Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions
Abstract
:1. Introduction
2. Sources and Properties of (Micro)plastics
3. Microbial Degradation of (Micro)plastics
3.1. Pure Cultures for (Micro)plastic Degradation
3.1.1. Bacteria
3.1.2. Fungi
3.1.3. Microalgae
Microorganism Category | Plastic | Microorganism and Source | Key Enzyme | Degradation Condition | Plastic Weight Loss | Reference |
---|---|---|---|---|---|---|
Bacteria | PET | Ideonella sakaiensis/Soil | PETase, MHETase. | 30 °C, 300 strokes/min, aerobic | 100%/42 d | [36] |
PVC | Klebsiella sp. EMBL-1/Larval gut | Catalase-peroxidase, Dehalogenases, Enolase, Aldehyde dehydrogenase, Oxygenase. | 30 °C, 150 rpm/min, aerobic | 19.57%/90 d | [38] | |
PE | Acinetobacter venetianus F1/Sediments from the Haima cold seeps | Monooxygenase, Oxygenase, Dehydrogenase, Esterase, Lipase, Hydrolases, Reductases. | 28 °C, 160 rpm/min, aerobic | 12.2%/56 d | [39] | |
Fungi | PUR | Aspergillus tubingensis/Soil | Esterase, Lipase. | 37 °C, 150 rpm/min, aerobic | 90%/60 d | [42] |
PVC | Phanerocheate chrysosporium/Laboratory | Lignin peroxidase. | 25 °C, pH = 5, aerobic | 31%/28 d | [50] | |
PE | Alternaria alternata/Plastic debris in coastal areas | Laccase, Peroxidase, Oxidoreductase. | 25 °C, alkali, aerobic | Not available | [44] | |
Microalgae | LDPE | Phormidium lucidum/Domestic sewage | Laccase, Peroxidase. | aerobic | 30%/42 d | [48] |
LDPE | Oscillatoria subbrevis/Domestic sewage | Laccase, Peroxidase. | aerobic | 30%/42 d | [48] |
3.2. Mixed Cultures for (Micro)plastic Degradation
3.2.1. Natural Mixed Cultures
3.2.2. Artificial Mixed Cultures
Plastic | Microbial Community Construction | Culture Source | Degradation Condition | Plastic Weight Loss | Reference |
---|---|---|---|---|---|
PET | Rhodococcus jostii, Bacillus subtilis | Laboratory | 30 °C, aerobic | 31.2%/60 d | [55] |
PET | Exiguobacterium sp., Halomonas sp., Ochrobactrum sp. | Surface sedimentary samples | Culture for four weeks, aerobic | Not available | [54] |
PE | Rhodopseudomonas sp. P1, Rhodanobacter sp. Rs, Microbacterium sp. M1, Bacillus aryabhattai 5-3 | Soil | 28 °C, 180 rpm for 60 d, aerobic | Not available | [56] |
PE | Acinetobacter sp. NyZ450, Bacillus sp. NyZ451 | Larval gut | 23 °C, 180 rpm/min, aerobic | 18%/30 d | [58] |
PS | Stenotrophomonas, maltophilia, Bacillus velezensis | Soil and river sediments | 30 °C, 110 rpm/min, aerobic | 43.5%/60 d | [57] |
3.3. Factors Impacting Microbial Degradation of (Micro)plastics
4. Coupled Enhanced Technologies
4.1. Advanced Oxidation Technology
4.2. Electrochemical Technology
4.3. Genetic Engineering Technology
5. Conclusions
Funding
Conflicts of Interest
References
- Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023 (accessed on 22 May 2024).
