Harnessing the Potential of Sludge Fermentation Liquid to Induce Partial Nitrification
Abstract
:1. Introduction
2. Microbial Basis and Establishment Methods of Partial Nitrification
2.1. Microbial Basis of Partial Nitrification
2.2. Partial Nitrification Establishment Methods
2.2.1. Environmental Factor Manipulation
- Temperature
- 2.
- Dissolved Oxygen
- 3.
- pH
2.2.2. Selective Inhibitors
- Free Ammonia (FA)
- 2.
- Free Nitrous Acid (FNA)
- 3.
- Other Nitrite-Oxidizing Bacteria Inhibitors
3. Fermentation of Waste Activated Sludge
3.1. Process and Influencing Factors of Fermentation
3.2. Characteristics of Wasted Activated Sludge Fermentation Products
4. Combination of Partial Nitrification and Sludge Fermentation
4.1. Contribution of Sludge Fermentation to Nitrogen Removal
4.2. Coupling of Sludge Fermentation with Partial Nitrification
5. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Gu, B. Urban rivers as hotspots of regional nitrogen pollution. Environ. Pollut. 2015, 205, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.D.; Bishop, C.A.; Struger, J. Nitrogen pollution: An assessment of its threat to amphibian survival. Environ. Health Perspect. 1999, 107, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Currell, M.J.; Cao, G. Deep challenges for China’s war on water pollution. Environ. Pollut. 2016, 218, 1222–1233. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, A.; Ramakrishnan, V. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. J. Pollut. Eff. Control 2015, 3, 1–26. [Google Scholar]
- Liu, Y.; Tay, J.-H. State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 2004, 22, 533–563. [Google Scholar] [CrossRef] [PubMed]
- Gernaey, K.V.; van Loosdrecht, M.C.; Henze, M.; Lind, M.; Jørgensen, S.B. Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environ. Model. Softw. 2004, 19, 763–783. [Google Scholar] [CrossRef]
- Dold, P.; Ekama, G. A general model for the activated sludge process. In Water Pollution Research and Development; Elsevier: Amsterdam, The Netherlands, 1981; pp. 47–77. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Lehne, G.; Müller, A.; Schwedes, J. Mechanical disintegration of sewage sludge. Water Sci. Technol. 2001, 43, 19–26. [Google Scholar] [CrossRef]
- Ramirez, I.; Volcke, E.I.; Rajinikanth, R.; Steyer, J.-P. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model. Water Res. 2009, 43, 2787–2800. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Zhou, Q.; Gu, G. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Water Res. 2007, 41, 3112–3120. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, H.W.; Chin, C.T.-L.; Hong, E.; Philip, L.; Suraishkumar, G.; Sen, T.K.; Khiadani, M. Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge. Process Saf. Environ. Prot. 2020, 136, 194–202. [Google Scholar] [CrossRef]
- Biswal, B.K.; Huang, H.; Dai, J.; Chen, G.-H.; Wu, D. Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion. Bioresour. Technol. 2020, 297, 122423. [Google Scholar]
- Choi, J.-M.; Han, S.-K.; Lee, C.-Y. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour. Technol. 2018, 259, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Hendriks, A.; van Lier, J.; de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Angelidaki, I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Liu, J.; Zhang, L.; Zhang, Q.; Peng, Y. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox. Front. Environ. Sci. Eng. 2020, 15, 26. [Google Scholar] [CrossRef]
