Effect of Molasses Addition on the Fermentation Quality and Microbial Community during Mixed Microstorage of Seed Pumpkin Peel Residue and Sunflower Stalks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Nutrient Analysis
2.3. Fermentation Quality Measurement
2.4. Microbiological Data Analysis
2.5. Data Processing and Analysis
3. Results
3.1. Chemical Composition
3.2. Fermentation Quality
3.3. Microbial Communities
4. Discussion
4.1. Chemical Composition
4.2. Fermentation Quality
4.3. Microbial Communities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P. Waste to Worth: Vegetable Wastes as Animal Feed. CABI Rev. 2016, 2016, 1–26. [Google Scholar] [CrossRef]
- Rasool, E.; Khan, M.F.; Nawaz, M.; Rafiq, M. Utilization of Sunflower Crop Residues as Feed in Small Ruminants. Asian-Australas. J. Anim. Sci. 1998, 11, 272–276. [Google Scholar] [CrossRef]
- Yildiz, S.; Erdoğan, S. Using of Sunflower Silage Instead of Corn Silage in the Diets of Goat. Indian J. Anim. Res. 2018, 52, 1446–1451. [Google Scholar] [CrossRef]
- Gholami-Yangije, A.; Pirmohammadi, R.; Khalilvandi-Behroozyar, H. The Potential of Sunflower (Helianthus annuus) Residues Silage as a Forage Source in Mohabadi Dairy Goats. In Veterinary Research Forum; Faculty of Veterinary Medicine, Urmia University: Urmia, Iran, 2019; Volume 10, p. 59. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A Review Regarding the Use of Molasses in Animal Nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef]
- Preston, T.R.; Sansoucy, R.; Aarts, G. Molasses as Animal Feed: An Overview. Sugarcane as Feed, FAO Animal Production and Health Papers 72. In Proceedings of the FAO Expert Consultation, Santo Domingo, Dominic Republic, 7–11 July 1986. [Google Scholar]
- Waldroup, P.W. Use of Molasses and Sugars in Poultry Feeds. World’s Poult. Sci. J. 1981, 37, 193–202. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, Y.; Wang, F.; Liu, K.; Huang, G.; Zheng, N.; Wang, J. Effects of Sugar Cane Molasses Addition on the Fermentation Quality, Microbial Community, and Tastes of Alfalfa Silage. Animals 2021, 11, 355. [Google Scholar] [CrossRef]
- Ramzan, H.N.; Tanveer, A.; Maqbool, R.; Akram, H.M.; Mirza, M.A. Use of Sugarcane Molasses as an Additive Can Improve the Silage Quality of Sorghum-Sudangrass Hybrid. Pak. J. Agric. Sci. 2022, 59, 75–81. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Evaluation of Lactobacillus Plantarum MTD1 and Waste Molasses as Fermentation Modifier to Increase Silage Quality and Reduce Ruminal Greenhouse Gas Emissions of Rice Straw. Sci. Total Environ. 2019, 688, 143–152. [Google Scholar] [CrossRef]
- Soder, K.J.; Hoffman, K.; Brito, A.F. Effect of Molasses, Corn Meal, or a Combination of Molasses plus Corn Meal on Ruminal Fermentation of Orchardgrass Pasture during Continuous Culture Fermentation. Prof. Anim. Sci. 2010, 26, 167–174. [Google Scholar] [CrossRef]
- Dong, D.; Xu, G.; Dai, T.; Zong, C.; Yin, X.; Bao, Y.; Shao, T. Effect of Molasses on Fermentation Quality of Wheat Straw Ensiled with Perennial Ryegrass. Anim. Prod. Sci. 2022, 62, 1471–1479. [Google Scholar] [CrossRef]