- Shi, J.; Zhang, C.; Chen, W.-Q. The expansion and shrinkage of the international trade network of plastic wastes affected by China’s waste management policies. Sustain. Prod. Consum. 2021, 25, 187–197. [Google Scholar] [CrossRef]
- Van Oosterhout, L.; Dijkstra, H.; Borst, D.; Duijndam, S.; Rehdanz, K.; Van Beukering, P. Triggering sustainable plastics consumption behavior: Identifying consumer profiles across Europe and designing strategies to engage them. Sustain. Prod. Consum. 2023, 36, 148–160. [Google Scholar] [CrossRef]
- Isobe, A.; Azuma, T.; Cordova, M.R.; Cózar, A.; Galgani, F.; Hagita, R.; Kanhai, L.D.; Imai, K.; Iwasaki, S.; Kako, S.I.; et al. A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes. Micropl. Nanopl. 2021, 1, 16. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Das, S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. Chemosphere 2023, 334, 138928. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Rochman, C.M.; Browne, M.A.; Halpern, B.S.; Hentschel, B.T.; Hoh, E.; Karapanagioti, H.K.; Rios-Mendoza, L.M.; Takada, H.; Teh, S.; Thompson, R.C. Classify plastic waste as hazardous. Nature 2013, 494, 169–171. [Google Scholar] [CrossRef]
- Maity, S.; Biswas, C.; Banerjee, S.; Guchhait, R.; Adhikari, M.; Chatterjee, A.; Pramanick, K. Interaction of plastic particles with heavy metals and the resulting toxicological impacts: A review. Environ. Sci. Pollut. Res. 2021, 28, 60291–60307. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, Q.; Ding, H.; Song, Y.; Pan, Q.; Deng, H.; Zeng, E.Y. Differences of microplastics and nanoplastics in urban waters: Environmental behaviors, hazards, and removal. Water Res. 2024, 260, 121895. [Google Scholar] [CrossRef]
- Guo, S.; Feng, D.; Li, Y.; Liu, L.; Tang, J. Innovations in chemical degradation technologies for the removal of micro/nano-plastics in water: A comprehensive review. Ecotoxicol. Environ. Saf. 2024, 271, 115979. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, X. Microplastic Degradation in Sewage Sludge by Hydrothermal Carbonization: Efficiency and Mechanisms. Chemosphere 2022, 297, 134203. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I. Role of microbiome and biofilm in environmental plastic degradation. Biocatal. Agric. Biotechnol. 2022, 39, 102263. [Google Scholar] [CrossRef]
- Bao, T.; Qian, Y.; Xin, Y.; Collins, J.J.; Lu, T. Engineering microbial division of labor for plastic upcycling. Nat. Commun. 2023, 14, 5712. [Google Scholar] [CrossRef]
- He, W.; Li, Y.; Ni, L.; Zhu, W. Effect of stabilizer EDTA on the thermal hazard of green synthesis process of adipic acid and development of microchannel continuous flow process. Emerg. Manag. Sci. Technol. 2023, 3, 22. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Liu, J.; Yu, H.; Liu, P.; Yang, Y.; Sun, D.; Kang, H.; Wang, Y.; Tang, J.; et al. Integration of advanced biotechnology for green carbon. Green Carbon 2024, 2, 164–175. [Google Scholar] [CrossRef]
- Ogunbayo, A.O.; Olanipekun, O.O.; Adamu, I.A. Preliminary Studies on the Microbial Degradation of Plastic Waste Using Aspergillus niger and Pseudomonas sp. J. Environ. Prot. Ecol. 2019, 10, 625–631. [Google Scholar] [CrossRef]
- Rios, L.M.; Jones, P.R.; Moore, C.; Narayan, U.V. Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre’s “eastern garbage patch”. J. Environ. Monitor. 2010, 12, 2226–2236. [Google Scholar] [CrossRef]
- Sorasan, C.; Edo, C.; González-Pleiter, M.; Fernández-Pinas, F.; Leganés, F.; Rodríguez, A.; Rosal, R. Ageing and fragmentation of marine microplastics. Sci. Total Environ. 2022, 827, 154438. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 2022, 60, 107991. [Google Scholar] [CrossRef]