- Gao, D.; Peng, Y.; Li, B.; Liang, H. Shortcut nitrification–denitrification by real-time control strategies. Bioresour. Technol. 2009, 100, 2298–2300. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Xia, L.; Ma, T.; Zhang, Y.; Zhou, Y.; He, X. Achieving short-cut nitrification and denitrification in modified intermittently aerated constructed wetland. Bioresour. Technol. 2017, 232, 10–17. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, T. A potential new process for improving nitrogen removal in constructed wetlands—Promoting coexistence of partial-nitrification and ANAMMOX. Ecol. Eng. 2007, 31, 69–78. [Google Scholar] [CrossRef]
- Peng, Y.Z.; Zhu, G.B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol. 2006, 73, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Daverey, A.; Su, S.-H.; Huang, Y.-T.; Chen, S.-S.; Sung, S.; Lin, J.-G. Partial nitrification and anammox process: A method for high strength optoelectronic industrial wastewater treatment. Water Res. 2013, 47, 2929–2937. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 2015, 140, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.; Annachhatre, A.P. Annachhatre, Partial nitrification—Operational parameters and microorganisms involved. Rev. Environ. Sci. Bio/Technol. 2007, 6, 285–313. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Peng, Y.; Li, X.; Zhang, Q. Realization of partial nitrification and in-situ anammox in continuous-flow anaerobic/aerobic/anoxic process with side-stream sludge fermentation for real sewage. Bioresour. Technol. 2022, 346, 126520. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Zeng, W.; Peng, X.; Ma, C.; Peng, Y. Rapid achievement of partial nitrification in domestic sewage treatment by in-site fermentation coupled with sludge discharge: Performance and mechanisms. J. Water Process. Eng. 2023, 55, 104192. [Google Scholar] [CrossRef]
- Alexander, M. Nitrification. Soil Nitrogen 1965, 10, 307–343. [Google Scholar]
- Gerardi, M.H. Nitrification and Denitrification in the Activated Sludge Process; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Prosser, J.I. The ecology of nitrifying bacteria. In Biology of the Nitrogen Cycle; Elsevier: Amsterdam, The Netherlands, 2007; pp. 223–243. [Google Scholar]
- Dueholm MK, D.; Nierychlo, M.; Andersen, K.S.; Rudkjøbing, V.; Knutsson, S.; Albertsen, M.; Nielsen, P.H. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nat. Commun. 2022, 13, 1908. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Xu, S.; Wang, R.; Zhou, S.; Wu, S.; Zeng, X.; Bai, Z.; Zhuang, G.; Zhuang, X. Comprehensive assessment of free nitrous acid-based technology to establish partial nitrification. Environ. Sci. Water Res. Technol. 2018, 4, 2113–2124. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, S.; Wang, R.; Feng, S.; Zhou, S.; Wu, S.; Zeng, X.; Wu, S.; Bai, Z.; Zhuang, G.; et al. Achieving efficient nitrogen removal from real sewage via nitrite pathway in a continuous nitrogen removal process by combining free nitrous acid sludge treatment and DO control. Water Res. 2019, 161, 590–600. [Google Scholar] [CrossRef]
- Wang, Q.L.; Ye, L.; Jiang, G.; Hu, S.; Yuan, Z. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res. 2014, 55, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Kirim, G.; McCullough, K.; Bressani-Ribeiro, T.; Domingo-Félez, C.; Duan, H.; Al-Omari, A.; De Clippeleir, H.; Jimenez, J.; Klaus, S.; Ladipo-Obasa, M.; et al. Mainstream short-cut N removal modelling: Current status and perspectives. Water Sci. Technol. 2022, 85, 2539–2564. [Google Scholar] [CrossRef] [PubMed]