- Li, L.; Gong, Z.; Li, J.; Zhang, M.; Wang, S.; Zhu, X.; Wei, F.; Luo, Y. Effects of molasses and lactic acid bacteria on fermentation quality of corn stover silage. Acta Agrestia Sin. 2018, 26, 1026–1029. [Google Scholar] [CrossRef]
- Jian, W.; Lei, C.; Yuan, X.; Gang, G.; Li, J.; Bai, Y.; Tao, S. Effects of Molasses on the Fermentation Characteristics of Mixed Silage Prepared with Rice Straw, Local Vegetable By-Products and Alfalfa in Southeast China. J. Integr. Agric. 2017, 16, 664–670. [Google Scholar] [CrossRef]
- Broderick, G.A.; Radloff, W.J. Effect of Molasses Supplementation on the Production of Lactating Dairy Cows Fed Diets Based on Alfalfa and Corn Silage. J. Dairy Sci. 2004, 87, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Chen, L.; Zhou, C.; Zhang, G.; Xie, J.; Kang, J.; Tan, Z.; Tang, S.; Kong, Z.; Liu, Z.; et al. Application of Different Proportions of Sweet Sorghum Silage as a Substitute for Corn Silage in Dairy Cows. Food Sci. Nutr. 2023, 11, 3575–3587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Analysis of conventional components in feed. In Feed Analysis and Quality Test Technology, 5th ed.; China Agricultural University Press: Beijing, China, 2021; Volume 4, pp. 47–94. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and in Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Xie, F.; Guo, Y.; Liang, X.; Peng, L.; Li, M.; Tang, Z.; Peng, K.; Yang, C. Fermentation Quality, Nutritive Value and in Vitro Ruminal Digestion of Napier Grass, Sugarcane Top and Their Mixed Silages Prepared Using Lactic Acid Bacteria and Formic Acid. Grassl. Sci. 2023, 69, 23–32. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, L.; Wei, M.; Wu, B.; Xiao, M.; Zhang, R.; Ju, J.; Dong, C.; Du, L.; Zheng, Y.; et al. Effects of Lactobacillus plantarum (L) and Molasses (M) on Nutrient Composition, Aerobic Stability, and Microflora of Alfalfa Silage in Sandy Grasslands. Front. Microbiol. 2024, 15, 1358085. [Google Scholar] [CrossRef]
- Ranjitkar, S.; Karlsson, A.H.; Petersen, M.A.; Bredie, W.L.P.; Petersen, J.S.; Engberg, R.M. The Influence of Feeding Crimped Kernel Maize Silage on Broiler Production, Nutrient Digestibility and Meat Quality. Br. Poult. Sci. 2016, 57, 93–104. [Google Scholar] [CrossRef]
- Liang, X.; Ji, T.; Yi, J.; Fu, M.; Hu, Y. Effects of mixing ratio and additives on the quality of mixed silage of chicory and silage corn. Acta Pratacult. Sin. 2018, 27, 173–181. [Google Scholar] [CrossRef]
- Chen, L.; Guo, G.; Yuan, X.; Shimojo, M.; Yu, C.; Shao, T. Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-Plant Corn in Tibet. Asian-Australas. J. Anim. Sci. 2014, 27, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, G.; Yuan, X.; Zhang, J.; Li, J.; Shao, T. Effects of Applying Molasses, Lactic Acid Bacteria and Propionic Acid on Fermentation Quality, Aerobic Stability and In Vitro Gas Production of Total Mixed Ration Silage Prepared with Oat–Common Vetch Intercrop on the Tibetan Plateau. J. Sci. Food Agric. 2016, 96, 1678–1685. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.; Lourenço, M.; Díaz, R.F.; Castro, A.; Fievez, V. Effects of combined silage of sorghum and soybean with or without molasses and lactic acid bacteria on silage quality and in vitro rumen fermentation. Anim. Feed. Sci. Technol. 2010, 155, 122–131. [Google Scholar] [CrossRef]
