~0.47 (Targeted ~15 °Brix) |
Juice | - | - | 3.5 | - | - |
Treatment | D-Glucose (g/L) | D-Fructose (g/L) | Sucrose (g/L) | Total Fermentable Sugars (g/L) 1 |
---|---|---|---|---|
Pectinase | 9.00 ± 0.69 a | 67.69 ± 4.92 a | 39.78 ± 2.25 a | 116.46 ± 6.56 a |
Mash | 5.88 ± 0.57 b | 70.65 ± 2.93 a | 48.00 ± 6.75 a | 124.53 ± 7.83 a |
Pomace | 2.99 ± 0.21 c | 23.41 ± 1.83 b | 13.02 ± 0.78 b | 39.43 ± 1.70 b |
Juice | 6.21 ± 1.63 b | 73.79 ± 4.95 a | 51.94 ± 12.85 a | 131.95 ± 15.32 a |
Treatment | °Brix | pH | Malic Acid (g/L) | Citric Acid (g/L) |
---|---|---|---|---|
Pectinase | 15.03 ± 0.04 a | 3.64 ± 0.04 a | 4.95 ± 2.16 a | 0.21 ± 0.06 a |
Mash | 14.85 ± 0.29 a | 3.63 ± 0.04 a | 4.32 ± 0.45 a | 0.19 ± 0.05 a |
Pomace | 4.85 ± 0.46 b | 3.67 ± 0.03 a | 1.01 ± 0.28 b | 0.08 ± 0.034 b |
Juice | 14.9 ± 0.36 a | 3.61 ± 0.03 a | 4.99 ± 1.58 a | 0.02 ± 0.05 b |
Treatment | YAN (mg N/L) | Phenolic Content (µg GAE/mL) | DPPH Activity TEAC (µM/µL) |
---|---|---|---|
Pectinase | 10.59 ± 4.36 a | 222.33 ± 29.70 bc | 73.48 ± 4.50 a |
Mash | 10.30 ± 7.82 a | 286.90 ± 13.91 b | 71.32 ± 2.75 a |
Pomace | 4.33 ± 1.93 a | 167.39 ± 4.07 c | 59.45 ± 12.46 b |
Juice | 10.25 ± 7.18 a | 465.85 ± 27.49 a | 85.28 ± 10.72 a |
Treatment | Ethanol (vol%) | Titratable Acidity as Malic Acid (g/L) | pH | Glycerol (g/L) | Phenolic Content (µg GAE/mL) | DPPH TEAC (µM/µL) |
---|---|---|---|---|---|---|
Juice | 7.91 ± 0.1 a | 7.46 ± 0.2 a | 3.30 ± 0.02 a | 4.67 ± 0.2 b | 271.85 ± 4.05 a | 90.09 ± 4.59 a |
Mash | 6.26 ± 0.04 b | 5.54 ± 0.15 c | 3.34 ± 0.02 b | 5.17 ± 0.4 b | 215.72 ± 14.51 b | 84.06 ± 4.75 b |
Pectinase | 6.11 ± 0.09 b | 6.47 ± 0.5 b | 3.22 ± 0.04 c | 4.87 ± 0.2 b | 248.59 ± 10.46 a | 73.77 ± 1.85 b |
Pomace | 8.18 ± 0.17 a | 3.98 ± 0.15 d | 3.37 ± 0.03 ab | 5.93 ± 0.3 a | 139.44 ± 0.23 c | 69.52 ± 1.77 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Svyantek, A.; Miller, Z.; Watrelot, A.A. Fermentation Process Effects on Fermented McIntosh Apple Ciders. Fermentation 2024, 10, 115. https://doi.org/10.3390/fermentation10030115
Wang Z, Svyantek A, Miller Z, Watrelot AA. Fermentation Process Effects on Fermented McIntosh Apple Ciders. Fermentation. 2024; 10(3):115. https://doi.org/10.3390/fermentation10030115
Chicago/Turabian StyleWang, Zhuoyu, Andrej Svyantek, Zachariah Miller, and Aude A. Watrelot. 2024. "Fermentation Process Effects on Fermented McIntosh Apple Ciders" Fermentation 10, no. 3: 115. https://doi.org/10.3390/fermentation10030115
APA StyleWang, Z., Svyantek, A., Miller, Z., & Watrelot, A. A. (2024). Fermentation Process Effects on Fermented McIntosh Apple Ciders. Fermentation, 10(3), 115. https://doi.org/10.3390/fermentation10030115