- Lücker, S.; Wagner, M.; Maixner, F.; Pelletier, E.; Koch, H.; Vacherie, B.; Rattei, T.; Damsté, J.S.S.; Spieck, E.; Le Paslier, D.; et al. A metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. USA 2010, 107, 13479–13484. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, M.A.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op den Camp, H.J.; Kartal, B.; Jetten, M.S.M.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Annavajhala, M.K.; Kapoor, V.; Santo-Domingo, J.; Chandran, K. Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environ. Sci. Technol. Lett. 2018, 5, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Grunditz, C.; Dalhammar, G. Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Res. 2001, 35, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Hellinga, C.; Schellen, A.A.J.C.; Mulder, J.W.; van Loosdrecht, M.C.M.; Heijnen, J.J. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 1998, 37, 135–142. [Google Scholar] [CrossRef]
- Yoo, H.; Ahn, K.H.; Lee, H.J.; Lee, K.H.; Kwak, Y.J.; Song, K.G. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Res. 1999, 33, 145–154. [Google Scholar] [CrossRef]
- Balmelle, B.; Nguyen, K.M.; Capdeville, B.; Cornier, J.C.; Deguin, A. Study of Factors Controlling Nitrite Buildup in Biological Processes for Water Nitrification. Water Sci. Technol. 1992, 26, 1017–1025. [Google Scholar] [CrossRef]
- Mulder, J.W.; van Loosdrecht, M.C.M.; Hellinga, C.; van Kempen, R. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci. Technol. 2001, 43, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.B.; Tian, M.; Wang, R.R.; Liu, F. Application of pH, DO and OUR control for short-cut nitrification. Renew. Sustain. Energy 2012, 347–353, 2112–2116. [Google Scholar] [CrossRef]
- Sui, Q.W.; Liu, C.; Zhang, J.; Dong, H.; Zhu, Z.; Wang, Y. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 4177–4187. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, R.; Malinska, K.; Marfà, O. Nitrification within composting: A review. Waste Manag. 2018, 72, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Gong, B.; Zhou, J.; He, Q.; Qing, X. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. Water Res. 2017, 119, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Blackburne, R.; Yuan, Z.G.; Keller, J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 2008, 19, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Ciudad, G.; Werner, A.; Bornhardt, C.; Muñoz, C.; Antileo, C. Differential kinetics of ammonia- and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification. Process. Biochem. 2006, 41, 1764–1772. [Google Scholar] [CrossRef]
- Guisasola, A.; Jubany, I.; Baeza, J.A.; Carrera, J.; Lafuente, J. Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation. J. Chem. Technol. Biotechnol. 2005, 80, 388–396. [Google Scholar] [CrossRef]
- Laanbroek, H.J.; Bodelier, P.L.E.; Gerards, S. Oxygen-Consumption Kinetics of Nitrosomonas-Europaea and Nitrobacter-Hamburgensis Grown in Mixed Continuous Cultures at Different Oxygen Concentrations. Arch. Microbiol. 1994, 161, 156–162. [Google Scholar] [CrossRef]
- Laanbroek, H.J.; Gerards, S. Competition for Limiting Amounts of Oxygen between Nitrosomonas-Europaea and Nitrobacter-Winogradskyi Grown in Mixed Continuous Cultures. Arch. Microbiol. 1993, 159, 453–459. [Google Scholar] [CrossRef]
- Tokutomi, T. Operation of a nitrite-type airlift reactor at low DO concentration. Water Sci. Technol. 2004, 49, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Beman, J.M.; Shih, J.L.; Popp, B.N. Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. ISME J. 2013, 7, 2192–2205. [Google Scholar] [CrossRef] [PubMed]
- Manser, R.; Gujer, W.; Siegrist, H. Consequences of mass transfer effects on the kinetics of nitrifiers. Water Res. 2005, 39, 4633–4642. [Google Scholar] [CrossRef] [PubMed]
- Regmi, P.; Miller, M.W.; Holgate, B.; Bunce, R.; Park, H.; Chandran, K.; Wett, B.; Murthy, S.; Bott, C.B. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 2014, 57, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Hanaki, K.; Wantawin, C.; Ohgaki, S. Nitrification at Low-Levels of Dissolved-Oxygen with and without Organic Loading in a Suspended-Growth Reactor. Water Res. 1990, 24, 297–302. [Google Scholar] [CrossRef]