- Li, G.; Gao, T.; Fu, T.; Jiang, S.; Guo, Y. Effects of different molasses addition on silage quality and fermentation process of alfalfa. J. Huazhong Agric. Univ. 2008, 5, 625–628. [Google Scholar] [CrossRef]
- Lei, Y.; Fan, X.; Li, M.; Chen, Y.; Li, P.; Xie, Y.; Zheng, Y.; Sun, H.; Wang, C.; Dong, R.; et al. Effects of Formic Acid and Lactic Acid Bacteria on the Fermentation Products, Bacterial Community Diversity and Predictive Functional Characteristics of Perennial Ryegrass Silage in Karst Regions. Fermentation 2023, 9, 675. [Google Scholar] [CrossRef]
- Shao, T.; Oba, N.; Shimojo, M.; Masuda, Y. Fermentation Quality of Forage Oat (Avena sativa L.) Silages Treated with Pre-Fermented Juices, Sorbic Acid, Glucose and Encapsulated-Glucose; Kyushu University: Fukuoka City, Japan, 2003. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, M.; Liu, J.; Zhu, W. Characterising the Bacterial Microbiota across the Gastrointestinal Tracts of Dairy Cattle: Membership and Potential Function. Sci. Rep. 2015, 5, 16116. [Google Scholar] [CrossRef] [PubMed]
- Luo, R. Effects of Molasses Addition on Alfalfa Silage Quality and Microbial Community. Master’s Thesis, Chinese Academy of Agricutural Sciences, Beijing, China, 2021. [Google Scholar]
- Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Barekatain, R. Fermented Soybean Meal Ameliorates Salmonella Typhimurium Infection in Young Broiler Chickens. Poult. Sci. 2019, 98, 5648–5660. [Google Scholar] [CrossRef]
- Li, D.; Shu, G.; Wang, H.; Xu, Y.; Adni, J.; Zhang, Y.; MacAdam, J.W.; Villalba, J.J.; Dai, X.; Chen, L. In Vitro Fermentation Performance of Alfalfa (Medicago sativa L.) Mixed with Different Proportions of Paper Mulberry (Broussonetia papyrifera) Leaves (PML) or Condensed Tannins Extracted from PML. Ital. J. Anim. Sci. 2021, 20, 1740–1748. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.; Yang, P.; Qu, Y.; Wang, S.; Zhang, X. Effects of Drip Irrigation on Bacterial Diversity and Community Structure in Rhizosphere Soil of Alfalfa. Microbiol. China 2019, 46, 2579–2590. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Zhao, Y.; Guan, H.; Jin, C.; Gong, H.; Sun, X.; Wang, P.; Li, H.; Liu, W. Effect of Levilactobacillus brevis as a Starter on the Flavor Quality of Radish Paocai. Food Res. Int. 2023, 168, 112780. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Ranjit, N.K. The Effect of Lactobacillus buchneri and Other Additives on the Fermentation and Aerobic Stability of Barley Silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
Raw Material 1 | Index | ||||||
---|---|---|---|---|---|---|---|
DM | CP | NDF | ADF | Ash | EE | WSC | |
Seed pumpkin peel | 5.68 | 10.31 | 20.98 | 14.40 | 10.24 | 0.21 | 32.74 |
Sunflower stalks | 90.23 | 9.89 | 45.24 | 36.87 | 10.17 | 2.10 | 6.37 |
Item 1 | CON | MA | MB | p-Value |
---|---|---|---|---|
Dry matter (%) | 31.81 ± 0.11 b | 37.74 ± 0.12 a | 36.63 ± 0.08 a | <0.001 |
Neutral detergent fiber (%DM) | 52.26 ± 2.92 a | 50.46 ± 3.98 b | 50.73 ± 3.66 b | <0.001 |
Acid detergent fiber (%DM) | 13.53 ± 1.39 a | 12.02 ± 1.08 b | 12.77 ± 0.58 b | 0.043 |