- Dhaka, V.; Singh, S.; Anil, A.G.; Naik, T.S.S.K.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P.C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A.; Nostro, A. Poly(lactic acid)/carvacrol-based materials: Preparation, physicochemical properties, and antimicrobial activity. Appl. Microbiol. Biotechnol. 2020, 104, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Pfohl, P.; Bahl, D.; Rückel, M.; Wagner, M.; Meyer, L.; Bolduan, P.; Battagliarin, G.; Hüffer, T.; Zumstein, M.; Hofmann, T.; et al. Effect of Polymer Properties on the Biodegradation of Polyurethane Microplastics. Environ. Sci. Technol. 2022, 56, 16873–16884. [Google Scholar] [CrossRef]
- Yang, S.-S.; Ding, M.-Q.; Ren, X.-R.; Zhang, Z.-R.; Li, M.-X.; Zhang, L.-L.; Pang, J.-W.; Chen, C.-X.; Zhao, L.; Xing, D.-F.; et al. Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Sci. Total Environ. 2022, 828, 154458. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhang, Z.; Jing, Y.; Bai, L.; Zhao, M.; Hao, X.; Li, X.; Guo, X. The photo-aging of polyvinyl chloride microplastics under different UV irradiations. Gondwana Res. 2022, 108, 72–80. [Google Scholar] [CrossRef]
- Endo, K. Synthesis and structure of poly(vinyl chloride). Prog. Polym. Sci. 2002, 27, 2021–2054. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, B.-H.; Yang, W.-W.; Li, X.; Zhu, L.-W.; Xu, Z.-K.; Wan, L.-S. Effect of polar groups of polystyrenes on the self-assembly of breath figure arrays. J. Polym. Sci. 2022, 60, 2371–2382. [Google Scholar] [CrossRef]
- Du, T.; Shao, S.; Qian, L.; Meng, R.; Li, T.; Wu, L.; Li, Y. Effects of photochlorination on the physicochemical transformation of polystyrene nanoplastics: Mechanism and environmental fate. Water Res. 2023, 243, 120367. [Google Scholar] [CrossRef] [PubMed]
- Mahato, B.; Babarinde, V.O.; Abaimov, S.G.; Lomov, S.V.; Akhatov, I. Interface strength of glass fibers in polypropylene: Dependence on the cooling rate and the degree of crystallinity. Polym. Compos. 2020, 41, 1310–1322. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, D.; Wang, Y.; Wang, L.; Qiu, Y.; Wang, L.; Chen, T.; Zhao, L. Crystallization and Performance of Polyamide Blends Comprising Polyamide 4, Polyamide 6, and Their Copolymers. Polymers 2023, 15, 3399. [Google Scholar] [CrossRef]
- Hou, L.; Xi, J.; Liu, J.; Wang, P.; Xu, T.; Liu, T.; Qu, W.; Lin, Y.B. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 2022, 286, 131758. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, C.G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 2019, 222, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Lee, H.M.; Yu, H.C.; Jeon, E.; Lee, S.; Li, J.; Kim, D.H. Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environ. Sci. Technol. 2020, 54, 6987–6996. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Joo, S.; Cho, I.J.; Seo, H.; Son, H.F.; Sagong, H.Y.; Shin, T.J.; Choi, S.Y.; Lee, S.Y.; Kim, K.J. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, H.; Yang, D.; Zhang, G.; Zhang, J.; Ju, F. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 2022, 13, 5360. [Google Scholar] [CrossRef]
- Lyu, L.; Fang, K.; Huang, X.; Tian, X.; Zhang, S. Polyethylene is degraded by the deep-sea Acinetobacter venetianus bacterium. Environ. Chem. Lett. 2024, 22, 1591–1597. [Google Scholar] [CrossRef]
- Sanchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- Khan, S.; Nadir, S.; Shah, Z.U.; Shah, A.A.; Karunarathna, S.C.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, D.; Li, Q.; Zhao, Y.; Li, L.; Lin, H.; Bi, Q.; Zhao, Y. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 2020, 704, 135931. [Google Scholar] [CrossRef]
- Gao, R.; Liu, R.; Sun, C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 2022, 431, 128617. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [PubMed]
- Vimal Kumar, R.; Kanna, G.R.; Elumalai, S. Biodegradation of Polyethylene by Green Photosynthetic Microalgae. J. Bioremediat. Biodegrad. 2017, 2017, 1000381. [Google Scholar] [CrossRef]
- Chia, W.Y.; Tang, D.Y.Y.; Khoo, K.S.; Lup, A.N.L.; Chew, K.W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ. Sci. Ecotechnol. 2020, 4, 100065. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. 2018, 25, 33508–33520. [Google Scholar] [CrossRef]