- Guo, X.; Kim, J.H.; Behera, S.K.; Park, H.S. Influence of dissolved oxygen concentration and aeration time on nitrite accumulation in partial nitrification process. Int. J. Environ. Sci. Technol. 2008, 5, 527–534. [Google Scholar] [CrossRef]
- Ruiz, G.; Jeison, D.; Chamy, R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 2003, 37, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Lackner, G.; Peters, E.E.; Helfrich, E.J.N.; Piel, J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc. Natl. Acad. Sci. USA 2017, 114, E347–E356. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Bae, W.; Chung, J.; Baek, S.-C. Empirical model of the pH dependence of the maximum specific nitrification rate. Process. Biochem. 2007, 42, 1671–1676. [Google Scholar] [CrossRef]
- Lu, X.Y.; Duan, H.; Oehmen, A.; Carvalho, G.; Yuan, Z.; Ye, L. Achieving combined biological short-cut nitrogen and phosphorus removal in a one sludge system with side-stream sludge treatment. Water Res. 2021, 203, 117563. [Google Scholar] [CrossRef]
- Ganigué, R.; López, H.; Balaguer, M.D.; Colprim, J. Partial ammonium oxidation to nitrite of high ammonium content urban land fill leachates. Water Res. 2007, 41, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.; Baek, S.; Chung, J.; Lee, Y. Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation 2001, 12, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Shim, H.; Park, S.-J.; Kim, S.-J.; Bae, W. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process. Bioprocess Biosyst. Eng. 2006, 28, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Duan, H.; Wei, W.; Ni, B.-J.; Laloo, A.; Yuan, Z. Achieving stable mainstream nitrogen removal via the nitrite pathway by sludge treatment using free ammonia. Environ. Sci. Technol. 2017, 51, 9800–9807. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Alleman, J.E. Investigation of Batchwise Nitrite Buildup by an Enriched Nitrification Culture. Water Sci. Technol. 1992, 26, 997–1005. [Google Scholar] [CrossRef]
- Kayhanian, M. Ammonia inhibition in high-solids biogasification: An overview and practical solutions. Environ. Technol. 1999, 20, 355–365. [Google Scholar] [CrossRef]
- Duan, H.; Gao, S.; Li, X.; Ab Hamid, N.H.; Jiang, G.; Zheng, M.; Bai, X.; Bond, P.L.; Lu, X.; Chislett, M.M.; et al. Improving wastewater management using free nitrous acid (FNA). Water Res. 2020, 171, 115382. [Google Scholar] [CrossRef] [PubMed]
- Pedrouso, A.; del Río, Á.V.; Morales, N.; Vázquez-Padín, J.R.; Campos, J.L.; Méndez, R.; Mosquera-Corral, A. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol. 2017, 186, 55–62. [Google Scholar] [CrossRef]
- Nan, X.; Ma, B.; Qian, W.; Zhu, H.; Li, X.; Zhang, Q.; Peng, Y. Achieving nitritation by treating sludge with free nitrous acid: The effect of starvation. Bioresour. Technol. 2019, 271, 159–165. [Google Scholar] [CrossRef]
- Zhou, Y.; Oehmen, A.; Lim, M.; Vadivelu, V.; Ng, W.J. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res. 2011, 45, 4672–4682. [Google Scholar] [CrossRef]
- Chislett, M.; Yu, Z.; Donose, B.C.; Guo, J.; Yuan, Z. Understanding the Effect of Free Nitrous Acid on Biofilms. Environ. Sci. Technol. 2022, 56, 11625–11634. [Google Scholar] [CrossRef] [PubMed]
- Laloo, A.E.E.; Wei, J.; Wang, D.; Narayanasamy, S.; VanWonterghem, I.; Waite, D.; Steen, J.; Kaysen, A.; Heintz-Buschart, A.; Wang, Q.; et al. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid. Environ. Sci. Technol. 2018, 52, 5386–5397. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.N.; Gunsalus, R.P. The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 2000, 182, 5813–5822. [Google Scholar] [CrossRef] [PubMed]