Hemicellulose (%DM) | 38.72 ± 4.07 | 38.44 ± 4.12 | 37.97 ± 3.82 | 0.791 |
Crude protein (%DM) | 6.30 ± 0.06 c | 6.51 ± 0.01 b | 7.50 ± 0.27 a | <0.001 |
Ether extract (%DM) | 2.95 ± 0.50 | 2.79 ± 0.29 | 3.16 ± 0.27 | 0.261 |
Crude ash (%DM) | 16.50 ± 0.27 b | 18.86 ± 0.57 a | 17.70 ± 0.95 a | <0.001 |
Item 1 | CON | MA | MB | p-Value |
---|---|---|---|---|
pH | 4.26 ± 0.02 b | 4.18 ± 0.04 a | 4.13 ± 0.02 a | 0.012 |
Ammonia nitrogen (μg·mL−1) | 2.19 ± 0.07 a | 1.73 ± 0.08 b | 1.85 ± 0.04 b | 0.006 |
Water soluble carbohydrate (μg·mL−1) | 34.87 ± 9.36 | 35.19 ± 10.36 | 34.27 ± 7.96 | 0.929 |
Lactic acid (mmol·mL−1) | 12.63 ± 1.43 | 14.42 ± 1.61 | 14.20 ± 1.44 | 0.112 |
Acetic acid (μg·mL−1) | 14.08 ± 1.25 b | 14.23 ± 2.92 b | 18.14 ± 1.82 a | 0.006 |
Propionic acid (μg·mL−1) | 2.69 ± 0.16 a | 2.45 ± 0.12 b | 2.71 ± 0.13 a | 0.007 |
Butyric acid (μg·mL−1) | ND | ND | ND | - |
TVFA (μg·mL−1) | 16.77 ± 1.38 b | 16.68 ± 3.00 b | 20.85 ± 1.84 a | 0.005 |
Item 1 | CON | MA | MB | p-Value |
---|---|---|---|---|
Chao 1 Index | 1233.39 ± 233.64 | 974.06 ± 213.56 | 1072.90 ± 304.54 | 0.235 |
Shannon Index | 3.78 ± 0.38 a | 2.99 ± 0.51 b | 3.55 ± 0.71 ab | 0.026 |
Simpson Index | 0.20 ± 0.04 b | 0.35 ± 0.06 a | 0.25 ± 0.07 b | 0.003 |
ACE Index | 1300.98 ± 258.70 | 980.39 ± 218.46 | 1147.74 ± 310.18 | 0.146 |
Coverage % | 99.27 ± 0.18 | 99.10 ± 0.27 | 99.02 ± 0.21 | 0.177 |
Item 1 | CON | MA | MB | p-Value |
---|---|---|---|---|
Levilactobacillus | 0.28 ± 0.10 b | 0.37 ± 0.16 a | 0.46 ± 0.10 a | 0.020 |
Loigolactobacillus | 0.27 ± 0.09 | 0.34 ± 0.24 | 0.23 ± 0.07 | 0.445 |
Pediococcus | 0.11 ± 0.02 b | 0.41 ± 0.29 a | 0.16 ± 0.03 b | <0.001 |
Lactiplantibacillus | 0.08 ± 0.02 a | 0.01 ± 0.01 b | 0.03 ± 0.01 a | <0.001 |
Lentilactobacillus | 0.03 ± 0.01 a | 0.01 ± 0.01 b | 0.02 ± 0.01 a | <0.001 |
Latilactobacillus | 0.04 ± 0.03 | 0.01 ± 0.02 | 0.02 ± 0.01 | 0.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Zhou, Y.; Ali, A.; Wang, T.; Wang, X.; Sun, X. Effect of Molasses Addition on the Fermentation Quality and Microbial Community during Mixed Microstorage of Seed Pumpkin Peel Residue and Sunflower Stalks. Fermentation 2024, 10, 314. https://doi.org/10.3390/fermentation10060314
Zhang N, Zhou Y, Ali A, Wang T, Wang X, Sun X. Effect of Molasses Addition on the Fermentation Quality and Microbial Community during Mixed Microstorage of Seed Pumpkin Peel Residue and Sunflower Stalks. Fermentation. 2024; 10(6):314. https://doi.org/10.3390/fermentation10060314
Chicago/Turabian StyleZhang, Ning, Yajie Zhou, Adnan Ali, Tengyu Wang, Xinfeng Wang, and Xinwen Sun. 2024. "Effect of Molasses Addition on the Fermentation Quality and Microbial Community during Mixed Microstorage of Seed Pumpkin Peel Residue and Sunflower Stalks" Fermentation 10, no. 6: 314. https://doi.org/10.3390/fermentation10060314
APA StyleZhang, N., Zhou, Y., Ali, A., Wang, T., Wang, X., & Sun, X. (2024). Effect of Molasses Addition on the Fermentation Quality and Microbial Community during Mixed Microstorage of Seed Pumpkin Peel Residue and Sunflower Stalks. Fermentation, 10(6), 314. https://doi.org/10.3390/fermentation10060314