- Gowthami, A.; Marjuk, M.S.; Raju, P.; Devi, K.N.; Santhanam, P.; Kumar, S.D.; Perumal, P. Biodegradation efficacy of selected marine microalgae against Low-Density Polyethylene (LDPE): An environment friendly green approach. Mar. Pollut. Bull. 2023, 190, 114889. [Google Scholar] [CrossRef]
- Khatoon, N.; Jamal, A.; Ali, M.I. Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environ. Technol. 2019, 40, 1366–1375. [Google Scholar] [CrossRef]
- Devi, R.S.; Ramya, R.; Kannan, K.; Antony, A.R.; Kannan, V.R. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar. Pollut. Bull. 2019, 138, 549–560. [Google Scholar] [CrossRef]
- Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Repouskou, E.; Kroll, K.; Kolvenbach, B.; Corvini, P.F.; Fava, F.; Kalogerakis, N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS ONE 2017, 12, e0183984. [Google Scholar] [CrossRef]
- Xu, Y.; Xian, Z.N.; Yue, W.; Yin, C.F.; Zhou, N.Y. Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae. Chemosphere 2023, 318, 137944. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Sun, C. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. J. Hazard. Mater. 2021, 416, 125928. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Ma, Y.; Chang, H.; Li, B.; Ding, M.; Yuan, Y. Evaluation of PET Degradation Using Artificial Microbial Consortia. Front. Microbiol. 2021, 12, 778828. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Han, S.; Wang, Y.; Duan, Y.; Liu, T.; Hou, L.; Zhang, Z.; Li, L.; Lin, Y. Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. J. Hazard. Mater. 2023, 442, 130045. [Google Scholar] [CrossRef]
- Xiang, P.; Zhang, Y.; Zhang, T.; Wu, Q.; Zhao, C.; Li, Q. A novel bacterial combination for efficient degradation of polystyrene microplastics. J. Hazard. Mater. 2023, 458, 131856. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.-F.; Xu, Y.; Zhou, N.-Y. Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. Int. Biodeter. Biodegr. 2020, 155, 105089. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Jing, X.; Zhang, L.; Chen, J.; Rensing, C.; Luan, T.; Zhou, S. Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions. Water Res. 2021, 207, 117782. [Google Scholar] [CrossRef]
- Ortiz, D.; Munoz, M.; Nieto-Sandoval, J.; Romera-Castillo, C.; de Pedro, Z.M.; Casas, J.A. Insights into the degradation of microplastics by Fenton oxidation: From surface modification to mineralization. Chemosphere 2022, 309, 136809. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Q.-S.; Luo, T.-Y.; Wu, R.-L.; Wei, W.; Ni, B.-J. Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem. Eng. J. 2021, 416, 129123. [Google Scholar] [CrossRef]
- Pang, W.; Li, B.; Wu, Y.; Zeng, Q.; Yang, J.; Zhang, Y.; Tian, S. Upgraded recycling of biodegradable PBAT plastic: Efficient hydrolysis and electrocatalytic conversion. Chem. Eng. J. 2024, 486, 150342. [Google Scholar] [CrossRef]
- Montazer, Z.; Habibi-Najafi, M.B.; Mohebbi, M.; Oromiehei, A. Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil. J. Polym. Environ. 2018, 26, 3613–3625. [Google Scholar] [CrossRef]
- Tribedi, P.; Dey, S. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil. Environ. Monit. Assess. 2017, 189, 624. [Google Scholar] [CrossRef]
- Xing, R.; Sun, H.; Du, X.; Lin, H.; Qin, S.; Chen, Z.; Zhou, S. Enhanced degradation of microplastics during sludge composting via microbially-driven Fenton reaction. J. Hazard. Mater. 2023, 449, 131031. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Chen, Z.; Yu, Z.; Xue, J.; Luan, T.; Chen, S.; Zhou, S. Mechanisms of polystyrene microplastic degradation by the microbially driven Fenton reaction. Water Res. 2022, 223, 118979. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Q. Bioelectrochemical systems—A potentially effective technology for mitigating microplastic contamination in wastewater. J. Clean. Prod. 2024, 450, 141931. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Fessler, M.; Jin, B.; Su, Y.; Zhang, Y. Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion. Water Res. 2022, 221, 118844. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, M.; Jin, B.; Wünsch, U.J.; Su, Y.; Zhang, Y. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. Water Res. 2022, 211, 118046. [Google Scholar] [CrossRef]