- Cantera, J.J.L.; Stein, L.Y. Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environ. Microbiol. 2007, 9, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Erguder, T.H.; Boon, N.; Vlaeminck, S.E.; Verstraete, W. Partial Nitrification Achieved by Pulse Sulfide Doses in a Sequential Batch Reactor. Environ. Sci. Technol. 2008, 42, 8715–8720. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.I.B.; Thalasso, F.; López, F.d.M.C.; Texier, A. Inhibitory effect of sulfide on the nitrifying respiratory process. J. Chem. Technol. Biotechnol. 2013, 88, 1344–1349. [Google Scholar] [CrossRef]
- Vela, J.D.; Dick, G.J.; Love, N.G. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. Water Res. 2018, 138, 241–249. [Google Scholar] [CrossRef]
- Li, X.; Kapoor, V.; Impelliteri, C.; Chandran, K.; Domingo, J.W.S. Measuring nitrification inhibition by metals in wastewater treatment systems: Current state of science and fundamental research needs. Crit. Rev. Environ. Sci. Technol. 2016, 46, 249–289. [Google Scholar] [CrossRef]
- Randall, C.W.; Buth, D. Nitrite Buildup in Activated-Sludge Resulting from Combined Temperature and Toxicity Effects. J. Water Pollut. Control. Fed. 1984, 56, 1045–1049. [Google Scholar]
- Cui, Y.; Gao, J.; Zhang, D.; Zhao, Y.; Wang, Y. Rapid start-up of partial nitrification process using benzethonium chloride—A novel nitrite oxidation inhibitor. Bioresour. Technol. 2020, 315, 123860. [Google Scholar] [CrossRef]
- Wu, Z.J.; Gao, J.; Cui, Y.; Wang, Z.; Zhao, Y.; Zhang, H.; Guo, Y.; Li, Z. Feeding low-level benzethonium chloride can promote the start-up, fast recovery and long-term stable maintenance of partial nitrification for low-ammonium wastewater. Bioresour. Technol. 2022, 353, 127152. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, Y.; Zheng, X. Enhancement of Waste Activated Sludge Protein Conversion and Volatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentation by Carbohydrate Substrate Addition: The Effect of pH. Environ. Sci. Technol. 2009, 43, 4373–4380. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Pilli, S.; Bhunia, P.; Tyagi, R.D.; Surampalli, R.Y.; Zhang, T.C.; Kim, S.-H.; Pandey, A. Dark fermentation: Production and utilization of volatile fatty acid from different wastes—A review. Chemosphere 2022, 288, 132444. [Google Scholar] [CrossRef] [PubMed]
- She, Y.C.; Hong, J.; Zhang, Q.; Chen, B.-Y.; Wei, W.; Xin, X. Revealing microbial mechanism associated with volatile fatty acids production in anaerobic acidogenesis of waste activated sludge enhanced by freezing/thawing pretreatment. Bioresour. Technol. 2020, 302, 122869. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Yang, H.; Zhang, H.; Liu, Y.; Su, H.; Shen, M. Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system. Environ. Res. 2020, 180, 108863. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, J.; Wang, M.; Xin, X.; Xu, J.; Zhang, J. Efficient Volatile Fatty Acids Production from Waste Activated Sludge after Ferrate Pretreatment with Alkaline Environment and the Responding Microbial Community Shift. ACS Sustain. Chem. Eng. 2018, 6, 16819–16827. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.-W.; Brune, D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007, 98, 130–134. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Horan, N.J.; Anaman, K. Optimisation of C:N Ratio for Co-Digested Processed Industrial Food Waste and Sewage Sludge Using the BMP Test. Int. J. Chem. React. Eng. 2011, 9. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.-P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Gao, Q.; Li, L.; Zhang, Y.; Zhou, H.; Jiang, J.; Wei, L.; Wang, G.; Ding, J.; Zhao, Q. Advanced oxidation processes (AOPs)-based sludge pretreatment techniques for enhanced short-chain fatty acids production: A critical review. Chem. Eng. J. 2024, 489, 151496. [Google Scholar] [CrossRef]
- He, D.; Xiao, J.; Wang, D.; Liu, X.; Fu, Q.; Li, Y.; Du, M.; Yang, Q.; Liu, Y.; Wang, Q.; et al. Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Res. 2021, 199, 117198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, D.; Zhang, C.; Ping, Q.; Wang, L.; Li, Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. Sci. Total Environ. 2024, 921, 171175. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Li, Z.; Wang, D.; Ohlsen, T.; Dong, H. Performance of thermal pretreatment and mesophilic fermentation system on pathogen inactivation and biogas production of faecal sludge: Initial laboratory results. Biosyst. Eng. 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Alqaralleh, R.M.; Kennedy, K.; Delatolla, R. Microwave vs. alkaline-microwave pretreatment for enhancing Thickened Waste Activated Sludge and fat, oil, and grease solubilization, degradation and biogas production. J. Environ. Manag. 2019, 233, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Doğan, I.; Sanin, F.D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method. Water Res. 2009, 43, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Mehrdadi, N.; Kootenaei, F.G. An investigation on effect of ultrasound waves on sludge treatment. Energy Procedia 2018, 153, 325–329. [Google Scholar] [CrossRef]
- Alagöz, B.A.; Yenigün, O.; Erdinçler, A. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrason. Sonochemistry 2018, 40, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Çelebi, E.B.; Aksoy, A.; Sanin, F.D. Maximizing the energy potential of urban sludge treatment: An experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion. Energy 2021, 221, 119876. [Google Scholar] [CrossRef]
- Han, Y.; Zhuo, Y.; Peng, D.; Yao, Q.; Li, H.; Qu, Q. Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion. Bioresour. Technol. 2017, 244 Pt 1, 836–843. [Google Scholar] [CrossRef]
- Zou, X.; Yang, R.; Zhou, X.; Cao, G.; Zhu, R.; Ouyang, F. Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge. J. Clean. Prod. 2020, 259, 120940. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, H.; Ye, L.; Liu, L.; Batstone, D.J.; Yuan, Z. Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Res. 2019, 149, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Pirlou, M.; Ebrahimi-Nik, M.; Khojastehpour, M.; Ebrahimi, S.H. Mesophilic co-digestion of municipal solid waste and sewage sludge: Effect of mixing ratio, total solids, and alkaline pretreatment. Int. Biodeterior. Biodegrad. 2017, 125, 97–104. [Google Scholar] [CrossRef]
- Xu, X.-J.; Wang, W.-Q.; Chen, C.; Xie, P.; Liu, W.-Z.; Zhou, X.; Wang, X.-T.; Yuan, Y.; Wang, A.-J.; Lee, D.-J.; et al. Bioelectrochemical system for the enhancement of methane production by anaerobic digestion of alkaline pretreated sludge. Bioresour. Technol. 2020, 304, 123000. [Google Scholar] [CrossRef] [PubMed]
- Pilli, S.; More, T.; Yan, S.; Tyagi, R.; Surampalli, R. Fenton pre-treatment of secondary sludge to enhance anaerobic digestion: Energy balance and greenhouse gas emissions. Chem. Eng. J. 2016, 283, 285–292. [Google Scholar] [CrossRef]
- Zhou, A.; Zhang, J.; Wen, K.; Liu, Z.; Wang, G.; Liu, W.; Wang, A.; Yue, X. What could the entire cornstover contribute to the enhancement of waste activated sludge acidification? Performance assessment and microbial community analysis. Biotechnol. Biofuels 2016, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Chen, Y.G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Res. 2009, 43, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, Y.; Wang, Y.; Lian, Y.; Wang, Q.; Yang, Q.; Wang, D.; Xie, G.-J.; Zeng, G.; Sun, Y.; et al. Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustain. Chem. Eng. 2018, 6, 14104–14113. [Google Scholar] [CrossRef]