- Wang, K.; Yang, S.; Yu, X.; Bai, M.; Ye, H.; Xu, Y.; Zhao, L.; Wu, D.; Li, X.; Weng, L.; et al. Microplastics degradation stimulated by in-situ bioelectric field in agricultural soils. Environ. Int. 2023, 177, 108035. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, Y.; Li, Z.; Xu, M.; Wang, Y.; Ge, R.; Kong, X.; Zheng, L.; Duan, H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Wang, B.; Tao, M.; Ji, H.; Xiang, X.; Fu, Z.; Liao, L.; Liao, P.; Chen, R. Effective degradation of polystyrene microplastics by Ti/La/Co-Sb-SnO2 anodes: Enhanced electrocatalytic stability and electrode lifespan. Sci. Total Environ. 2024, 922, 171002. [Google Scholar] [CrossRef]
- Rahmati, F.; Sethi, D.; Shu, W.; Asgari Lajayer, B.; Mosaferi, M.; Thomson, A.; Price, G.W. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. Chemosphere 2024, 355, 141749. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cao, L.; Qin, Z.; Li, S.; Kong, W.; Liu, Y. Tat-Independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by Its native signal peptide. J. Agric. Food Chem. 2018, 66, 13217–13227. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wei, R.; Cui, Q.; Bornscheuer, U.T.; Liu, Y.J. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb. Biotechnol. 2021, 14, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.J.; Sanchez, A.; Dini-Andreote, F. Engineering microbiomes to transform plastics. Trends Biotechnol. 2024, 42, 265–268. [Google Scholar] [CrossRef]
Plastic Category | Plastic Name | Structural Formula | Density (g/cm3) | Crystallinity | Glass Transition Temperature (Tg) (°C) | Molecular Polarity | Reference |
---|---|---|---|---|---|---|---|
Polyester | Polyethylene terephthalate (PET) | 1.33–1.35 | Semi-crystalline | 73–78 | Polar | [22] | |
Polylactic acid (PLA) | 1.25–1.28 | Semi-crystalline | 60–65 | Polar | [23] | ||
Polyurethane (PU) | 1.15–1.3 | Semi-crystalline | −62 | Polar | [24] | ||
Polyolefin | Polyethylene (PE) | 0.92–0.97 | Semi-crystalline | −110 | Non-polar | [25] | |
Polyvinyl chloride (PVC) | 1.15–1.70 | Amorphous | 60–100 | Non-polar | [26,27] | ||
Polystyrene (PS) | 1.04–1.06 | Amorphous | 90 | Non-polar | [28,29] | ||
Polypropylene (PP) | 0.89–0.91 | Semi-crystalline | (−20)–0 | Non-polar | [30] | ||
Polyamide | Polyamides (PA) | 1.02–1.05 | Semi-crystalline | −60 | Polar | [31] |
Plastic | Dominant Bacteria | Culture Source | Degradation Condition | Plastic Weight Loss | Reference |
---|---|---|---|---|---|
HDPE | Bacillus sp., Pseudomonas sp. | Discarded refuse | 30 °C, aerobic | 23.14%/4 weeks | [51] |
PVC | Stenotrophomonas, Enterococcus, Acinetobacter | Larval gut | 30 °C, 180 rpm/min, aerobic | 6.13%/30 d | [53] |
PE | Bacillus sp., Paenibacillus sp. | Landfill | 30 °C, aerobic | 14.7%/60 d | [33] |
PE | Betaproteobacteria, Alphaproteobacteria, Gamma-proteobacteria | Discarded refuse | 25 °C, 120 rpm/min, aerobic | 19%/6 months | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Xu, M.; Zhao, W.; Yang, X.; Xin, F.; Dong, W.; Jia, H.; Wu, X. Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions. Fermentation 2024, 10, 441. https://doi.org/10.3390/fermentation10090441
Gao W, Xu M, Zhao W, Yang X, Xin F, Dong W, Jia H, Wu X. Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions. Fermentation. 2024; 10(9):441. https://doi.org/10.3390/fermentation10090441
Chicago/Turabian StyleGao, Wei, Mingxuan Xu, Wanqi Zhao, Xiaorui Yang, Fengxue Xin, Weiliang Dong, Honghua Jia, and Xiayuan Wu. 2024. "Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions" Fermentation 10, no. 9: 441. https://doi.org/10.3390/fermentation10090441
APA StyleGao, W., Xu, M., Zhao, W., Yang, X., Xin, F., Dong, W., Jia, H., & Wu, X. (2024). Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions. Fermentation, 10(9), 441. https://doi.org/10.3390/fermentation10090441