- Yang, G.; Xu, Q.; Wang, D.; Tang, L.; Xia, J.; Wang, Q.; Zeng, G.; Yang, Q.; Li, X. Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere 2018, 205, 484–492. [Google Scholar] [CrossRef]
- Chen, Y.; Jay, J.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Latif, M.A.; Mehta, C.M.; Batstone, D.J. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res. 2015, 81, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.-J.; Rittmann, B.E.; Yu, H.-Q. Soluble microbial products and their implications in mixed culture biotechnology. Trends Biotechnol. 2011, 29, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.L.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Chipasa, K.B. Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manag. 2003, 23, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xie, S.; Dennehy, C.; Lawlor, P.; Hu, Z.; Wu, G.; Zhan, X.; Gardiner, G. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review. Renew. Sustain. Energy Rev. 2020, 120, 109654. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ. Pollut. 2020, 266, 115375. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, M.; Li, J.; Yao, Y.; Tang, J.; Niu, Q. The dosage-effect of biochar on anaerobic digestion under the suppression of oily sludge: Performance variation, microbial community succession and potential detoxification mechanisms. J. Hazard. Mater. 2022, 421, 126819. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.H.; Duan, N.; Dong, B.; Dai, L. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Manag. 2013, 33, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Z.; Peng, Y.; Liu, Z.; Liu, Y.; Zhao, L. Development of a novel partial nitrification, fermentation-based double denitrification bioprocess (PN-F-Double/DN) to simultaneous treatment of mature landfill leachate and waste activated sludge. Water Res. 2021, 203, 117540. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Chen, Y.G. Using Sludge Fermentation Liquid To Improve Wastewater Short-Cut Nitrification-Denitrification and Denitrifying Phosphorus Removal via Nitrite. Environ. Sci. Technol. 2010, 44, 8957–8963. [Google Scholar] [CrossRef]
- Sun, J.; Song, J.; Fang, W.; Cao, H. Enhanced nitrogen removal upon the addition of volatile fatty acids from activated sludge by combining calcium peroxide and low-thermal pretreatments. J. Environ. Sci. 2021, 108, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Han, P.; Liu, H.; Zhou, G.; Fu, B.; Zheng, Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 2018, 260, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hao, X.; Jiang, T.; Li, X.; Yang, J.; Wang, B. Feasibility of in-situ sludge fermentation coupled with partial denitrification: Key roles of initial organic matters and alkaline pH. Bioresour. Technol. 2024, 401, 130730. [Google Scholar] [CrossRef]
- Torà, J.A.; Lafuente, J.; Baeza, J.A.; Carrera, J. Long-term starvation and subsequent reactivation of a high-rate partial nitrification activated sludge pilot plant. Bioresour. Technol. 2011, 102, 9870–9875. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, Q.; Ma, B.; Li, J.; Ma, L.; Wang, S.; Peng, Y. Rapid achievement of nitritation using aerobic starvation. Environ. Sci. Technol. 2017, 51, 4001–4008. [Google Scholar] [CrossRef]
- Ye, L.H.; Li, D.; Zhang, J.; Zeng, H. Start-up and performance of partial nitritation process using short-term starvation. Bioresour. Technol. 2019, 276, 190–198. [Google Scholar] [CrossRef]
- Wang, B.; Qiao, X.; Hou, F.; Liu, T.; Pang, H.; Guo, Y.; Guo, J.; Peng, Y. Pilot-scale demonstration of a novel process integrating Partial Nitritation with simultaneous Anammox, Denitrification and Sludge Fermentation (PN plus ADSF) for nitrogen removal and sludge reduction. Sci. Total Environ. 2022, 815, 152835. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, L.; Qiu, S.; He, Q.; Zhang, Q.; Peng, Y.; Peng, Y. Insight into the mechanism of nitritation establishment through external fermented sludge addition. Bioresour. Technol. 2021, 341, 125763. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, Q.; Wang, S.; Li, X.; Wang, R.; Peng, Y. Superior nitrogen removal and efficient sludge reduction via partial nitrification-anammox driven by addition of sludge fermentation products for real sewage treatment. Bioresour. Technol. 2023, 372, 128689. [Google Scholar] [CrossRef]
- Law, Y.Y.; Ye, L.; Wang, Q.; Hu, S.; Pijuan, M.; Yuan, Z. Producing free nitrous acid—A green and renewable biocidal agent—From anaerobic digester liquor. Chem. Eng. J. 2015, 259, 62–69. [Google Scholar] [CrossRef]
- Shen, Y.; Qiu, S.; Chen, Z.; Zhang, Y.; Trent, J.; Ge, S. Free ammonia is the primary stress factor rather than total ammonium to Chlorella sorokiniana in simulated sludge fermentation liquor. Chem. Eng. J. 2020, 397, 125490. [Google Scholar] [CrossRef]
- Geng, Y.-K.; Yuan, L.; Liu, T.; Li, Z.-H.; Zheng, X.; Sheng, G.-P. In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. J. Power Sources 2021, 491, 229616. [Google Scholar] [CrossRef]
Pretreatments | Pretreating Conditions | Biodegradability Increment | Solid Reduction | Reference |
---|---|---|---|---|
Ultrasound | 2.5 W/mL ultrasound for 30 min | 32.6% SCOD | N.R. | [101] |
Ultrasound | 20 Hz, 400 W, 10,000 kJ/kg TS | 20.1-fold SCOD | 50% VSS | [102] |
Ultrasound with CaO2 | 1 W/mL ultrasonic and 0.1 g CaO2/g VSS for 10 min | 3.25-fold SCOD | 50% refractory organic contaminants | [103] |
Thermal | 165 °C for 50 min | 2.35-fold SCOD | 49% VSS | [104] |
Thermal | 100 °C for 180 min | 11.9-fold SCOD | 24.6% VSS | [14] |
Thermal with alkaline | pH = 12 for 24 h then 80 °C for 6 h | Dissolution rate reached 112.8% | 41.78% VS | [105] |
FNA | 6.1 mg N/L FNA at pH of 5 for 24 h | 5.24-fold SCOD | 40% VS | [106] |
Microwave | 175 °C, intensity of 3.5 °C /min, and holding times of 1 min | 68.2% SCOD | 79.4% VS | [99] |
Alkaline | 6% wt with NaOH for 24 h at 25 °C | N.R. | 67.5% VS | [107] |
Alkaline | pH of 12.0 for 12 h | 15.11-fold SCOD | N.R. | [108] |
Fenton | 60 g H2O2/kg TS and 0.07 g Fe2+/g H2O2 at pH of 3 for 1 h | 8.51-fold SCOD | N.R. | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jiang, C.; Wang, D.; Fan, L.; Yang, Y.; Yang, T.; Peng, J.; Zhang, X.; Zhuang, X. Harnessing the Potential of Sludge Fermentation Liquid to Induce Partial Nitrification. Fermentation 2024, 10, 289. https://doi.org/10.3390/fermentation10060289
Wang X, Jiang C, Wang D, Fan L, Yang Y, Yang T, Peng J, Zhang X, Zhuang X. Harnessing the Potential of Sludge Fermentation Liquid to Induce Partial Nitrification. Fermentation. 2024; 10(6):289. https://doi.org/10.3390/fermentation10060289
Chicago/Turabian StyleWang, Xu, Cancan Jiang, Danhua Wang, Lijing Fan, Yang Yang, Tiancheng Yang, Jiang Peng, Xinyuan Zhang, and Xuliang Zhuang. 2024. "Harnessing the Potential of Sludge Fermentation Liquid to Induce Partial Nitrification" Fermentation 10, no. 6: 289. https://doi.org/10.3390/fermentation10060289
APA StyleWang, X., Jiang, C., Wang, D., Fan, L., Yang, Y., Yang, T., Peng, J., Zhang, X., & Zhuang, X. (2024). Harnessing the Potential of Sludge Fermentation Liquid to Induce Partial Nitrification. Fermentation, 10(6), 289. https://doi.org/10.3390/fermentation10060289